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Electroconvulsive therapy is associated with increased
immunoreactivity of neuroplasticity markers in the
hippocampus of depressed patients
Dore Loef 1,2✉, Indira Tendolkar 3,4,5, Philip F. P. van Eijndhoven3,4, Jeroen J. M. Hoozemans 6, Mardien L. Oudega1,2,
Annemieke J. M. Rozemuller 6, Paul J. Lucassen 7, Annemiek Dols1,8,10 and Anke A. Dijkstra9,10
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Electroconvulsive therapy (ECT) is an effective therapy for depression, but its cellular effects on the human brain remain elusive. In
rodents, electroconvulsive shocks increase proliferation and the expression of plasticity markers in the hippocampal dentate gyrus
(DG), suggesting increased neurogenesis. Furthermore, MRI studies in depressed patients have demonstrated increases in DG
volume after ECT, that were notably paralleled by a decrease in depressive mood scores. Whether ECT also triggers cellular
plasticity, inflammation or possibly injury in the human hippocampus, was unknown. We here performed a first explorative,
anatomical study on the human post-mortem hippocampus of a unique, well-documented cohort of bipolar or unipolar depressed
patients, who had received ECT in the 5 years prior to their death. They were compared to age-matched patients with a depressive
disorder who had not received ECT and to matched healthy controls. Upon histopathological examination, no indications were
observed for major hippocampal cell loss, overt cytoarchitectural changes or classic neuropathology in these 3 groups, nor were
obvious differences present in inflammatory markers for astrocytes or microglia. Whereas the numbers of proliferating cells
expressing Ki-67 was not different, we found a significantly higher percentage of cells positive for Doublecortin, a marker
commonly used for young neurons and cellular plasticity, in the subgranular zone and CA4 / hilus of the hippocampus of ECT
patients. Also, the percentage of positive Stathmin 1 cells was significantly higher in the subgranular zone of ECT patients,
indicating neuroplasticity. These first post-mortem observations suggest that ECT has no damaging effects but may rather have
induced neuroplasticity in the DG of depressed patients.

Translational Psychiatry          (2023) 13:355 ; https://doi.org/10.1038/s41398-023-02658-1

INTRODUCTION
Electroconvulsive therapy (ECT) is an effective treatment modality
in psychiatry, that is mostly prescribed for treatment-resistant,
major depressed patients, with response rates of up to 85% [1, 2].
While its exact mechanisms of action and cellular effects remain
elusive, human and animal studies have suggested a possible role
for changes in neuroplasticity (e.g. neurogenesis or gliogenesis)
[3]. Although it is generally considered a safe treatment [4–7],
some clinicians and patients may be reluctant to start ECT in view
of suspected injury, possible cognitive impairment or inflamma-
tion of the brain [8–11], also since it was so far unknown whether
ECT elicits any inflammation, damage and/or neuropathological
changes.
Much research into possible ECT mechanisms has focused on

the hippocampus. Magnetic resonance imaging (MRI) studies have
shown reductions in hippocampal volume in patients with

depression [12], which might be due to reductions in neurogen-
esis in aspects of depression [11, 13–18]. The occurrence of
neurogenesis in the human hippocampus has recently been
heavily debated, and both a general absence [19–21] as well as a
prominent presence have been reported [22–28]. Next to
anatomical studies, other approaches like C14 carbon dating
[29], magnetic resonance spectroscopy [30], in vitro studies and
recently also single-cell sequencing date [31], all support the
existence of neurogenesis in the human brain, as discussed
recently [22, 32]. Furthermore, MRI studies on psychiatric patients
have recently shown increases in hippocampal volume after ECT
that were modified by electrode placement and the number of
ECT sessions [4, 33, 34]. Interestingly, while the increase in the
volume of the entire hippocampus was not associated with clinical
outcome [33, 35], high-resolution, 7 T imaging of the hippocampal
subfields revealed that a selective increase in the volume of the
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dentate gyrus (DG) contributed most to the overall change in
hippocampal volume. Notably, this volume increase in the DG was
significantly correlated with a decrease in depression scores [36],
highlighting a possible role for DG plasticity in the recovery of
major depressive disorder (MDD) after ECT.
These DG changes have also been supported by animal data. In

a rat model, electroconvulsive stimulation (ECS) induced hippo-
campal mossy fiber sprouting in the subgranular zone (SGZ) of the
DG, and increases in ECS frequency lead to more sprouting in the
DG [37], suggesting that ECS promotes DG plasticity and possibly
neurogenesis in rats. Indeed, this was confirmed by significant
increases shortly after ECS in the number of proliferating cells in
the rat DG, based on bromodeoxyuridine (BrdU) studies [38].
Furthermore, the epileptic responses induced by ECS were
associated with increases in the expression of Doublecortin
(DCX), a microtubule-associated protein expressed in migrating
neuroblasts, that is often used as marker for immature neurons or
neurogenesis [39, 40], both in the DG of rodents [41–48] and
humans [23, 27, 49, 50]. Research in rats has further shown that
ECS treatment induced an immediate glial response in several
brain areas, an activation that was again diminished four weeks
later [51].
It remained so far unclear, however, whether ECT also induces

changes in cellular plasticity in the human hippocampus.
Consistent with investigations in non-human primates [52], the
typical time-to-effect of antidepressant treatment and/or ECT is
generally less than two months, in line with a time frame that
activated stem cells would likely need to develop into new
neurons and integrate in the DG circuit. Alternatively, the volume
changes after ECT could possible also relate to inflammatory
changes due to e.g. activation of (astro)glia [53].
Effects of ECT on hippocampal plasticity measures have so far

been mainly examined in animal models, and by means of imaging
volume changes only in patients, but not in the human post-
mortem brain. In order to bridge this gap, we here studied a
unique cohort of depressed patients who had received varying ECT
treatment regimens during their lives and investigated whether
changes in proliferation and DCX expression were present in the
DG. Importantly, to control for the possible influence of medication
or depression on proliferation and DCX, the hippocampi of ECT-
treated patients were compared to the hippocampi of medicated
depressed patients not treated with ECT and neurologically healthy
controls. We further assessed whether there is a relation to the
number of ECT sessions and/or the time interval to the last ECT
session, and explored possible neuropathological and glial changes
in the hippocampi of these 3 groups.

METHODS
Subjects
Post-mortem hippocampi were selected from the Netherlands Brain Bank
(NBB), from; a) 12 depressed donors who had received ECT in the 5 years
prior to their death (ECT; mean age = 54.25), b) 10 age-matched depressed
donors (DC; mean age = 66.90) who did not receive ECT, and c) 15 age-
matched healthy control donors (HC; mean age = 68.87) without any
neurological or psychiatric history. All data and material collected by the
NBB are obtained on the basis of written informed consent. All procedures
involving patients were approved by the ethics committees of Amsterdam
University Medical Center. Detailed clinical records were requested from
the NBB to gather all possible information concerning the ECT course. The
donors in the ECT group had varying durations between their last ECT and
their deaths, varying from 45 months of receiving their last ECT to less than
one month prior to death (Table 1). Donors in the DC group had
experienced at least one reported depressive episode in the 5 years prior
to their death. Most subjects with available electrode placement
information had received both right unilateral (RUL) and bilateral (BL)
ECT sequentially. Therefore, no clear distinction was made between RUL
and BL ECT.
Based on the information in their clinical records, donors who had

received ECT were subdivided over either a remitted, a partially remitted or

a nonresponse group. If no validated depression severity scale was
available, the ECT donor was classified by a trained psychiatrist based on
the descriptive outcome in his/her clinical records. When available, both
the left and right hippocampus of the ECT donors were included and then
averaged for quantitative analysis. This method was chosen to maximize
the inclusion of these unique cases, as both hemispheres were not always
available for all ECT donors.
Except for 1 donor whose medication status was unknown, all donors

with a depressive disorder (both ECT donors and depressive control
donors) received antidepressant medication and/or mood stabilizers. In
the last 5 years prior to their death, serotonin-noradrenaline reuptake
inhibitors and monoamine oxidase inhibitors were only taken by donors
in the ECT group, whereas both the DC and ECT groups had been treated
with selective serotonin reuptake inhibitors, tricyclic antidepressants,
atypical antidepressants, lithium, and antipsychotics at similar stages in
their disease process. Therefore, given their similarity in antidepressant
medication history, these groups could be compared to examine the
effects of ECT per se.

Immunohistochemistry
For our immunocytochemical studies, we studied 8 μm thick sections of
the formalin-fixed, paraffin-embedded hippocampus from donors of all 3
groups. Brains were fixed for 4 weeks in neutral buffered 10% formalin. For
most donors, the mid-level of the hippocampus was studied, but in 21.6%
of cases (HC: 2 out of 15; DC: 3 out of 10; ECT: 3 out of 12) this region was
not available and an adjacent more anterior part was included for analysis,
except for 1 ECT donor were a more posterior part was studied.
Cytoarchitectural and neuropathological changes of all hippocampi

were examined in detail by an experienced neuropathologist (AR)
according to the standard NBB protocol [54, 55], and any specific remarks
regarding their histo/neuropathological details are listed in Supplementary
Table 1. Using classic conventional histological and neuropathological
staining for H&E, Nissl, Bodian Silver, Amyloid beta, phosphorylated tau
(AT8)), and according to standard protocols, brain sections from all donor
groups were studied for gross morphological aberrations in cytoarchitec-
ture, such as a possible ectopic location of cells, overt malformations or
region-specific cell loss, and for the presence of neurodegenerative
changes, such as amyloid deposits or neurofibrillary tau.
Immunohistochemistry was performed using antibodies against DCX to

visualize immature/young neurons (Mab Signaling Technologies, batch
#4604, Danvers, MA, USA), against Stathmin 1 (STMN1) to visualize cells in
transition from neuronal precursors to postmitotic neurons (ab52630;
Abcam) [56], and against Ki-67 to visualize cell proliferation (MIB-1: DAKO,
Glostrup, Denmark) in the granule cell layer (GCL) and SGZ of the DG. DCX
is a microtubule-associated protein expressed in migrating neuroblasts
that is frequently used as a proxy to detect neurogenesis in rodents
[46–48] and that is also expressed in the human hippocampus, for which
post-mortem delay and fixation can affect immunoreactive signal quality,
as discussed elsewhere [23, 24, 57–59]. Notable, due to their rapid autopsy
program, tissues from the NBB generally have a relatively short post-
mortem delay, benefitting tissue and antigen preservation.
STMN1 is a phosphoprotein that plays a critically important role in the

regulation of the microtubule cytoskeleton and the cell cycle, particularly
during cell division [60]. STMN1 expression has a positive correlation with
cellular proliferation, as interfering with its function by forced expression or
inhibition leads to decreased cellular proliferation [60]. Furthermore,
STMN1 is upregulated during neuronal differentiation and plasticity [61].
The Ki-67 antigen is a DNA-binding protein complex present in the

nucleus of all proliferating cells during the G1, S, G2 and M, but not G0,
phases of the cell cycle. Its deletion suppresses cell division in cell lines,
indicating an important role in cell cycle control [62]. Ki-67 exhibits phase-
specific staining patterns [24, 63] and is generally absent from quiescent,
apoptotic or post-mitotic cells [58, 64, 65].
Furthermore, we explored whether possible inflammatory changes had

been induced after ECT and used immunocytochemistry for glial fibrillary
acidic protein (GFAP: clone EP672Y, Roche, Basel, Switzerland) to visualize
astrocytes, and for ionized calcium binding adaptor molecule 1 (Iba1: Wako
Pure Chemical Industries, Osaka, Japan) to identify microglia.
Briefly, for all antibodies, slides were first deparaffinized, washed in

phosphate buffer saline (PBS; pH 7.4) (3 × 5minutes) and incubated in 0.3%
H2O2 in PBS for 30minutes to block endogenous peroxidase activity. Sections
were then washed in PBS (3 × 5minutes) and heat-induced antigen retrieval
was performed in citrate buffer (pH 6.0) using an autoclave (121 °C for
5minutes) and then cooled to room temperature for another 20minutes. After
washing with PBS, sections were incubated with primary antibodies overnight
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at room temperature (DCX: 1:1000; STMN1 1:80.000; Ki-67 1:2500; GFAP: 1:2500;
Iba1: 1:1000). After another wash, sections were incubated with HRP-labelled
Envision (K5007; DAKO, Glostrup, Denmark). Immunostaining was visualized
with chromogen 3,3’-diaminobenzidine (DAB; K5007; DAKO). Finally, sections
were counterstained with hematoxylin, dehydrated, and coverslipped with
Quick D (Klinipath, Duiven, The Netherlands). Negative controls for each

primary antibody were included by omitting the primary antibody and all
showed no immunoreactivity. Per antibody, sections from all brain donors
were included in one staining session in order to minimize variability between
groups. Examples of cells positive for either DCX, STMN1 or Ki-67
immunoreactive signal are shown in Fig. 1. Furthermore, for images of the
DCX stain of the complete granule layer see Supplementary Fig. 1.

Fig. 1 Doublecortin (DCX), Stathmin 1 (STMN1), and Ki-67 expression in the hippocampus. The granule cell layer (GCL) is delineated with a
solid line and the dashed line indicates the border of the subgranular zone (SGZ; A, D, G). Cytoplasmic and dendritic DCX expression is shown
in the GCL (B) and the SGZ (C), cytoplasmic STMN1 expression is shown in the GCL (E) and in the SGZ (F), and nuclear Ki-67 expression is
shown in neurons of the GCL (H) and in pairs in the SGZ (I). Scale bar A, D, G= 200 µm, scale bar B, C, E, F, H, I= 10 µm.
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Quantification
The immunoreactive signals for DCX, GFAP and Iba1 were studied in the
GCL, SGZ, and in the cornu ammonis 4 (CA4) / hilar region of the
hippocampus. For quantification, images of the DAB-stained sections were
collected using an Olympus BX4q microscope with a Leica MC 170HD
digital camera with a 10x objective. Two photographs of the immunostain-
ings of the DG (2592 ×1944 pixels; 10x) per slide were imported in ImageJ,
and the surface area of the immunocytochemical detected threshold of the
cellular signal occupied by immunoreactive signal, i.e. the DAB deposit,
was quantified by means of ImageJ software (https://imagej.nih.gov/ij/)
using the plug-in color deconvolution, as follows. The surface areas of the
DG subregions were delineated in the section using the Haematoxylin
counterstain, quantified, and expressed in μm2. Pixels with a value within
the established threshold were then included in the percentage of positive
area occupied by DAB (%AO) relative to the surface area of the outlined
DG. For the thresholds, a value that made a clear distinction between
positive cells and the background was selected and subsequently
validated by an experienced neuropathologist, which resulted in a
threshold of 135 for DCX, 147 for GFAP, and 181 for Iba1 of the maximum
threshold of 255. The results of the two photographs per slide were
averaged. Also, in donors where both hippocampi were available, results
from the two hemispheres were averaged.
For STMN1 and Ki-67, whole-slide images were taken from the entire

hippocampal surface at 20x magnification using an Olympus VS200 slide
scanner. The GCL and SGZ of the DG were delineated and then quantified
to calculate %AO (for STMN1 and Ki-67) using QuPath software (version
v0.3.2; https://qupath.github.io/) [66]. For the percentage of positive cells,
ROIs were drawn on the DG and SGZ and quantified using the positive cell
detection workflow. The positive cells were then manually quantified per
ROI and divided over the total number of cells present. This process with
QuPath was also executed on the DCX images to calculate the percentage
of positive DCX cells relative to the total number of cells present.

Statistical analysis
Data were analyzed using the software “Statistical Package for the Social
Sciences” (IBM SPSS Statistics for Windows, version 27.0, 2020). The
analyses were performed using an ANOVA F-test to compare differences of
means among the HC, DC and ECT group. When a significant difference
between means was observed, Tukey’s HSD multiple comparisons were
used to pairwise compare each group. Linear regression analyses were
then used to assess associations between the markers DCX, STMN1, and Ki-
67 consecutively as dependent variables and remission status, the number
of ECT sessions, and the time interval between the last ECT and death as
independent variables. All linear regression analyses were corrected for
age of death to account for a possible age effect. As remission status was
unknown for 3 ECT patients, linear regression analyses were executed both
with remission status as an independent variable including a total of 9 ECT
patients and without remission status as an independent variable
including a total of 12 ECT patients. The significance level was set at
p < 0.05.

RESULTS
Descriptive statistics and pathology
The mean age of death of the donors was 68.87 (SD= 16.02) years
for the HC group, 66.90 (SD= 13.47) for the DC group, and 54.25
(SD= 21.85) for the ECT group. There was no significant difference
in age at death between the groups (F(2, 34)= 2.55, p= 0.093).
Also, no significant difference was found in post-mortem delay
(PMD) between the groups (F(2,34)= 1.12, p= 0.337), with a mean
PMD of 7.30 hours (SD= 2.69) in the HC group, 6.13 hours
(SD= 1.39) in the DC group and 7.65 hours (SD= 2.80) in the
ECT group. In the HC group 46.7% was male, which was 40.0% for
the DC group and 58.3% for the ECT group.
Importantly, a histopathological study by our NBB neuropathol-

ogist found no indications for major cell loss, nor for gross
cytoarchitectural malformations in any of the cell layers of the
main hippocampal DG and CA subregions of the ECT, DC, or HC
group (Fig. 2). The thickness of the GCL, as determined by
averaging two measurements per case, was not significantly
different between the groups (F(2, 34)= 0.33, p= 0.724). The
cytoarchitecture of all hippocampal subareas appeared normal.
There was a presence of mild age-related changes in neurofi-
brillary tangles or amyloid deposits in the hippocampus of most
donors, which were matched between groups (Supplementary
Table 1).

Proliferation and neuronal maturation
The differences between groups in the mean percentage of
positive DCX cells in the GCL (mean HC= 0.52, mean DC= 0.49,
mean ECT= 1.03) was not significant (F(2, 34)= 2.90, p= 0.069,
η²=0.15). However, these differences between groups were
significant for both the SGZ (F(2, 34)= 7.14, p= 0.003, η²=0.30)
and CA4 (F(2, 34)= 3.68, p= 0.036, η²=0.18). Next, Tukey’s HDS
post hoc pairwise comparisons showed that in the SGZ, the mean
percentage of positive DCX cells was significantly higher in ECT
donors (mean=6.48) than in both the HC (mean=2.25, p= 0.002)
and DC (mean = 3.26, p= 0.040) groups (Fig. 3). Additionally, in
CA4, the mean percentage of positive DCX cells of the ECT donors
(mean = 2.50) was significantly different compared to the HC
donors (mean = 1.29, p= 0.027), but not compared to the DC
donors (mean=1.88, p= 0.429). Furthermore, no significant
difference was found between the HC and DC groups in the
SGZ (p= 0.683) or CA4 (p= 0.431). Regarding the mean %AO by
DCX, the ANOVA showed significant differences between groups
in the GCL (F(2, 34)= 3.73, p= 0.034, η²=0.18), SGZ (F(2,
34)= 5.76, p= 0.007, η²=0.25), and CA4 (F(2, 34)= 4.90,
p= 0.014, η²=0.22). Next, pairwise comparisons showed that in

Fig. 2 Representative photomicrographs of H&E stained tissue sections of the hippocampal dentate gyrus. The photomicrographs show
the granule cell layer (GCL) and subgranular zone (SGZ) of; a healthy control donor (HC; A & D), a control donor with a depressive disorder (DC;
B & E), and an ECT donor (ECT; C & F). Scale bar A–C= 250 µm, D–F= 50 µm.
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the GCL, the mean %AO by DCX was significantly different
between the healthy control donors and ECT donors (mean
HC= 0.09, mean ECT= 0.39, p= 0.037). Moreover, in the GCL, no
significant differences were found in the mean %AO by DCX
between the DC group (mean=0.12) and the HC group
(p= 0.959), or the ECT group (p= 0.111). In the SGZ, a significantly
higher %AO by DCX was also observed in ECT donors (mean
ECT= 1.02) compared to healthy control donors (mean HC= 0.16,
p= 0.007). The difference in %AO by DCX between the ECT group
and the DC group (mean=0.31) was close to significance
(p= 0.051). No significant difference in %AO by DCX in the SGZ
was found between both control groups (p= 0.855). Finally, in
CA4, the mean %AO by DCX was also significantly higher in ECT
donors (mean ECT= 0.59) compared to the HC group (mean
HC= 0.07, p= 0.011). Furthermore, no significant differences were
found in CA4 in the mean %AO by DCX between the DC group
(mean = 0.22) and the HC group (p= 0.696), or the ECT group
(p= 0.125). In order to investigate the potential impact of age,
ANCOVA’s were executed with age as covariate, which showed no

significant effect of age on the DCX results. Therefore, the results
of the ANOVA were displayed in order to also assess the Tukey’s
HSD post-hoc pairwise comparisons between the groups.
For the analyses of STMN1, data of one ECT donor had to be

excluded due to poor tissue quality. No significant differences
were found between groups in the mean %AO by STMN1 in both
the GCL (mean HC= 1.84, mean DC= 0.30, mean ECT= 3.67; F(2,
33)= 1.45, p= 0.248, η²=0.08) and SGZ (mean HC= 1.09, mean
DC= 0.23, mean ECT= 1.51; F(2, 32)= 1.78, p= 0.186, η²=0.10).
However, the mean percentage of positive STMN1 cells was
significantly different between the groups in the SGZ F(2,
32)= 8.15, p= 0.001, η²=0.34. Tukey’s HSD post-hoc pairwise
comparisons showed that in the SGZ, the mean percentage of
positive STMN1 cells was significantly increased in the ECT group
(mean = 1.97) compared to both the HC group (mean = 0.79;
p= 0.004) and the DC group (mean = 0.69; p= 0.004; Fig. 3). This
mean percentage was not significantly different between the HC
and DC group (p= 0.953). In the GCL, the mean percentage of
positive STMN1 cells was also higher in the ECT group

Fig. 3 Doublecortin (DCX) and Stathmin 1 (STMN1) expression in the dentate gyrus. The first part shows representative images of DCX
expression in the granule cell layer (GCL), subgranular zone (SGZ), and cornu ammnois 4 (CA4) in a healthy control donor (HC; 1A), a control
donor with a depressive disorder (DC; 1B), and a donor who received electroconvulsive therapy during life (ECT; 1C). Note the substantial
signal in the GCL, SGZ, and CA4 where many positive cells were found. Quantification of the overall optical density and the distribution of the
groups is shown in percentages of positive DCX cells in the GCL (1D), SGZ (1E), and CA4 (1F). In the SGZ, the mean percentage of positive DCX
cells was significantly higher in the ECT group than in the HC (p= 0.003) and DC (p= 0.040) groups. In the CA4, the mean percentage of
positive DCX cells was also significantly higher in the ECT group than in the HC group (p= 0.027). The second part shows representative
images of STMN1 expression in the GCL and SGZ in a HC (2A), a DC (2B), and a ECT donor (2C). Quantification is shown in percentage of
positive STMN1 cells in the GCL (2D) and SGZ (2E). In the SGZ, the percentage of positive STMN1 cells was significantly higher in the ECT
group than in the HC (p= 0.004) and DC (p= 0.004) groups. Scale bar = 50 µm.
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(mean=0.74) than in the HC (mean = 0.36) and DC (mean = 0.12)
group, which was close to significance F(2, 33)= 3.23, p= 0.052,
η²=0.16).
For the analyses of the proliferation marker Ki-67, data of one

ECT donor and one healthy control donor had to be excluded due
to poor tissue quality. After exclusion, the percentage of positive
Ki-67 cells was not significantly different between the groups in
both the GCL (mean HC= 0.044, mean DC= 0.015, mean ECT=
0.018; F(2, 32)= 1.53, p= 0.233, η²=0.09) and SGZ (mean HC=
0.121, mean DC= 0.046, mean ECT= 0.195; F(2, 32)= 2.94,
p= 0.067, η²=0.16), indicating no significant differences between
the three groups in cell proliferation (Fig. 4). Furthermore, no
significant differences were found between groups in the mean %
AO for the number of cells that were immune-positive for the
proliferation marker Ki-67 in both the GCL (mean HC= 0.023,
mean DC= 0.003, mean ECT= 0.010; F(2, 32)= 1.53, p= 0.233,
η²=0.09) and SGZ (mean HC= 0.029, mean DC= 0.005, mean
ECT= 0.011; F(2, 32)= 1.62, p= 0.213, η²=0.09).
Within the ECT group, none of the independent variables

(remission status, number of ECT sessions, and time interval
between the last ECT and death of the patient) were significantly
associated with a percentage of positive DCX, STMN1, or Ki-67
cells in either the GCL or SGZ (Supplementary Table 2).

Inflammation and immune response
For our analyses of inflammatory changes, data of one healthy
control donor had to be excluded due to poor tissue quality. No
differences were found in %AO in the GCL (Iba1: F(2, 33)= 1.01,
p= 0.375, η²=0.06; GFAP: F(2, 33)= 2.04, p= 0.147, η²=0.11), SGZ
(Iba1: F(2, 33)= 1.18, p= 0.321, η²=0.07; GFAP: F(2, 32)= 2.81,
p= 0.075, η²=0.15) or CA4 (Iba1: F(2, 32)= 1.36, p= 0.272,
η²=0.08, GFAP: F(2, 32)= 1.96, p= 0.157, η²=0.11) between donor
groups (Fig. 5), indicating no signs for a strong inflammatory
activation as a result of ECT, as reflected by conventional microglia
and astrocyte markers.

DISCUSSION
For the first time, cytoarchitectural, neuropathological, glia- and
neuroplasticity-related changes were explored in the human post-
mortem hippocampus in a unique group depressed donors
treated with ECT (ECT), compared with depressed donors who

had not received ECT (DC) and neurologically healthy control
donors (HC). We found no apparent structural damage of the ECT
treatment in the hippocampus. While the numbers of proliferating
cells did not differ between the groups, we found DCX expression
to be significantly higher in the DG of ECT patients relative to
neurologically healthy control donors. Moreover, in the SGZ,
where most proliferation and differentiation is expected to occur
[22, 23, 25, 26], the ECT donors even had a significantly higher
percentage of cells expressing DCX compared to the depressed
controls. Furthermore, the percentage of cells expressing STMN1
in the SGZ was significantly higher in ECT donors compared to
both healthy control donors and depressed controls.

Neuropathology
Importantly, we found no evidence for overt neuropathology,
neuroinflammation or changes in cytoarchitecture in the hippo-
campi of ECT-treated donors. This is in line with three case reports
showing neither neuronal damage nor significant abnormalities in
the brains of old donors aged 84-92, who received 91-1250 ECT
sessions during their lives [5–7]. Similar age-related pathological
changes were found in all groups, including hippocampal tau and
amyloid pathology.

Hippocampal neuroplasticity
The significant increase in the percentage of cells expressing
STMN1 and DCX in ECT donors supports the concept that
hippocampal neuroplasticity is involved in the ECT treatment
[37, 67]. This increased expression in the ECT group indicates that
also the human hippocampal DG of depressed patients retains
considerable structural plasticity. We did find Ki-67 expression in
the hippocampus in our donors, showing that neurogenesis
occurs in the adult human brain [58, 63, 68–72]. Furthermore, we
saw no differences in Ki-67 immunoreactivity and percentage of
cells expressing Ki-67 between our groups, which may indicate
that neurogenesis was not increased as a result of ECT in our
sample. However, this could also be due to the low frequency of
this particular proliferation marker in thin sections of human
hippocampi of subjects this age, which is also reported in previous
studies [58, 63, 68–72]. Another explanation could be that as the
expression of Ki-67 is short-lived [73], we were not able to pick up
possible differences induced by ECT. Our donors had varying and
rather long delays between their ECT sessions and time of death,

Fig. 4 Ki-67 expression in the granule cell layer (GCL) and subgranular zone (SGZ). Representative examples of Ki-67 positive cells in a
healthy control donor (HC; A), a control donor with a depressive disorder (DC; B), and a donor who received electroconvulsive therapy during
life (ECT; C). There were no significant differences between the three groups in percentages of positive Ki-67 cells in the GCL (D) and SGZ (E).
Scale bar = 50 µm.
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and neurogenesis could thus have taken place, but is likely not
reflected by Ki-67 signal in these tissues. An alternative explana-
tion could be that as a potent stimulus, ECT might also have
enabled existing neurons in the DG and SGZ to undergo ‘de-
maturation’, i.e. in the absence of active new cell formation, via
which route, mature cells could possibly become activated and
rewire again, as proposed before [67]. Furthermore, the increased
DCX expression in the ECT group is also present in the CA4, which
aligns with some of the changes found after epileptic activity in
rodent models, such as the migration of newborn neurons into the
hilus [3], and also in humans [49].
The findings regarding DCX and the higher percentage of

STMN1 positive cells in the SGZ in ECT donors may together
indicate an increase in neuronal plasticity after ECT [61]. While
both the STMN1 immunoreactivity and the percentage of cells
expressing STMN1 was higher in the ECT donors, this difference
was not significant for the STMN1 immunoreactivity. This could be
due to various reasons, such as cell density and clustering,
differences in staining intensity, cell morphology and their
distribution. Furthermore, due to the small sample sizes in each
group, statistical significance may not be reached, even if there
are substantial differences. Due to the nature of these marker
proteins and the neurogenic stages they reflect, the current data
suggests that in the SGZ more cells may be transitioning from a

neuronal precursor to a young neuronal stage after ECT. Whether
these cells will actually all develop into functional DG neurons and
whether it is indeed adult neurogenesis that contributes to the
structural and functional changes seen after ECT in depression
[36, 74], awaits further studies.
In the present study, characteristics such as remission status

after ECT, the total number of ECT sessions and the interval
between the last ECT and death of the patient were not correlated
with the expression of the markers studied. This could be due to
various reasons including our current sample size and variation
between the patients in bilateral vs unilateral placement, and to
differences in subsequent ECT (maintenance) treatment regimes.
Future studies with a larger sample size and more homogenous
and/or better-stratified ECT patient groups are needed to explore
such relations in more detail.
Although DCX expression was higher in depressed donors with

ECT treatment than in depressed donors without ECT treatment,
this difference was only significant in the SGZ. It is likely that the
use of antidepressants in both groups influenced DCX, since
antidepressants can stimulate neuroplasticity, as reported before
mostly in young individuals [14–17, 63, 75]. However, we found a
significantly higher expression of DCX in the DG of the ECT group
than in the HC group, while no difference in DCX results were
found between the HC and DC group, indicating the effect of ECT

Fig. 5 Glial fibrillary acidic protein (GFAP) and Ionized calcium binding adaptor molecule 1 (Iba1) expression in the dentate gyrus. The
photomicrographs show the expression in the granule cell layer (GCL), subgranular zone (SGZ) and cornu ammonis 4 (CA4) in a healthy
control donor (HC; A), a control donor with a depressive disorder (DC; B), and a donor who received electroconvulsive therapy during life (ECT;
C). The distribution of the groups is shown in percentages of cell area occupied (%AO) by GFAP or Iba1 in the GCL (D), SGZ (E), and CA4 (F). No
differences in mean %AO by GFAP or Iba1 were found between the groups. Scale bar=50 µm.
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rather than antidepressants. Additionally, the presence of STMN1-
positive cells in the SGZ was significantly higher in the ECT group
compared to both the HC and DC groups. To truly understand the
contribution of medication on DCX expression, an additional
group of non-medicated depressed controls is needed which is
not available.

Neuroinflammation
No significant differences in the expression of immune-related or
inflammatory markers were found between ECT and control
donors in the present study. A systematic review showed that an
acute and peripheral immuno-inflammatory response is present
immediately after an ECT session, while over the long term, at the
end of the ECT course, this inflammatory response is absent and
may even be reversed [53]. Therefore, our results demonstrate
that increased hippocampal volume following ECT is possibly
related to effects on neuroplasticity and is less likely due to
inflammation.

Limitations and considerations
In this archival human post-mortem study, the mid-level region of
the hippocampus was unavailable in 21.6% of cases since this NBB
tissue is also used by other research groups. The tissue that was
used instead in those cases was however adjacent to the midlevel
region and hence quite comparable. We therefore do not expect
that anatomical differences will have contributed much to our
results. Overall, we expect effects of a general stimulus like ECT on
neuroplasticity to be similar from the anterior through the
posterior part of the hippocampus.
The types of antidepressant drugs taken by the patients in our

current DC and ECT groups, differed slightly; the serotonin-
noradrenaline reuptake inhibitors and monoamine oxidase
inhibitors had only been taken by the ECT group. While some
exceptions exist [18], rodent studies have generally shown
comparable effects of different types of antidepressant medica-
tion; when prescribed for a sufficiently long period of time, they
almost all stimulate hippocampal proliferation and/or neurogen-
esis, parallel to a suppression of the depressive and/or anxiety-like
behaviors [11, 13]. Furthermore, the ECT and DC groups were
comparable in terms of the total number of life-time depressive
episodes (ECT: mean = 3.38, (n= 8); DC: mean = 4.11 (n= 9);
p= 0.477) and age at first depressive episode (ECT: mean = 31.55,
(n= 11); DC: mean = 34.67, (n= 9), p= 0.614), showing no
significant differences between the groups using ANOVA. None-
theless, it remains possible that during an episode, the depression
in the ECT group was more severe, which is hard to compare with
our current data and hence remains a limitation of this study.
Although age is likely to be a contributing factor to differences

in neurogenesis [23, 24, 63], the average ages in our cohort were
not significantly different between the groups. Neurogenesis had
been reported to gradually decrease with advancing age, but the
extent of neurogenesis that is expected to be present between
the mean ages of 54 and 69, i.e. of the patients that were studied
here, probably did not change substantially between these ages
and is likely quite comparable [23]. As such, age is unlikely to have
contributed much to our current results.
Technical aspects can also influence the expression of neuro-

plasticity markers. In comparison to Ki-67 that is present in
proliferating cells for a short period of time with a half-life of
approximately 90minutes [73], STMN1 has a broader role in cellular
processes and its presence and detection may not be as tightly
linked to specific time frames [60, 61]. DCX is a maturation marker
that is also present for a longer period of time; i.e. between 2 and
14 days after birth of a newly generated cell, at least in rodents
[46, 48] and a DCX signal thus has a higher chance of being
detected in thin tissue sections than Ki-67. The expression of DCX is
initiated at varying times after cell cycle exit with variable
timeframes, but with an average duration of approximately three

weeks [46–48, 76]. Although other studies have carefully compared
tissue conditions and have reported that DCX can be optimally
detected in post-mortem tissue with a short fixation of 24 hours
[23, 77], we and others have used optimized protocols and could
still detect DCX signal in human brains fixed for a longer period
[27, 49, 50, 78].
The differences between studies might thus be due to (combina-

tions of) different epitopes of DCX, the use of different antibodies,
differences in tissue handling and fixation, and also to variations in
post-mortem delay. Although no such correlation was found in a
human study with short fixation times [77], an increase in PMD
reduced DCX immunoreactive signal, especially in older post-mortem
rat brains [58, 77]. Importantly, the mean PMD in our current sample
is 7.10 hours (SD= 2.50) which is relatively short compared to other
human post-mortem studies and can thus be seen as a major
advantage with respect to tissue and antigen preservation, especially
when compared to studies with much longer PMDs [19, 57].

CONCLUSIONS
We reported for the first time an upregulation of the percentage
of cells expressing STMN1 and DCX, but not of proliferation, in the
DG of donors who had received ECT during their lives, notably in
the absence of any indications for major hippocampal injury, for
classic neuropathology or neuroinflammation. These first, explora-
tive results on the human hippocampus support the involvement
of neuroplasticity in the antidepressant effects of ECT and are in
line with earlier rodent and human MRI studies. As such, they
provide new insights into the role of brain plasticity in depression
and in the antidepressant action of ECT.
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