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Connectomics-based resting-state functional network
alterations predict suicidality in major depressive disorder
Qing Wang1, Cancan He1, Zan Wang1,2, Dandan Fan1, Zhijun Zhang 1,2,3, Chunming Xie 1,2,3✉ and on behalf of REST-meta-MDD
Consortium*

© The Author(s) 2023

Suicidal behavior is a major concern for patients who suffer from major depressive disorder (MDD). However, dynamic alterations and
dysfunction of resting-state networks (RSNs) in MDD patients with suicidality have remained unclear. Thus, we investigated whether
subjects with different severity of suicidal ideation and suicidal behavior may have different disturbances in brain RSNs and whether
these changes could be used as the diagnostic biomarkers to discriminate MDD with or without suicidal ideation and suicidal
behavior. Then a multicenter, cross-sectional study of 528 MDD patients with or without suicidality and 998 healthy controls was
performed. We defined the probability of dying by the suicide of the suicidality components as a ‘suicidality gradient’. We constructed
ten RSNs, including default mode (DMN), subcortical (SUB), ventral attention (VAN), and visual network (VIS). The network connections
of RSNs were analyzed among MDD patients with different suicidality gradients and healthy controls using ANCOVA, chi-squared
tests, and network-based statistical analysis. And support vector machine (SVM) model was designed to distinguish patients with
mild-to-severe suicidal ideation, and suicidal behavior. We found the following abnormalities with increasing suicidality gradient in
MDD patients: within-network connectivity values initially increased and then decreased, and one-versus-other network values
decreased first and then increased. Besides, within- and between-network connectivity values of the various suicidality gradients are
mainly negatively correlated with HAMD anxiety and positively correlated with weight. We found that VIS and DMN-VIS values were
affected by age (p < 0.05), cingulo-opercular network, and SUB-VAN values were statistically influenced by sex (p < 0.05). Furthermore,
the SVM model could distinguish MDD patients with different suicidality gradients (AUC range, 0.73–0.99). In conclusion, we have
identified that disrupted brain connections were present in MDD patients with different suicidality gradient. These findings provided
useful information about the pathophysiological mechanisms of MDD patients with suicidality.
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INTRODUCTION
Major depressive disorder (MDD) is a common psychiatric disorder
characterized by an inability to experience pleasure/reward
(anhedonia) [1], affecting nearly 350 million people worldwide
[2]. MDD is a major risk factor for suicide, with 7% of men and 4%
of women with MDD who die due to suicide every year [3]. It has
been reported that suicide occurs in a three-step gradual process
consisting of suicidal ideations (SIs), suicidal attempts, and suicidal
death [4–6]. Approximately 23% of those who have committed
suicide had previously attempted it [7]. Therefore, it is important
for suicide prevention to identify MDD patients with SI and
suicidal attempts and study their underlying mechanisms.
However, the precise molecular mechanisms associated with
suicidality are poorly understood. In addition, it is a difficult task to
assess suicidality in patients with MDD due to the subjectivity of
psychological scales and the unwillingness of patients to disclose
their thinking or the acts they have committed [8–10]. Thus, it is
urgent to find an objective biomarker to identify suicidality in
MDD patients and to understand of neural circuits underlying the
pathology of suicidality.

Neuroimaging and behavioral studies have recently centered
on network-based structural and functional alterations of
individuals at risk of suicide. Previous studies postulated that
fronto-limbic system is the central circuit underlying the suicidal
process under depressive conditions [11–15]. MDD patients with
SI showed reduced intrinsic functional connectivity (FC)
between the rostral anterior cingulate cortex and the right
middle temporal pole, in comparison with MDD patients without
SI and healthy controls (HCs), and these impairments in
connectivity would be positively correlated with SI severity
[13]. It has also been found that MDD patients with suicidal
attempts had significantly higher FC strength in the bilateral
dorsomedial prefrontal cortex and the right orbitofrontal cortex
than patients without suicidal attempts, which is thought to be
associated with a higher risk of suicidal behavior (SB) in MDD
patients [16]. Meanwhile, numerous cross-sectional neuroima-
ging studies report decreased cortical gray matter and disturbed
frontal-subcortical white matter integrity in MDD patients with
SI and MDD patients with SB compared with HCs [17–19].
Furthermore, previous studies aver that cortical thickness of ten
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regions within fronto-temporal-parietal system act as top-
ranked classifiers that could differentiate suicide attempts from
SI in MDD patients [20]. In addition, neural representations of
suicidal and emotional concepts with a machine learning
approach in suicidal youth could classify youth with or without
suicide [21]. These findings initially revealed that frontal-limbic
system contributed substantially to suicidality in MDD patients.
Populations with different elements of suicidality have different
probabilities of eventually dying by suicide. Here, we defined
the probability of dying by suicide of the suicidality components
as a ‘suicidality gradient’. And the suicidality gradient of MDD
patients without SI is the smallest and the gradient of MDD
patients with SB is the largest. However, there is a rarity of data
on how individual resting-state networks (RSNs) change
dynamically and how functionally distinct networks interact
with each other as the suicidality gradient increases in MDD
patients.
Based on prior studies, we hypothesized that suicidal

gradient in MDD patients might arise from disturbances in
macroscale brain RSNs and altered brain connections may
represent powerful diagnostic biomarkers to discriminate MDD
with or without SI and SB. First, the current study mapped the
dynamic trajectory of large-scale RSNs roles and their clinical
significance with dynamic network-based analysis in MDD
patients with suicidality gradient. Second, common and specific
network connections associated with different suicidal gradi-
ents were identified in MDD patients. Third, the support vector
machine (SVM) model was used to explore the role of these
abnormal neuroimaging characteristics as objective diagnostic
biomarkers in classifying MDD patients with different suicidal
gradients. Depression shows gender specificity in which the
incidence rate of MDD is approximately twofold higher in
women than in men [22]. Therefore, the current study finally
also explored the potential effects of age and gender on large-
scale suicide-related networks. These findings were also
reproducible across included sites in an independent validation
dataset.

METHODS
Study participants
A total of 528 MDD patients and 998 HCs were recruited from the REST-
meta-MDD consortium [23] and the Department of Psychiatry at Henan
Provincial Mental Hospital. All included subjects were 18–65 years of age,
with at least 5 years of education. All patients met the Diagnostic and
Statistical Manual of Mental Disorders IV criteria for MDD [24], and had a
total score ≥8 on the 17-item Hamilton Depression Rating Scale (HAMD)[25]
at the time of scanning. Among the previously mentioned MDD patients, 169
individuals had a medication history; nevertheless, they had refrained from
taking medication for a duration of at least three weeks at the time of
enrollment. Based on a 17-item HAMD suicide item score, MDD patients were
categorized into five categories: a score of 0 was defined as MDD without
suicidal ideation (MDDNSI); score of +1 was defined as MDD with mild
suicidal ideation (MDDmSI); score of +2 was defined as MDD with moderate
suicidal ideation (MDDmoSI); score of +3 was defined as MDD with severe
suicidal ideation (MDDSSI); and score of +4 was defined as MDD with SB
(MDDSB). HCs were randomly divided into HC and verification groups.
Detailed information on all subjects is shown in Table 1, Supplementary
Table 2, and Supplementary Table 3. Unless otherwise noted, methods of
analysis are described in Supplemental materials.
All study sites obtained approval from their local institutional review

boards and ethics committees. Also, these research protocols were
approved by the Ethics Committee of Henan Provincial Mental Hospital
Affiliated with Xinxiang Medical University (approval ID: 2017–08). All
participants, their legal guardians, or their legally authorized representa-
tives provided informed consent prior to their involvement in the study.

Image processing
Scan acquisition was completed within 1 week of assessments. Resting-
state fMRI and structural T1-weighted MRI brain scans were acquired at

each of the 24 participating study sites (see STable 1 for key data
acquisition parameters) and were preprocessed using DPARSF software
[26] using a standardized protocol [23]. Briefly, the procedure involved the
removal of the first 10 volumes for signal equilibrium, slice-timing
correction, head motion realignment, brain tissue segmentation, spatial
normalization, and temporal filtering (0.01–0.10 Hz). Friston-24 head
motion parameters, liner trends, signals from white matter, cerebrospinal
fluid, and whole brain were regressed out from images to control for head
motion and physiological noises [27–29]. Subjects with poor image quality
or excessive head motion (mean framewise displacement (FD)
[30] > 0.2 mm) were excluded from the analysis. Further details are shown
in Supplementary materials. After preprocessing, time series for Power 264
functional ROIs were extracted.

Construction of functional networks
A power atlas [31] was used to partition the brain of each participant into
226 cortical and subcortical areas. Pearson correlation was used to
estimate FC between all pairs of regions of interest across all subjects. The
study site was added to the covariable file for corrected potential
differences in MRI assessment. Network connectivity was subsequently
computed within 10 RSNs as defined by previous fMRI studies [31, 32].
These networks comprise the auditory network (AUD), the cingulo-opercular
network (CON), the dorsal and ventral attention network (DAN and VAN), the
default mode network (DMN), the fronto-parietal network (FPN), the salience
network (SAN), the sensorimotor network (SMN), the subcortical network
(SUB), and the visual network (VIS). Network connectivity between all pairs
of 10 RSNs, as well as between each RSN and all other RSNs (i.e., one-
versus-all-others) were computed.

Statistical analyses
Group comparisons of demographic characteristics and network metrics.
Group comparisons of demographic characteristics and network metrics
across MDD subgroups were undertaken using analysis of covariance
(ANCOVA) and significance levels were set at p < 0.05 for all tests. In
addition, a one-way analysis of variance (ANOVA) test was used to analyze
continuous variables, with post hoc least significance difference (LSD) tests
for pair-wise comparisons. Chi-squared tests were also used for categorical
variables. Notably, each network metric (for instance within-, one-versus-
all-others-, and pairwise between-network connectivity (BNC)) was
compared across groups using generalized linear model (GLM) analysis
adjusted for age, gender, education, and study site as covariables. All p
values were adjusted for multiple comparisons (10 within-network
metrics+ 10 one-versus-all-others-network metrics+ 45 pairwise
between-network metrics= 65 comparisons) using FDR correction.

Network-based statistical analysis
The current study first generated a 226 * 226 connectivity matrix for each
subject. Network-based statistical analysis (NBS) method was then used to
identify common and differential connections of networks between
healthy control (HC) and disease groups, as well as various disease
subgroups. Each connection identified by NBS with Bonferroni correction
satisfied p < 0.001.

Heterogeneity analysis of sex and age
Due to the potential effects of age and sex in dynamic network analysis,
Wilcoxon rank sum tests were used to compare the abnormality of
network and clinical variables in sex and age. Specifically, all patients were
split into younger (age: 18–37) and older (age: 38–65) participants or
females and males to obtain sex- and age-related alterations in networks
and clinical variables, separately.

Correlation analysis
The current study computed Pearson’s correlation between network
variables and clinical data.

Machine learning
SVM was used in the current study to classify MDD subgroups and HCs in
MATLAB based on a library (LIBSVM) [33]. The current study undertook an
overlap analysis of the findings of NBS and established that 31
brain connections showed significant group differences. The links were
used in classification using SVM. The data set was randomly split 10 times
into training and testing sets. Tenfold cross-validation [34] was applied to
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the training set to prevent overfitting. The performance of the final
machine learning model was quantified by computing accuracy, sensitivity,
specificity, and area under the curve (AUC) to reduce the impact of
deviations in the distribution of training and testing sets. In addition, the
accuracy (ACC) of the testing set was assessed by permutation test with
1000 epochs as described in previous studies [35].

Validation analyses
All described analyses were repeated using another set of healthy subjects
that included 499 subjects to validate whether network role construction
could be replicated and whether selected functional connections could be
used for classification.

RESULTS
Demographic information and clinical performance
Demographic information and characterization of all study
subjects are outlined in Table 1. Significant differences in sex,
but not age and years of education were observed between MDD
subgroup patients and HCs. MDD patients with suicidality showed
significantly higher HAMD total scores (p < 0.001) and subscales
scores including anxiety (p= 0.0003), weight (p < 0.0001), retarda-
tion (p < 0.0001), and sleep (p= 0.0001), compared with those of
MDNSI subjects, indicating that MDD patients R1–2 with suicidality
had severer depression compared with MDNSI patients. Further-
more, there were no statistically significant differences in additional
clinical characteristics upon enrollment, including total disease
duration and frequency of episodes among the subgroups of
individuals with MDD.

Network modeling in MDD patients and HC group
To establish functional links between regionally separated and
functionally distinct networks, the current study constructed 10
well-established, large-scale RSNs, which comprised cortical and
subcortical regions from Power-atlas [31]: DMN, AUD, CON, DAN,
FPN, SAN, SMN, SUB, VAN, and VIS as shown in Fig. 1A. Second, the
current study quantitatively measured functional roles of 10 RSNs
by mapping group-level, mean within- and between-networks FC,
which reflected dynamics of functional synchrony for large-scale
networks (Fig. 1B and C). Based on the distribution of mean FC
values within- and between networks, these RSNs showed
distinctive network roles in suicidality-related MDD patients: 7
RSNs were divided into four network roles including incohesive
connector (DAN, SMN), cohesive connector (CON), incohesive
province (DMN, VAN, and FPN), and cohesive province (VIS). Other
networks (AUD, SAN, and SUB) displayed divergent network roles:
AUD and SAN showed dynamic changes between incohesive
connector and cohesive connector, whereas SUB displayed a
similar pattern (cohesive connector) in MDDSI patients. However,
the SUB network displayed the opposite pattern (incohesive
connector) in MDDSB and MDDNSI patients, compared with the
HC group (Fig. 1C). Further, the current study illustrated the
dynamic trajectory of averaged FC values within- and between
networks, which characterized changes of network links for
individuals from HC group to MDDSB patients (Fig. 1D).

Group-level difference of network connectivity in suicidality-
related MDD patients compared to HC group
To quantitatively assess group-level abnormality of natural links
between networks, the current study showed network patterns of
mean within-network connectivity (WNC) R1–3 and pairwise BNC
in HC group and suicidality-related MDD patients (Fig. 1E). Specific
values in Fig. 1E can be found in the Supplementary Table 4.
Furthermore, group differences in mean WNC, pairwise BNC, and
one-versus-all-others-network were tested (Fig. 1F, K) using the
NBS method. Although functional network roles of 7 out of 10
RSNs were stable (DAN and SMN for incohesive connector, CON for
cohesive connector, DMN, VAN, and FPN for incohesive province,

and VIS for cohesive connector), suicidality-related MDD patients
showed significant differences of WNC in SUB, AUD, SAN, and BNC
in SMN-AUD and VIS-DAN, whereas AUD, SAN, and SUB also
showed differential dynamic network roles from incohesive
connector to cohesive connector compared with HC group. In
addition, SUB and SAN displayed significant differences in WNC in
MDDNSI and MDDSSI patients compared with the HC group,
whereas DMN showed consistent differences in mean connectivity
of one versus other networks in MDDSB patients compared with
the HC group. Notably, VAN was consistently kept in the incohesive
province across all subjects, and significant differences in mean FC
in one versus other networks in MDD patients with or without SI,
but not with SB were observed, compared with the HC group (Fig.
1F and J). In addition, among suicidality-related MDD patients,
there were remarkable differences in WNC in SUB, AUD, FPN, and
VAN networks, and BNC in the VAN-FPN, VAN-DAN, as well as
mean FC values in one versus other networks in VAN (Fig. 1K).

Mapping abnormal network connections among ten RSNS in
suicidality-related MDD patients
To further map abnormal network connections with significant
group differences in within-, between- or one versus other
networks of ten RSNs in MDD patients, the current study first
established increased and decreased network connections in the
suicidality-related MDD patients compared with the HC group as
shown in Fig. 2A, C. Difference map of regional connectivity
strengths in the ten RSNs components was then converted into the
composite numerical index to quantitatively assess alterations of
WNC and BNC. For example, composite numerical FC was obtained
and defined as FC index (FCI) by averaging FC strengths over
connections within- and between regions of ten network
components. Numerical representation of increased and decreased
FCIs are illustrated in MDD subgroup patients relative to the HC
group (Fig. 2B, D). Similarly, the current study also identified altered
network connections and FCIs in suicidality-related MDD patients
compared with MDDNSI patients, or within suicidality-related MDD
patients as shown in Supplementary Fig. 3 and Supplementary Fig.
4. Conjunction analysis was then undertaken to obtain overlapping
connections, which represented common network connections
between arbitrary two groups (Supplementary Fig. 5) [36]. In
addition, the current study established that there were 31 pairs of
overlapping network connections involved in suicidality-related
MDD patients compared with the HC group (Supplementary Table
5). These findings indicate that divergent and convergent brain
networks in suicidality-related MDD patients can be detected using
large-scale network links.

Behavioral significance of abnormal network connectivity
To understand the clinical significance of abnormal WNC and BNC in
MDD subgroups, the current study conducted Pearson’s correlation
between FC strength within- and between networks and clinical
variables including HAMD total scores and subfactor scores,
including HAMD-Anxiety, HAMD-Weight, HAMD-Retardation, and
HAMD-Sleep in MDD patients after controlling for covariables of age,
gender, education, and study site. Correlation patterns showed
group-level associations of WNC and BNC with depressive severity in
MDD subgroup patients and established that distinctive network
basis was associated with different symptom dimensions in MDD
patients with or without suicidality (Fig. 3). These neural correlation
maps directly demonstrated that large-scale brain networks were
significantly involved in suicidality gradient-related depression.
Detailed information for network basis and correlation values are
described in Supplementary Table 6 in Supplementary material.

Neuroimaging biomarkers for classifying suicidality-related
MDD patients
The SVM model was used to explore the role of abnormal FC as an
objective diagnostic biomarker in MDD patients. Mean FCIs from 31
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pairs of network connections were used as input features to the
linear support vector classifier (SVC). AUC showed that these FCIs
demonstrated a higher capacity to discriminate MDD patients with
SB from the HC group (AUC= 0.96). The use of the SVM-trained
model as a classifier demonstrated that the SVM-trained model
showed better power in separating MDD patients with SI or SB from
MDDNSI patients (all AUCs were more than 0.88). Furthermore, FCIs
also showed greater potential to discriminate suicidality gradient-
related MDD patients (all AUCs were more than 0.80) except for
MDDmSI from MDDmoSI patients (AUC= 0.73). Detailed information
is described in Fig. 4 and Supplementary Table 7.

Effects of age and sex on the networks and clinical variables
Wilcoxon rank sum tests were used to determine the potential
effects of age and sex on large-scale brain networks and clinical
variables in females and males, or in younger and older
participants, separately. The current study established that age
and sex had significantly different impacts on the two variables
(Fig. 5). Specifically, females and males displayed distinctive effects
on WNC and BNC in large-scale networks, especially in CON, AUD-
DMN, AUD-SUB, CON-SAN, CON-SUB, and SUB-VAN, whereas

younger and older subjects displayed differential effects on VIS,
VIS-DMN, and VIS-FPN. In addition, clinical performance including
suicide and sleep disorder was preferably targeted by females.
These findings initially showed that the potential heterogeneity of
large-scale networks and clinical variables is related to age and sex.

Validation
The current study repeated these analyses to validate current
findings in independent cohorts that included new 499 HCs and
the original 528 MDD patients. More females and lower
educational years were found in MDD subgroup patients
compared with the new HC group. In addition, large-scale
network roles analysis showed similar network dynamics in MDD
subgroups compared with the HC validation group (Supplemen-
tary Table 3). More importantly, MDD subgroups showed similar
differential WNC, BNC, and one-versus-all other network con-
nectivity compared with the HC validation group. Detailed
information is described in Supplementary Fig. 6. Further, 31
pairs of network connections used to perform classification
analysis with the SVM approach also showed similar findings
(Supplementary Fig. 7).

Fig. 1 Network roles of five sub-groups of MDD patients and HC group. A Node colors represent Power-atlas cortical and subcortical
regions consisting of 10 resting-state networks (RSNs). B, C Network roles in brain networks of HC, MDDNSI, MDDmSI, MDDmoSI, MDDSSI, and
MDDSB. D Line charts display the dynamic trajectory of within- and one-versus-all-others network connectivity among the five subgroups of
MDD patients and the HC group. E Within- and pairwise between-network connectivity matrices of five sub-groups of MDD patients and HC
group. F–J P value matrix of group differences in within-, one-versus-all-others-, and pairwise between-network connectivity (F: HC vs.
MDDNSI; G: HC vs. MDDmSI; H: HC vs. MDDmoSI; I: HC vs. MDDSSI; J: HC vs. MDDSB; K: five MDD sub-groups). The pentacle represents p value
less than 0.05. All abbreviations can be found in Supplementary Table 8 in the Supplement.
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DISCUSSION
For the first time, the current study demonstrated that part neural
basis of the suicidality gradient in MDD patients was the
perturbations in the whole-brain connectome. The altered brain
connections represent powerful diagnostic biomarkers that can
discriminate MDD with or without suicidal ideas and behavior.
These findings provided novel insights for understanding brain
correlates of mild to severe suicidal symptoms in depression and
significantly advanced assessment of which MDD patients are at
greatest risk of suicide.
The findings of the current study corroborate previous findings

and extend them in three important ways. First, the findings of the
current study have implications for understanding how the

dynamic trajectory of large-scale FC network roles impacts brain
architectures with a high degree of connectivity, which is critical
for regulating the flow and integration of information underlying
suicidality in MDD patients. On one hand, although suicide-related
brain structural and functional changes in the prefrontal-temporal-
limbic system were frequently reported, there is an ongoing
debate and inconsistent options on the association between brain
network features and suicidality in MDD patients. A recent meta-
analysis including 45 neuroimaging studies established that gray
matter atrophy, white matter disintegration, and network disrup-
tion within the frontal-temporal system were the strongest
correlates of suicide attempts in MDD patients [37], whereas
reduced FC in frontal-temporal system was associated with

Fig. 2 Divergent network connections among the ten RSNs in the five subgroups of MDD patients compared to the HC group.
A, C Significantly increased and decreased network connections among the ten RSNs in the subgroups of MDD patients compared to the HC
group. Each square color represents one of the ten networks. Red lines represent increased functional connectivity and blue lines represent
decreased functional connectivity. B, D The violin figures represent the group-level distribution of mean FC from the differential network
connections among the ten RSNs in the subgroups of MDD patients compared to the HC group. All abbreviations can be found in
Supplementary Table 8 in the Supplement.
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discriminating gradual susceptibility of suicidal idea in MDD
patients [38]. In addition, accumulating research evidence showed
that reduced orbitofrontal-thalamic FC and disrupted frontal-
subcortical WM integrity were related to suicidal ideation in MDD
patients [17, 18]. Furthermore, previous studies aver that reduced
dynamic amplitude of low-frequency fluctuation in the orbital
frontal cortex, dorsal anterior cingulate cortex, left inferior
temporal gyrus, and left hippocampus gyrus could serve as
predictive biomarkers of SI severity in MDD patients [39]. Notably,
MDD with SB patients showed differential activation patterns in
the prefrontal cortex-limbic system when performing emotional or
cognitive tasks, indicating heterogeneity of suicide in depression
[11]. These disagreements in the location of findings and nature of
connectivity changes [17, 18, 39], which map connectional
abnormalities of structure and functional networks associated
with suicidality in depression, might be due to the small sample
size, thereby limiting the generalizability of findings. Therefore, it
is plausible that recruiting large sample sizes to explore common
and specific network basis of suicidality revealed neuroimaging-
informed phenotype of suicidality in MDD patients. On the other
hand, analysis of a large multi-centric dataset of individuals with
MDD in the current study showed perturbed functional networks,
especially in DMN, VAN, SMN, and DAN [23], and reduced
temporal variations, indicating abnormal communications
between large-scale brain networks over time in MDD patients
[11]. The current study established disturbance of within- and
between large-scale network connectivity, which has been
reported consistently by previous neuroimaging studies [40–43]
and recent large-scale meta-analyses [44]. However, the current
study findings also showed that dynamic changes in network roles

were less frequently reported at large-scale network levels,
especially in FPN, CON, SUB, VAN, AUD, SUB-VAN, and AUD-
SMN. These abnormal WNCs and BNCs still existed among group-
level comparisons and within MDD subgroup patients. Notably,
these dynamic trajectory changes in AUD, FPN, CON, and VAN
have been found in previous studies to be associated with goal-
oriented attention deficits, maladaptive rumination, and suicidality
[45, 46]. These findings indicated that interactive links within- and
between networks mutually modulate behavioral heterogeneity,
depending on the nature of their functional link, whereas
imbalanced within- and between networks may lead to cognitive
impairment, attentional deficits, emotional dysregulation, and
suicidality, which characterize MDD [47, 48]. Furthermore, these
findings strongly indicate that processes of suicidal ideas or acts
depend on large-scale network balance, instead of one
network alone.
Second, previous studies have indicated that dynamic coalitions

of large-scale networks consisting of brain areas may be engaged
in complex cognitive-emotional behaviors [48, 49]. Network
connectivity has consistently been found to be associated with
clinical phenotype and disease severity [49–51], and emerged as a
potential intermediate phenotype biomarker for mental disorders
[52]. Several previous studies on brain network architectures have
implicated network connectivity in depressive or anxiety symp-
toms determined by distinctive clinical scales [51, 53, 54]. Notably,
the current study previously reported that those alterations in
brain networks especially in DMN were correlated with the use of
medication whereas DMN connectivity was positively correlated
with symptom severity in recurrent MDD [23]. More attention has
recently focused on the examination of the association of brain

Fig. 3 Behavioral correlation between network values and depressive severity in suicidality-related MDD patients. Radar plots showing
patterns of association of within- and between-network connectivity with HAMD total scores and subfactors’ scores, including HAMD-Anxiety,
HAMD-Weight, HAMD-Retardation, and HAMD-Sleep. All dots in the radar plots represent a statistically significant correlation with Pearson’s
correlation coefficients (p < 0.05). All abbreviations can be found in Supplementary Table 8 in the Supplement.
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network features and suicidality-related behavior and established
that structural atrophy and functional disruption of brain networks
were significantly associated with differential suicidality in MDD
patients [13, 14, 46, 55–57]. In addition, a new network-based
framework recently proposed that functional network alterations,
especially in FPN and DMN networks, differentially distinguished
suicide attempters from suicide ideators in depressed patients
[58]. In the current study, these findings were extended from two
facts: differential brain correlates were simultaneously associated
with specific clinical symptoms, and distinctive network connec-
tions were involved in the suicidality gradient in depression. These
symptom-specific changes of within- and between-network
connectivity in suicidality-related MDD patients highlight the
heterogeneity of suicide in depression and indicate that loss of
balance for these network links promotes the occurrence of
specific behavior, including suicidal ideas or acts. More recently,
structural brain measures were shown in previous studies to link
with clinical phenotypes and showed hidden dimensions of brain-
behavior relationships in MDD patients and were replicated across
clinical centers [59]. As a result, disrupted large-scale within- and
between networks coupled together and synergistically tilted
network imbalance towards specific behavior, including suicide.
Nevertheless, these imbalanced network links may characterize
pathological states and facilitate the activation of the

metaphorical switches to make subjects more vulnerable to
producing and maintaining suicidal ideas or behavior under
depressive conditions.
Third, the current study established that the 31 pairs of

overlapping network connections were simultaneously associated
with suicidality gradient in depression and provided a more
reliable tool for diagnostic identification prediction. Based on the
findings of the current study, mean FCIs in these regions were
more sensitive in identifying one subject in normal or MDDSB
patients compared with MDD patients with or without SI. On the
other hand, these FCIs are superior in the prediction of MDD with
SI or SB compared with MDD without SI. In addition, even within
MDD with SI or SB, these FCIs are still powerful tools to
discriminate MDD with SI or SB, except MDDmSI from MDDmoSI
(AUC= 0.73). These findings indicate that the use of large-scale
network connection approaches to identify more robust diag-
nostic neuroimaging biomarkers may vary depending on whether
the prediction goal pertains to diagnosis. Therefore, the estab-
lished key features of large-scale network dynamics are crucial for
early recognition and timely diagnosis of individuals with
suicidality in depression and achieve much greater progress
towards understanding and preventing suicide, as well as
reducing patients’ risk of morbidity from suicide ideation and
attempts and their risks of suicide death. In clinical translational

Fig. 4 Neuroimaging biomarkers for classifying suicidality-related MDD patients. A Thirty-one functional connections were used for the
classification between groups. Node colors represent Power-atlas cortical and subcortical regions consisting of ten RSNs. B–D Functional
connections that showed group-level differences were used as the inputs for binary classification (B: MDD subgroups vs. NC; C: MDDSI
subgroups or MDDSB vs. MDDNSI; D: among MDDSI subgroups and MDDSB). All p values of the area under the curve were <0.001. All
abbreviations can be found in Supplementary Table 8 in the Supplement.
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practice, measured imbalanced network links in the current study
served as functional endophenotypes to particularly characterize
depressive patients who tend to disguise real suicide intent
without apparent symptoms. In addition, the current study used
this endophenotype to guide informed treatment and monitor if
medications target these networks.
Several previous studies have established the effects of age and

gender on large-scale network dynamics in healthy and depres-
sive disorders [60–62]. In most previous studies, age and gender,
taken as covariates of no interest, were controlled to avoid
potential effects on brain network analysis. The current study
established that age and gender had different effects on large-
scale networks and clinical variables, as shown in Fig. 5. This
finding indicated that caution should be observed when control-
ling for effects of age and gender under some conditions,
including depression.

The current study had some limitations. First, this was a cross-
sectional study involving multiple centers. A longitudinal study
should be undertaken to validate these findings. Second, the
suicidality gradient in depression was assessed using HAMD
suicidal factor scores, which may limit findings. Therefore, the use
of improved suicidality assessment instruments is necessary to
precisely evaluate the severity of suicide in MDD patients in future
studies. Third, future studies are needed to establish whether
these abnormal networks are long-lasting and how they may
interact with environmental and genetic factors.
In conclusion, the current study demonstrated that the dynamic

trajectory of network roles at a large-scale level was associated with
suicidality gradient in MDD patients. Abnormal overlapping network
connections were used as neuroimaging biomarkers in the
diagnostic identification of subjects who are vulnerable to suicide
under depressive conditions. The current study achieved much

Fig. 5 Sex and age effects on networks and clinical variables in MDD patients. Log10 transformed p-values of Wilcoxon rank sum tests for
network variables (A) and clinical variables (B), between females and males, and between younger (age: 18–37) and older (age: 38–65) in MDD
patients. The red dashed lines represent a cut-off value with a log10 transformed p-value= 0.05:log100.05 ≈−1.301. Below red dashed line
below showed significant effects of sex and age on the three variables. All abbreviations can be found in Supplementary Table 8 in the
Supplement.

Q. Wang et al.

9

Translational Psychiatry          (2023) 13:365 



greater progress towards understanding the pathologic mechanism
of suicide and precisely preventing suicidal occurrence via targeting
these circuits with effective medical or physical instruments.

DATA AVAILABILITY
Data of the REST-meta-MDD project are available at: https://doi.org/10.57760/
sciencedb.o00115.00013. A combination of MATLAB-based (Mathworks Inc., Natick,
MA, USA) software packages were used to perform all statistical analyses.
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