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Early life stress and body-mass-index modulate brain
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Early life stress (ELS) significantly increases susceptibility to alcohol use disorder (AUD) by affecting the interplay between the
executive and the salience networks (SNs). The link between AUD and higher body-mass index (BMI) is known, but we lack
understanding of how BMI impacts the relationship between ELS and brain connectivity in individuals with AUD. To bridge this gap,
we investigated the main and interaction effects of ELS and BMI on brain connectivity in individuals with AUD compared to non-
AUD participants (n= 77 sex-matched individuals per group). All participants underwent resting-state functional magnetic
resonance imaging, revealing intriguing positive functional connectivity between SN seeds and brain regions involved in
somatosensory processing, motor coordination and executive control. Examining the relationship of brain connectivity with ELS
and BMI, we observed positive associations with the correlations of SN seeds, right anterior insula (RAIns) and supramarginal gyrus
(SMG) with clusters in motor [occipital cortex, supplementary motor cortex]; anterior cingulate cortex (ACC) with clusters in frontal,
or executive, control regions (middle frontal gyrus; MFG, precentral gyrus) that reportedly are involved in processing of emotionally
salient stimuli (all |β | > 0.001, |p | < 0.05). Interestingly, a negative association of the interaction effect of ELS events and BMI
measures with the functional connectivity of SN seeds ACC with decision-making (MFG, precentral gyrus), RAIns and RSMG with
visuo-motor control regions (occipital cortex and supplementary motor cortex) (all |β |=−0.001, |p | < 0.05). These findings
emphasize the moderating effect of BMI on ELS-associated SN seed brain connectivity in AUD. Understanding the neural
mechanisms linking BMI, ELS and AUD can guide targeted interventions for this population.
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INTRODUCTION
Early life stress (ELS), as determined by self-reported traumatic
childhood events, such as emotional abuse, severe family conflict,
domestic violence and bullying, has been linked to increased
vulnerability to the development of alcohol use disorder (AUD) [1–3].
Individuals with AUD and obesity exhibit poor decision-making
abilities, which has been linked to disruptions in the salience network
(SN) assessed in resting state functional MRI studies [4, 5]. This
maladaptive decision-making has been attributed to difficulties in
switching between executive and salience networks in alcohol
drinkers [6]. Furthermore, a decrease in resting state functional
connectivity within the default mode network (DMN) and an increase
in connectivity between the reward, limbic and SNs have been
reported in obesity [7]. Accordingly, studies have extensively
examined the relationship between heavy alcohol consumption
and increased body weight over the past years [8].
It has been speculated that heavy alcohol consumption can

lead to a higher body-mass index (BMI) via insulin resistance

[9, 10]. Although the evidence for a comorbidity between obesity
and AUD is conflicting [11], the clinical relationship between these
two disorders is complex and both are affected by common
aspects of vulnerability to adverse events, as well as subsequent
events whereby excess alcohol consumption can lead to both
weight gain and to weight loss [8, 12, 13]. Previous studies have
shown that ELS is associated with alterations in brain structure and
function, including reduced centrality (defined as the impact of a
particular region of the brain on the transmission and exchange of
information within extensive networks of the brain) in SN regions,
such as the anterior insula (AIns) and dorsal anterior cingulate
cortex (ACC) [14–16].
Despite extensive research conducted on the topic, there is still

insufficient evidence of any association of ELS-related events and
BMI on alterations of brain connectivity of salience, executive,
somatosensory and impulse control networks in individuals with
AUD. In our earlier study using data from the human connectome
project (HCP) we found notable associations between chronic
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alcohol consumption, BMI and the decision-making capabilities for
monetary rewards in people with high-risk AUD and obesity
symptoms [17]. Expanding on these findings, our present aim is to
investigate the similarities in the association between BMI and ELS
and the resting-state seed-based functional connectivity of
decision-making related regions in individuals diagnosed with
AUD compared to those without an AUD diagnosis. We
hypothesize that in individuals with AUD compared to those
without AUD, early life stress and BMI may exhibit a positive
association with the connectivity of the salience network node to
brain regions involved in executive control and decision-making
processes.

MATERIALS AND METHODS
Participants
The study cohort, as presented in Table 1, was comprised of 154 sex-
matched participants categorized into those with (n= 77) and without
(n= 77) a diagnosis of AUD. All participants underwent resting state
functional MRI scans. AUD participants in this study were treatment-
seekers and were inpatients admitted in the NIAAA clinic for treatment and
their resting state functional MRI scans were obtained following
detoxification and withdrawal period from alcohol. Diagnosis of AUD
was made via the Structured Clinical Interview for the Diagnostic Statistical
Manual (DSM)-IV or DSM-5 (SCID) [18–20]. For the current analysis,
individuals who were diagnosed with alcohol dependence or abuse via
SCID-IV were considered to have an AUD. Daily alcohol consumption in the
90 days preceding the study was assessed using the timeline follow-back
(TLFB) method [21]. Individuals with substance use disorders other than
AUD and nicotine dependence were excluded. Patients were allowed to
smoke during their stay but were requested not to smoke or remove their
nicotine patch two hours prior to their MRI scan. The study was approved
by the Institutional Review Board of the National Institutes of Health, and
all participants provided written informed consent to participate.

Body-mass index (BMI)
BMI for all participants in the study was calculated by dividing their body
weight by the square of their height (Kg/m2). Measurements of both body
weight and height were recorded when participants enrolled in the NIAAA
natural history study. The continuous BMI variable was utilized to conduct
further analysis to identify the relationship between BMI, and ELS on brain
connectivity patterns in AUD vs. non-AUD participants.

Early life stress (ELS) events
ELS was operationalized using self-report questionnaire which consists of
19 standard life event items experienced in their early life as a child (up to
age 18 years). The participants’ responses were recorded as yes/no for each
life event including emotional, sexual, and physical abuse, as well as
violence, negligence, parental divorce, surgery, parental death, separation
and so forth [22, 23]. The sum of responses for all domains was used to
create a complete ELS_events score (with a maximum score of 19;
Mean= 3.58, SD= 3.2). Emotional abuse, severe family conflict, domestic
violence and bullying were the most reported events.

Resting-state functional MRI (rsfMRI) data acquisition and
preprocessing
Resting-state fMRI (rs-fMRI) scans were acquired from patients during the
inpatient treatment phase when they were stabilized and not experiencing
stress or acute withdrawal symptoms. Patients’ withdrawal scores were
assessed using the Clinical Institute Withdrawal Assessment for Alcohol-
revised (CIWA-Ar), a 10-item scale [24]. To be eligible for rs-fMRI scans,
patients had to have an average CIWA-Ar score below 8, which typically
occurs at 1 week after admission, and the scans were done during weeks 2
or 3 of their inpatient stay. The scans were conducted at the NIH NMR
Center, utilizing a Siemens 3 T MRI Skyra scanner with a 20-channel head
coil. Participants were instructed to keep their eyes open and remain alert
during the ten-minute period of rs-fMRI data collection, with no additional
stimuli presented. The rs-fMRI scans were acquired utilizing an echoplanar-
imaging pulse sequence (TR: 2000 ms, TE: 30 ms, FA: 90°, FOV:
240 × 240mm, 3.8 mm slice thickness, multi-slice mode: interleaved). A
high-resolution T1-weighted MPRAGE (TR: 1900 ms, TE: 3.09ms, FA: 10°,
FOV: 240 × 240mm, 1mm slice thickness) was obtained for registration

purposes. Preprocessing of the data was carried out using the CONN
toolbox (version 18.b; https://www.nitrc.org/executedashboard/?
group_id=279), a Matlab-based toolbox for functional connectivity
analysis (http://www.nitrc.org/projects/conn) [25], including realignment
and unwarp, slice-timing correction, outlier identification, and normal-
ization. Artifact detection was performed based on scan-to-scan differ-
ences in the global signal (z-value threshold 5) and subject motion
parameters (threshold 0.9 mm) using the ‘art’ software for artifact rejection
(www.nitrc.org/projects/artifact_detect/), with identified outlier scans
included as first-level covariates.

Functional connectivity
To analyze rs-fMRI data, we used the CONN toolbox (18.b) with full width at
half maximum spatial smoothing of 8 mm. To minimize effects of head
motion, we regressed out principal components associated with segmen-
ted white matter and cerebrospinal fluid using CompCor [26], as well as
twelve motion regressors (3 rotational, 3 translational, and their
derivatives) calculated from CONN image preprocessing. The data were
filtered using a band-pass filter of 0.008-0.09 Hz to eliminate very-low-
frequency drift and high frequency noise, and linear trends were removed.
We used a continuous squashing function (i.e., despiking) to further
minimize the influence of potential outlier scans. Global BOLD signal was
not regressed out to avoid the mathematical introduction of negative
correlations [27].
We conducted a seed to voxel (whole brain) resting state connectivity

analysis to investigate the influence of ELS on the connectivity of SN seed
regions and the rest of the brain. The seeds were selected a priori based on
our hypothesis of strong interaction of SN with executive function
networks in addictive conditions [28–30]. The seeds were defined based on
the anatomical FSL Harvard-Oxford atlas, which is the default atlas utilized
for segmentation during the CONN processing procedure. We included the
anterior insula, anterior cingulate cortex, and inferior parietal cortex
(supramarginal gyrus) as seed regions associated with the SN. A separate
model was created for the left and right structures for each seed. We
extracted the mean time series of the seed region from their preprocessed
functional data and calculated Pearson’s correlation coefficients for the
connection between the seed and voxel for each participant. To enable
further analyses, we transformed the resulting values into normally
distributed Z-scores using the Fisher transformation. The identified
correlations are presented in the results section.

Statistical analyses
To compare the demographic and clinical characteristics of our study
groups (AUD vs. non-AUD), we utilized Student’s t-tests and
Mann–Whitney tests for continuous variables, and chi-squared tests for
categorical variables. The age and sex-controlled connectivity coefficients
between the SN seeds and significant clusters in the AUD compared to
non-AUD group were extracted from CONN. We considered connection-
level False Discovery Rate (FDR)-corrected P values < 0.05 as significant
[31]. We then employed general linear model (GLM) to investigate the
relationship of ELS events and BMI and the interaction effect of ELS events
and BMI measures with the correlations of seed and significant clusters
(interpreted as connectivity, the dependent variable) and included ELS
events, BMI, age, sex, smoking status, and AUD status as fixed factors. For
all descriptives and regression models, we used SPSS 22 (IBM Corp.,
Armonk, NY). Figure 1 provides an overview of the study flow, including
participant measures and statistical approach used to investigate the study
hypothesis.

RESULTS
Characteristics of the sample: demographic and clinical
There was a significant difference in age distribution between the
AUD and non-AUD cohorts (test statistic=−5.6; p < 0.001). The
full BMI and ELS distribution of the AUD and non-AUD cohorts are
reported in Supplementary Fig. S1. The data show a significant
difference in distribution of ELS across the AUD vs. non-AUD
cohorts (test statistic=−5.5; p < 0.001), while BMI distribution was
not significantly different across the study cohorts (test statistic =
0.18; p= 0.86).
Furthermore, the percentage of smokers was significantly

higher in the AUD cohort (64.9%) compared to the non-AUD
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cohort (1.3%; p < 0.001). Individuals with AUD had a lower level of
education (mean years of education, 13.5 ± 2.7) and had low
household income (30K-39, 999) compared to participants without
AUD [(mean years of education, 16.5 ± 3.7; p < 0.001) (household
income, 50K-74, 999; p= 0.002)]. No significant difference in race
and ethnicity was identified between the AUD and non-AUD
groups (refer to Table 1).

Resting state fMRI
Seed-based voxel connectivity (SBVC) in AUD compared to non-
AUD. Several clusters displayed altered connectivity with our

seed regions, including the left/right SMG, left/right AIns, and ACC,
following adjustment for age and sex in the AUD compared to the
non-AUD cohort. For further information on the connected
clusters, please refer to Table 2. Additionally, a visual representa-
tion of the extent of significance can be found in Fig. 2.
The ACC seed region demonstrated positive connectivity with

clusters in both the right and left frontal pole, postcentral gyrus,
precentral gyrus, and middle frontal gyrus (MFG), as well as the left
lateral occipital cortex (LOC), superior parietal lobule (SPL), and
caudate. Additionally, it exhibited connections with the right
thalamus, posterior supramarginal gyrus, and precuneus cortex.

Table 1. Demographic and clinical characteristics of participants (n= 154).

AUD cohort (n= 77) Non-AUD cohort
(n= 77)

Test Statistics T test or,
Mann–Whitney for continuous/Chi-
square for categorical variables

Age (years)
(mean ± SD)

47.9 ± 11.3 45.4 ± 11.2 p= 0.03

Sex

Males n (%) 39 (49.4%) 39 (49.4%) χ2= 0; df = 1; p= 1.00

Females n (%) 38 (50.6%) 38 (50.6%)

Years of Education 13.5 ± 2.7 16.5 ± 3.7 p < 0.001

Household Income
(Median)

30K-39, 999 50K-74, 999 χ2= 22.5; df = 8; p= 0.002

Total AUDIT Score 29.2 ± 5.9 2.8 ± 2.2 p= 0.00

Smoking status

Yes, n (%) 50 (64.9%) 1 (1.3%) χ2= 70.4; df = 1; p < 0.001

No, n (%) 27 (35.2%) 76 (98.7%)

Ethnicity, n (%)

Non-Hispanic or
Latino

70 (90.9%) 68 (88.3%) χ2= 3.17; df = 2; p= 0.21

Hispanic or Latino 5 (6.5%) 9 (11.7%)

Unknown/not
reported

2 (2.6%) 0 (0.0%)

Race, n (%)

White 38 (49.4%) 30 (39.0%) χ2= 11.07; df = 5; p= 0.05

Black/African
American

24 (31.2%) 31 (40.3%)

Asian 1 (1.3%) 9 (11.7%)

American Indian or
Alaska Native

1 (1.3%) 0 (0.0%)

Multiracial 8 (10.4%) 4 (5.2%)

Unknown Race 5 (6.5%) 3 (3.9%)

Medications During
Inpatient Stay

Antihypertensive agent, angiotensin-converting-
enzyme (ACE) inhibitor; alpha or, beta-adrenergic
agonist; angiotensin receptor blocker; anti-manic
agent, anticonvulsant agent; benzodiazepine agent;
antidepressant agents (e.g., Selective Serotonin
Reuptake Inhibitor (SSRI), Tricyclic Antidepressant
(TCA) Agent); smoking cessation agent; antiemetic
agent, serotonin receptor antagonist 5-HT3; attention
deficit hyperactivity disorder therapy agent,
norepinephrine reuptake inhibitor; calcium channel
blocker agent; diabetes mellitus therapy agent; gastric
acid secretion inhibitor, proton pump inhibitor; etc.

NA -

BMI (Kg/m2) 26.5 ± 5.7 26.1 ± 4.9 p= 0.86

ELS events (Median;
IQR)

3.6; 5.8 1.0; 2.9 p < 0.001

NA: not available; Household Income: <$10,000= 1, $10K-$19,999= 2, $20K-$29,999= 3, $30K-$39,999= 4, $40 K $49,999= 5, $50K-$74,999= 6, $75K-
$99,999= 7, >=$100 000= 8; length of AUD history (difference in age of AUD onset and current age). Here, * represents statistical significance with p
value < 0.05.
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The left AIns seed exhibited positive connectivity with a cluster in
the left postcentral gyrus. Conversely, the right AIns seed
displayed positive connections with the right frontal pole,
supplementary motor cortex, precentral gyrus, and postcentral
gyrus (see Table 2; Fig. 2A–C).
The left SMG seed exhibited positive connectivity with various

clusters, including the right LOC, postcentral gyrus, precentral
gyrus, and frontal pole. In contrast, the right SMG seed
demonstrated negative connectivity with the left precentral gyrus,
while displaying positive connectivity with the right LOC, anterior
supramarginal gyrus, postcentral gyrus, and SPL (refer to Table 2;
Fig. 2D, E).

Association of ELS events and BMI with SBVC in individuals with AUD
versus non-AUD. Following adjustment for age, sex, smoking
status, and AUD status in our GLM analysis, we identified several
associations of SBVC in the AUD versus non-AUD cohort with both
ELS events and BMI. Specifically, we observed positive associations
between increased occurrences of ELS events and BMI measure
with the connectivity of the ACC with left MFG [ELS events:
(β= 0.03; CI= 0.01, 0.01; p= 0.01), BMI: (β= 0.01; CI= 0.001, 0.01;
p= 0.01)] and bilateral precentral gyrus [ELS: left, (β= 0.02;
CI= 0.002, 0.04; p= 0.03), right, (β= 0.03; CI= 0.004, 0.05;
p= 0.02); BMI: left, (β= 0.004; CI= 2.3E–5, 0.006; p= 0.04), right
precentral gyrus (β= 0.01; CI= 0.003, 0.01; p= 0.002)] clusters.
Functional connectivity of RAIns seed with right supplementary
motor cortex cluster was also significantly positively correlated
with both ELS events (β= 0.02; CI= 0.01, 0.03; p= 0.006) and BMI
measures (β= 0.001; CI= 0.002, 0.01; p= 0.03). Functional con-
nectivity of RSMG seed with right LOC cluster was also
significantly positively correlated with both ELS events (β= 0.02;
CI= 0.003, 0.04; p= 0.02) and BMI measures (β= 0.01; CI= 0.001,
0.01; p= 0.009).
We also identified an interaction effect of ELS events and BMI

measures on these connectivity patterns in AUD vs. non-AUD
cohort. ELS events*BMI was negatively associated with the
connectivity patterns: ACC seed connection with left MFG
(β=−0.001; CI=−0.002, 7.67E–5; p= 0.03) and bilateral pre-
central gyrus [left, (β=−0.001; CI = (−0.001, 6.09E–5; p= 0.04);
right, (β=−0.001; CI= 0.002, 0.00; p= 0.02)]); RAIns seed
connection with right supplementary motor cortex (β=−0.001;
CI= 0.001, 0.00; p= 0.01); RSMG seed connection with right LOC
(β=−0.001; CI= 0.002, −2.75E–5; p= 0.04) (see Table 2 for
details).

DISCUSSION
The current study sought to investigate the functional connectiv-
ity of SN seed in AUD versus non-AUD participants and their
association with history of ELS events and BMI measures. As
predicted, SBVC in AUD versus non-AUD study participants
revealed several positive connectivity patterns of SN seeds,
including ACC, bilateral AIns and bilateral SMG with whole brain

clusters in somatosensory and motor coordination areas (such as
the bilateral LOC, supplementary motor cortex, postcentral gyrus,
and supramarginal gyrus); frontal, or executive control regions
(e.g., key nodes of the fronto-parietal network: MFG, precentral
gyrus, SPL); and nodes in posterior DMN (precuneus, thalamus and
caudate).
The connectivity patterns identified in participants with AUD (vs.

non-AUD) in our study is in alignment with a previous report in
participants with AUD wherein increased within and between SN,
DMN and executive control networks functional connectivity were
noted in AUD compared to healthy controls using a whole-brain
probabilistic independent component analysis approach [32]. This
heightened functional connectivity between the SN seed regions,
specifically the insula and anterior cingulate cortex (ACC) and the
visual cortex (LOC) and middle frontal gyrus (MFG), was also
detected in a study by Han et al. at a moderate alcohol dose [33].
The observed increased connectivity between the SN seed regions
and somatosensory and motor coordination areas may be
attributed to an enhanced involvement of the SN in detecting
and assigning emotional significance to relevant sensory stimuli.
This interpretation finds further support in reports of increased
connectivity between the ACC and the sensorimotor network [34]
and is consistent with the visuomotor effects associated with
alcohol [35, 36]. In line with previous reports suggesting a crucial
role of DMN nodes, such as precuneus in social and self-related
cognitive processes [37, 38], the increased ACC-precuneus
coupling identified in our study might pertain to heightened
self-awareness and emotional response to negative social stimuli
in AUD subjects. This, in turn, could potentially increase impulsive
decision-making and drinking behaviors as a way of regulating
these emotions in individuals with AUD (vs. non-AUD). Addition-
ally, as previously highlighted in our own studies [32, 39], the
heightened functional connectivity identified in individuals with
AUD compared to those without AUD may indicate a potential
neural mechanism of compensation or adaptation following long-
term alcohol exposure, wherein the structural damage resulting
from chronic alcohol use [40–42] is potentially restored through
the dynamic coupling of related networks, including the SN, motor
coordination networks and DMN.
In our population which comprised of moderate-to-severe AUD

and non-AUD subjects, BMI distribution did not reveal a significant
difference; however, a clear difference in the distribution of ELS
events between patients with AUD and without AUD was seen.
This hints that the relationship of BMI and ELS in the context of
AUD may not be straightforward, and there may be other factors
that have a stronger impact on the association between ELS and
BMI in individuals with AUD. Consequently, upon examining the
association of history of ELS events and BMI with the identified
connectivity in AUD (vs. non-AUD) subjects, we identified several
clusters that were associated with both ELS and BMI increases.
Notably both ELS events and BMI were positively associated

with the functional connectivity between SN seeds, RAIns and
RSMG with clusters in motor [occipital cortex, supplementary

Fig. 1 The study flow listing the sample, measures and analytic techniques. The alcohol use disorder (AUD) and non-AUD population. The
measures included early life stress (ELS) events, body-mass-index (BMI) and resting-state functional connectivity (rs-fMRI). The main analyses
consisted of seed-based rs-fMRI to identify connectivity patterns in individuals with AUD, as well as General Linear Models to identify
relationships of connectivity differences with ELS events and BMI as well as the interaction effects of ELS events and BMI measures.
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motor cortex], ACC with clusters in frontal, or executive, control
regions (MFG, precentral gyrus) that reportedly are involved in
processing of emotionally salient stimuli [43–46]. Exposure to
stress during critical periods of brain development has been
demonstrated to modify connectivity patterns and heighten the
risk of developing AUD. Likewise, numerous studies provide
evidence that experiencing ELS has harmful effects on individuals
and enhances their susceptibility to alcohol use in adulthood
[2, 47–51]. Moreover, exposure to a series of ELS events leads to

modifications in connectivity of brain regions associated with
emotion, self-regulation and cognition, including nodes within the
fronto-limbic networks, such as the mPFC, ACC, amygdala and
orbitofrontal cortex [52–54]. Children between the ages of 9 and
16 who were exposed to various stress events, such as
conventional crimes, child maltreatment, peer/sibling victimiza-
tion and sexual victimization, were found to have a reduced
functional connection between their SMG and PCC [55]. Moreover,
it is noteworthy that exposure to acute stress has been linked with

Fig. 2 Functional connectivity pattern in AUD compared to non-AUD. A–D Significant Seed-to-Voxel connections representing salience
network seed regions (anterior cingulate cortex, anterior insula left/right and supramarginal gyrus left/right). Labels provided for perspective
reference are as follows: SMC Supplementary Motor Cortex, MFG Middle Frontal Gyrus, PoG Postcentral Gyrus, LOC Lateral Occipital Cortex,
SPL Superior Parietal Lobule; cluster of significant activation at the peak-wise PFWE < 0.001/cluster size P < 0.05 FDR corrected level. Directions
of connectivity are noted in Table 2.
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elevated functional connectivity between the nodes of the default
mode and SNs in healthy adults and adolescents [55, 56].
Considering the diverse range of ELS events encountered by the
participants in our study, spanning from a single event to as many
as nineteen stressors, it is conceivable that the directional
connectivity between the SN and various brain regions was
influenced by the cumulative extent of their early life stress
experiences. Moreover, these connectivity patterns exhibited a
positive association with the elevation of BMI, suggesting
heightened functional connectivity between the SN and brain
areas implicated in decision-making processes and the coordina-
tion of visual and motor functions in individuals with AUD. The
findings suggest two potential scenarios: either ELS contributes to
overeating in individuals with AUD, or ELS-induced overeating
could heighten their vulnerability to excessive alcohol consump-
tion. Consequently, the connections of the SN with regions
governing decision-making (fronto-parietal) and the coordination
of visual and motor functions (lateral occipital cortex and
supplementary motor cortex) might encounter further impact in
individuals with AUD due to the co-occurring effects of early life
stress and heightened BMI, thereby leading to irregular processing
of salient stimuli. To test this hypothesis, we assessed the
interaction effect of assessment of the interaction effect between
the frequency of ELS events and BMI measurements with the
identified patterns of functional connectivity in individuals with
AUD as compared to those without AUD.
Interestingly, we identified a negative association of the

interaction effect of ELS events and BMI measures with the
functional connectivity of SN seeds ACC with decision-making
(MFG, precentral gyrus), RAIns and RSMG with visuo-motor
control regions (LOC and supplementary motor cortex). Both
pre-clinical and clinical studies have identified the contribution
of ELS in increasing the risk for obesity [57–59] and AUD
[48, 60, 61], which was attributed to persistent overactivation of
the hypothalamic-pituitary-adrenal (HPA) axis [62], dysregula-
tion of the mesolimbic dopamine functions [63, 64] and an
imbalance in connectivity patterns of salience, emotion and
somatosensory networks [65]. Nonetheless, none of these
studies demonstrated the combined relationship of increased
occurrence of ELS events and BMI measures on brain
connectivity in adults with AUD compared to those without
AUD. Our results suggest that the increase in both ELS events
and BMI disrupts the connectivity of SN with decision-making
and visuo-motor coordination regions, potentially amplifying
impulsive decision-making and compromising self-control
behaviors. These altered behaviors, influenced by ELS and
exacerbated by an increase in BMI, may be interpreted as the
underlying drivers for the worsening of early life stress history
related AUD [66].
The present study offers intriguing insights into the intricate

relationship between ELS, BMI and AUD and the connections of
salience network seeds with the whole brain. These findings
corroborate our initial hypothesis, which postulates that heigh-
tened BMI might influence the connectivity patterns between the
SN and specific brain regions responsible for regulating executive
control and impulsive behaviors, particularly in individuals
diagnosed with AUD and a history of early life stress. Moreover,
the notable detrimental effect on the connectivity of SN seeds
with fronto-parietal and visuo-motor coordination networks,
specifically in AUD individuals (vs. non-AUD), because of increased
BMI stemming from a higher frequency of stressful events during
early life, implies a potential neurobiological mechanism through
which the combination of elevated BMI and a history of early life
stress contributes to alterations in the functional connectivity of
crucial brain networks in these individuals. Further exploration of
these intricate associations can significantly enhance our under-
standing of the neurobiological underpinnings of AUD, especially
in the context of early life adversity and its impact on BMI.

LIMITATIONS
There are several unanswered questions that need to be explored
in future large cohort studies. One limitation of our study is the
use of self-reported questionnaire to measure ELS events. This
type of measure is prone to recall bias and may not provide a
complete evaluation of ELS. Furthermore, our study did not
disentangle the effect of each type of ELS experience, even
though research shows that different adverse events may have
different effects on brain structure and network connectivity. For
example, deprivation and neglect are linked to changes in
executive control network regions, such as the dorsolateral
prefrontal cortex and parietal cortex, while threat and abuse-
related exposures are linked to alterations in regions of the
salience network [67]. Additionally, adults who grew up in poverty
exhibit reduced activation in the ventrolateral prefrontal cortex
and have difficulty regulating emotions [68]. In a recent study
alterations in connectivity within the SN was found to mediate the
effects of childhood abuse and neglect with problematic alcohol
use [69]. Although there are no studies that have directly
compared the impact of ELS on connectivity differences with
increase in BMI measures in the AUD population, the age at which
the stress occurred [70] and the level or duration of stress
exposure [71] are crucial factors that should be explored in future
studies. Moreover, the correlations observed with ELS and BMI
measures with brain connectivity in individuals with AUD (vs. non-
AUD) give rise to various conclusions. For instance, it is possible
that ELS influences both alcohol abuse and excessive eating.
Alternatively, it could be that ELS-driven AUD contributes to
overeating, or that ELS-driven overeating increases vulnerability to
alcohol overconsumption. The significance of these findings
emphasizes the need for longitudinal studies instead of solely
relying on cross-sectional research. It is also crucial to conduct
longitudinal studies that follow individuals with AUD from an early
stage, allowing the observation of potential changes in their brain
patterns over time, particularly in relation to any fluctuations in
BMI. Another potential limitation is that AUD treatment seekers
were administered various medications during their in-patient
stay, including anti-depressants, anti-psychotic agents, smoking
cessation agents, antihypertensive agents or an attention deficit
hyperactivity disorder therapy agent, which may have influenced
the functional connectivity results (please refer to Table 1);
however, since these were absent from the non-AUD control
group, it was not appropriate to include these as covariates. Lastly,
our identified connectivity patterns between SN seeds and other
brain networks does not align with many other studies on the
effects of ELS on SN seed-based connectivity. This may be
attributed to the relatively low severity of the stressors reported in
our cohort, making direct comparisons with previous results
difficult. In our forthcoming study, we aim to investigate potential
sex effects that may be influencing the observed correlations and
relationships. Furthermore, it is crucial to replicate our findings
using large datasets to assess the consistency and reliability of the
results, reinforcing the significance and validity of our study’s
outcomes.

CONCLUSION
To conclude, we identified positive correlations in the connectivity
of our SN seeds with clusters associated with emotion, self-
regulation, decision-making and impulsivity for salient stimuli in
an AUD vs. non-AUD population which correlated positively with a
history of ELS-related events and BMI measures. Further our
results revealed the impact of the interaction of ELS events and
BMI elevation on the observed brain connectivity patterns in study
participants with AUD (vs. non-AUD). These findings underscore
the significance of ELS and BMI in modulating the SN seed
connectivity in AUD and its role in the neurobiological mechan-
isms that drive AUD. The results from our study suggest potential
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directions for future large-scale research on the neural mechan-
isms for the comorbid occurrence of obesity in individuals with
AUD with a history of ELS. This might facilitate the development of
targeted interventions for such individuals.
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