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ECT is proposed to exert a therapeutic effect on WM microstructure, but the limited power of previous studies made it difficult to
highlight consistent patterns of change in diffusion metrics. We initiated a multicenter analysis and sought to address whether
changes in WM microstructure occur following ECT. Diffusion tensor imaging (DTI) data (n= 58) from 4 different sites were
harmonized before pooling them by using ComBat, a batch-effect correction tool that removes inter-site technical variability,
preserves inter-site biological variability, and maximizes statistical power. Downstream statistical analyses aimed to quantify
changes in Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD), by employing whole-
brain, tract-based spatial statistics (TBSS). ECT increased FA in the right splenium of the corpus callosum and the left cortico-spinal
tract. AD in the left superior longitudinal fasciculus and the right inferior fronto-occipital fasciculus was raised. Increases in MD and
RD could be observed in overlapping white matter structures of both hemispheres. At baseline, responders showed significantly
smaller FA values in the left forceps major and smaller AD values in the right uncinate fasciculus compared with non-responders. By
harmonizing multicenter data, we demonstrate that ECT modulates altered WM microstructure in important brain circuits that are
implicated in the pathophysiology of depression. Furthermore, responders appear to present a more decreased WM integrity at
baseline which could point toward a specific subtype of patients, characterized by a more altered neuroplasticity, who are
especially sensitive to the potent neuroplastic effects of ECT.

Translational Psychiatry          (2022) 12:517 ; https://doi.org/10.1038/s41398-022-02284-3

INTRODUCTION
Advances in neuroscience have highlighted depression as a
syndrome caused by aberrant interactions among various networks
in the brain [1]. Neuroimaging research in patients with depression,
highlights functional and structural alterations in and between the
components of a complex limbic-cortical-striatal-pallidal-thalamic
circuit [1, 2]. Importantly, both the structural connectivity, and the
strength and persistence of functional connectivity between these
different nodes of the brain are underpinned by the architectural and
microstructural properties of the white matter (WM) [3, 4]. Diffusion
tensor imaging (DTI) measures the restriction of freely moving water
molecules in brain tissue [5] and metrics like fractional anisotropy
(FA), mean (MD), radial (RD) and axial (AD) diffusivity describe WM
microstructural properties [6, 7]. Of these metrics, FA has been most
commonly used to describe changes in the WM microstructure
across various neuropsychiatric disorders, with higher FA values
thought to represent increased WM integrity [5–7]. Research
employing DTI, consistently reports alterations of WM microstructure
in patients with depression [5]. Most of these investigations point

toward reductions of FA in frontal, limbic and striatal connections,
including lower FA in the anterior limb of the internal capsule, inferior
longitudinal fasciculus, posterior thalamic radiation, the superior
longitudinal fasciculus, and the fronto-occipital fasciculus [5]. More
pronounced reductions were found to be related to insufficient
treatment response [8]. Recently, the major depressive disorder
working group of the Neuroimaging Genetics through Meta-Analysis
(ENIGMA) consortium confirmed these alterations through an
analysis across 20 international cohorts [5]. They observed subtle,
but widespread, lower FA in patients compared with controls with
the largest differences being observed in the corpus callosum and
corona radiata, suggesting structural dysconnectivity in patients with
depression [5]. Interestingly, ECT, the most effective biological
treatment for depression [9] seems to exert an influence on WM
microstructural properties and architecture [10–16]. It has been
proposed that these effects rely on ECT’s potent neuroplastic
properties, which may in case of the WM also specifically depend
on the seizures that are propagated along the WM tracts in the brain
[12, 16]. Whilst sparsely investigated, ECT induces indeed changes in
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various diffusion metrics [10–16]. In a pilot study Nobuhara et al. [14],
(n= 8) reported an increase in FA after ECT in frontal WM [14]. In a
subsequent study, Lyden et al. (2014) (n= 20) observed that FA
increased in the anterior cingulum, forceps minor, and left superior
longitudinal fasciculus [12]. This increase was moreover positively
associated with treatment response. However, Nickl-Jockschat et al.
(2016) (n= 21) did not detect any WM alterations associated with
ECT [13]. Finally, in the most recent study, Gryglewski et al. [11]
(n= 13) observed an increase in AD, an indirect measure of axonal
integrity, in the posterior limb of the internal capsule of the right
hemisphere but changes of FA were not observed [11]. The
inconsistency of these results could be due to the limited power
and methodological differences between these studies, which makes
it difficult to highlight consistent patterns of change in diffusion
metrics following ECT. Further, the clinical relevance of the observed
changes remains unclear. A better understanding of the impact of
ECT on WM microstructure could further our understanding of the
neurobiological underpinnings of the potent therapeutic effects of
ECT. In the current DTI project, we aimed to increase statistical power
and overcome methodological differences between individual
studies by conducting a multicenter analysis on existing cohorts to
perform the largest analysis on WM changes following ECT in
patients with depression to date. We harmonized DTI data from the
different sites before pooling them by using the novel analysis
technique, Combat, which corrects for inter-site technical variability
while preserving inter-site biological variability and maximal
statistical power [17]. In our downstream statistical analyses, we first
aimed to quantify longitudinal changes before vs after ECT in FA, MD,
RD and AD after ECT using whole-brain, tract-based spatial statistics
(TBSS). Second, we investigated whether the observed changes could
be linked to changes in depressive symptoms as a result of ECT.
Finally, Cross-sectional analyses were also carried out to investigate
differences in WM integrity between responders and non-responders
at baseline.

MATERIALS AND METHODS
Participants
For this multicenter study, 4 different cohorts were combined. Sample I
consisted of 17 patients recruited at the University Psychiatric Center (UPC)
in Duffel, Belgium. Sample II consisted of 13 patients recruited at the GGZ
in Geest, Amsterdam, the Netherlands. Sample III and IV were both
recruited at the department of Psychiatry of the Radboud University
Medical Centre, Nijmegen, the Netherlands, and consisted of 17 and 11
patients respectively. For all samples, patients needed to fulfil the
following inclusion criteria: a diagnosis of unipolar depression as defined
by the DSM-IV-TR criteria (to note, in sample I, patients with a diagnosis of
bipolar depression were also included (n= 3)), ECT treatment in
accordance with the Dutch Guidelines on Electroconvulsive Therapy [18]
and the presence of two good quality DTI data sets (before and after ECT)
per patient. Exclusion criteria were drug or alcohol dependence, a primary
psychotic disorder as assessed using the MINI interview [19], and
contraindications for MRI (e.g., a pacemaker, claustrophobia, metallic
implants). In addition, patients with a major neurological illness, including
Parkinson disease, stroke, and dementia, were excluded. In total, 58
participants were enrolled from whom written informed consent was
obtained. All procedures were approved, for sample I, by both the local
Ethics Board of the UPC Duffel and the central ethics committee of the
University Hospital Antwerp, for sample II, by the Ethical Review Board of
the Amsterdam University Medical Centre, and for sample III and IV by the
local ethics committee of the Radboud University Medical Centre. The
authors assert that all procedures contributing to this work comply with
the ethical standards of the relevant national and institutional committees
on human experimentation and with the Helsinki Declaration of 1975, as
revised in 2008.

ECT procedure
ECT was administered twice weekly in accordance with recent guidelines
(Broek et al. [18]) using a brief-pulse (0.5 ms (sample I)/1.0 ms (sample
II–IV)) constant-current Thymatron IV system (Somatics LLC, Lake Bluff, IL,
USA). The electrodes were placed unilaterally over the right hemisphere

(RUL) or bitemporal (BT) when a fast antidepressant or antisuicidal effect
was required or when patients did not respond to unilateral ECT [20]. To
note, in sample III, all patients were treated with a BT electrode placement.
Before the first session, the stimulus dose was determined using the age
method for RUL treatment and the half-age method for the bilateral
electrode placement in sample I [21]. In sample II–IV, the stimulus dose was
determined using the ST (seizure threshold) titration method. After seizure
threshold was determined at the first ECT session, subsequent treatments
were delivered at energy settings 5× ST for right unilateral ECT and at 1.5×
ST for bilateral ECT. Etomidate (0.15 mg/kg) was the anesthetic routinely
used. Succinylcholine (succinylcholine, 0.5 mg/kg) was used as muscle
relaxant. ECT was continued until the patient was either in remission
(HDRS17 ≤ 7) or showed no further improvement during the last three
sessions.

Clinical measures. All clinical assessments were conducted within 1 week
before(T0) the start of the first ECT session and within 1 week after (T1) the
last ECT session.

Depressive symptoms
Depressive symptoms were assessed using the Hamilton Rating Scale for
Depression–17 items (HDRS-17) [22]. Treatment response was defined as a
reduction of 50% or more on the HDRS17. In sample II, depressive
symptoms were assessed by the Montgomery and Asberg Depression
Rating scale, but scores were converted to HDRS-17 equivalents employing
adequate formulae [23].

MRI acquisition and processing
DTI data acquisition. For this multicenter DTI study, DTI scans were
collected at three different sites employing four different scanners
constituting as such 4 different samples: (I) the UPC Duffel sample (II),
the Amsterdam UMC sample, (III) the Radboud UMC-1 sample, (IV) the
Radboud UMC-2 sample. For each sample, a single-shot, diffusion-
weighted, echo planar imaging sequence was consistently obtained within
the week before a participant’s first ECT session (T0) and within 1 week (T1)
after completion of the acute course. Scanners and Acquisition parameters
for each site were as followed: (I) A 3 T Siemens Magnetom Prisma MRI
scanner (Erlangen, Germany): TE, 71 milliseconds; TR, 8500 milliseconds;
image resolution: 2.0 mm isotropic; b value, 1000 s/mm2; 30 directions; 75
axial slices. (II) A General Electrics Sigma HDxt 3 T scanner (General Electric,
Milwaukee, WI, USA); TE, 76 milliseconds; TR, 7150 milliseconds; image
resolution: 2.4 mm isotropic; b value, 1000 s/mm2; 30 directions; 60 axial
slices. (III) A 1.5 T Siemens Avanto system (Erlangen, Germany): TE, 85
milliseconds; TR, 7400 milliseconds; image resolution: 1.6 mm isotropic; b
value, 1000 s/mm2; 34 directions; 75 axial slices. (IV) A 3 T Siemens
Magnetom Prisma MRI scanner (Erlangen, Germany): TE, 76 milliseconds;
TR, 7200 milliseconds; image resolution: 2.0 mm isotropic; b value, 1000 s/
mm2; 75 axial slices; 30 directions.

DTI preprocessing
Preprocessing and statistical analyses were performed on all pre- and post-
ECT DTI scans collected using FSL 6.0.3 (FMRIB, Oxford, UK). For each
subject, diffusion-weighted images were corrected for motion and eddy-
current distortions using the eddy commando with the b0 image as
reference for alignment [24]. After eddy-current correction a diffusion
tensor model was fitted at each voxel using DTIFIT. The resultant eigen
values were used to compute FA, AD (λ1), RD ((λ2+ λ3)/2), and MD.

DTI harmonization
The ComBat harmonization method, as implemented in MATLAB was used
after imaging processing and before downstream statistical analyses (TBSS)
to remove inter-site scanner-related technical variability while preserving
inter-site biological variability and maximize statistical power [17]. To note
the ComBat harmonization method (https://github.com/Jfortin1/
ComBatHarmonization) is an empirical Bayesian method for data
harmonization that was originally designed for genomics [17]. ComBat
has been validated by various other studies, in structural but also
functional and volumetric modalities [17, 25, 26]. Moreover, the ENIGMA
working group recommends applying the ComBat algorithm to attenuate
potential effects of site in multi-site structural imaging work [27]. As a
matter of fact, in comparison with other available harmonization methods,
ComBat performs best at modeling and removing the unwanted inter-site
variability in diffusion parameters whilst preserving biological variability
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and maximizing statistical power [17]. For this study, age and sex were
used as biological covariates of interest.

Statistical analyses
Voxel-wise statistical analysis of the harmonized diffusion data (FA, MD,
AD, and RD) was carried out using TBSS (Tract-Based Spatial Statistics, [28]
implemented in FSL [29]. FA images were first aligned within and across

subjects and then to standard MNI152 space using combined nonlinear
and affine registrations. A mean FA image was subsequently created to
represent a FA skeleton common to all subjects and time points. The
aligned FA data from each subject or time point were then projected onto
this skeleton to allow voxel-wise comparisons. The transformation files and
skeleton projection vectors generated for the FA images were applied to
the MD, RD and AD images to allow comparison of these diffusion metrics
in the same common space. FSL’s Randomize tool (http://
www.fmrib.ox.ac.uk/fsl/randomise/index.html), which combines the gen-
eral linear model with permutation testing, was then used for voxel-based
analysis of each diffusion metric. The anatomical locations of clusters
showing significant effects were identified using the Johns Hopkins
University DTI-based WM atlas [30]. First, paired t-tests established
longitudinal WM changes in FA, MD, RD and AD before (T0) vs after (T1)
ECT. To assess the possible influence of ECT laterality and number of ECT
sessions on those WM changes reaching statistical criterion following ECT,
we carried out an analysis of covariance (ANCOVA), with change as the
dependent variable and number of ECT sessions and electrode position as
independent variables. Second, we investigated whether the observed
changes could be linked to changes in depressive symptoms as a result of
ECT. To do this difference scores (T0–T1) were computed for the HDRS-17
scores and a paired t-test was carried out. Exploratory Pearson correlations
between the significant changes (T0–T1) in diffusion metrics and changes
in HDRS-17 scores (T0–T1) were then performed. To assess the possible
associations between change in diffusion metrics and changes in HDRS
scores at a whole brain level, we also performed a GLM with the change in
HDRS scores as regressor. Bonferroni correction was employed for the
correlational analysis with a p value fixed at 0.004 (0.05/number of regions
presenting a significant longitudinal change in diffusion parameters
(n= 12)). To assess on a whole brain-level the relationship between
clinical response and changes in DTI metrics we performed a cross-
sectional comparison in WM change between responders and non-
responders. Further, a cross-sectional analysis in WM properties between
responders and non-responders at baseline (T0) was carried out.
WM changes were considered significant using an FDR corrected p value

of 0.05. All statistical analyses were performed using JMP SAS version 14-
PRO.

Table 1. Demographics, clinical characteristics, and ECT protocol
information.

Variable n= 58

Demographic Information

Age, mean years (SD) 56.36 (12.20)

Gender (M/F) 15/45

Clinical Characteristics

Current episode duration, mean months (SD) 20.53

Unipolar/bipolar depression (n) 55/3

ECT Protocol

Unilateral electrode placement 26

Bilateral electrode placement 19

Electrode switch (unilateral -> bilateral) 13

Number of ECT Index sessions, mean (SD) 13.95

Number of ECT Index sessions, range 8.89

Respondersa n (%) 33 (62.27%)

ECT electroconvulsive therapy, F female, M male, SD standard deviation,
HDRS17 Hamilton Depression Rating Scale 17 Items.
aResponse was defined as a 50% or larger baseline to end-of-treatment
reduction in HDRS17 scores. Response data were only available for n= 53
patients.

Table 2. Longitudinal and cross-sectional analysis of diffusion metrics.

Diffusion metrics Effect Brain areas Hemisphere Max. Z (X, Y, Z) p value t-value

LONGITUDINAL

Fractial Anisotropy

↑ Cortico-spinal tract Left 105,102,68 0.0372 3.68

↑ Splenium Right 73,83,82 0.007741 2.70

Mean Difusivity

↑ Superior longitudinal fasciculus Left 107, 156, 105 0.00321 2.94

↑ Corticospinal tract Left 98,106,47 0.0196 2.65

↑ Forceps Minor Right 71,161,103 0.0174 3.84

↑ Inferior Fronto-occipital fasciculus Left 116,170,67 0.000335 2.94

Radial Diffusivity

↑ anterior thalamic radiation Right 70, 169, 67 0.0155 2.30

↑ Forceps minor Left 111,160,93 0.0126 2.35

↑ Inferior Longitudinal fasciculus Left 119,52,80 0.03583 2.48

↑ Inferior fronto-occipital fasciculus Right 55,118,65 0,007375 2.48

Axial Diffusivity

↑ superior longitudinal fasciculus Left 130,123,105 0.006 1.89

↑ Inferior fronto-occipital fasciculus Right 63,56,95 0.01946 2.41

CROSS-SECTIONAL (T0; R vs NR)

Fractial Anisotropy ↓ Forceps Major Left 106,38,85 0.028 −2.53

Mean Diffusivity - - - - -

Radial Diffusivity - - - - -

Axial Diffusivity ↓ Uncinate Fasciculus Right 50,132,45 0.004 −2.36

T0 baseline, R responders, NR non-responders.
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RESULTS
Participants
Fifty-eight DTI datasets were obtained (43 females and 15 males,
mean age= 56.36) both before and after ECT. Demographics,

clinical characteristics, and ECT treatment information are
presented in Table 1. ECT had a significant effect on depressive
symptoms, as is demonstrated by the significant drop in HDRS-17
scores (p < 0.0001, t=−9.52). The response rate to ECT was 62.3%.
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Responders and non-responders did not differ on baseline
demographic variables.

Longitudinal effects of ECT on diffusion metrics (FA, AD,
RD, MD)
After FDR correction, only increases in diffusion metrics
remained significant. After ECT, a significant increase of FA
was observed in the right splenium of the corpus callosum and
the left cortico-spinal tract. Furthermore, patients showed
significant increases in AD in the left superior longitudinal
fasciculus and in the right inferior fronto-occipital fasciculus.
Increases in MD and RD could be observed in overlapping WM
structures of both hemispheres. MD did increase in the left
superior longitudinal fasciculus, the left cortico-spinal tract and
the left inferior fronto-occipital fasciculus. RD did increase in the
right anterior thalamic radiation, the left inferior longitudinal
fasciculus and the right inferior fronto-occipital fasciculus.
Finally, the right forceps minor showed both an increase in
MD and RD (See Table 2 and Fig. 1). The observed WM changes
were not influenced by the number of ECT sessions or electrode

position. It should be noted that a negative interaction
(p= 0.0169) was observed between the number of ECT sessions
and an increase of MD in the left cortico-spinal tract, this
interaction failed however to remain significant after Bonferroni
correction.

Cross-sectional effects between responders and
non-responders at baseline (T0)
After FDR correction, analyses revealed appreciable differences
between the responder and non-responder group at baseline (T0).
Specifically, responders showed significantly smaller FA values in
the left forceps major and smaller AD values in the right uncinate
fasciculus compared with non-responders. No differences
between groups were observed for the RD and MD metrics (See
Table 2. and Fig. 2).

Cross-sectional comparison in WM change between
responders and non-responders
No significant differences in change of diffusivity metrics between
responders and non-responders were observed.

Fig. 1 Longitudinal changes of diffusivity metrics following ECT. An increase of FA was observed in the right splenium of the corpus
callosum (A.1.) and the left cortico-spinal tract (A.2.). An increase in AD was observed in the left superior longitudinal fasciculus (D.1.) and in
the right inferior fronto-occipital fasciculus (D.2.). MD did increase in the left superior longitudinal fasciculus (B.1.), the left cortico-spinal tract
(B.2.) and the left inferior fronto-occipital fasciculus (B.3.). RD did increase in the right anterior thalamic radiation (C.1.), the left inferior
longitudinal fasciculus (C.2.) and the right inferior fronto-occipital fasciculus (C.3.). The right forceps minor showed both an increase in MD
and RD (B.4., C.4.). Abbreviations: FA= fractial anisotropy, MD=mean diffusivity, RD= radial diffusivity, AD= axial diffusivity, I= inferior,
S= superior, R= right, L= left, A= anterior, P= posterior.

A. FA ; Forceps Major B. AD ; Uncinate fasciculus

Fig. 2 Cross-sectional effects between responders and non-responders at baseline. A Responders compared to non-responders showed
significantly smaller FA values in the in the left forceps major at baseline. B Responders compared to non-responders showed significantly
smaller AD values in the right uncinate fasciculus at baseline. FA= fractial anisotropy, AD= axial diffusivity, I= inferior, S= superior, R= right,
L= left, A= anterior, P= posterior, T0= baseline, R= responders, NR= non-responders.
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Exploratory correlations between ECT-induced changes in
diffusion metrics and the clinical outcomes
No significant associations were observed between the ECT-
induced changes in diffusion metrics and the changes in HDRS-17
scores. It should be noted that the observed positive correlation
between the post-ECT change in MD of the left cortico-spinal tract
and the HDRS-17 scores was driven by an outlier (Cook’s D > 3
times the mean), which was removed before analysis. Further, at
the whole brain level no significant associations were found
between changes in diffusion metrics and changes in HDRS
scores.

DISCUSSION
Longitudinal effects of ECT on FA
Employing a harmonization approach we are the first to observe
an increase in FA in the splenium following ECT. This brain region
is the most posterior part of the corpus callosum, composed of
reciprocal fibers from the temporal association and parietal
association, connecting regions of the parietal and occipital lobes
through the forceps major [31, 32].
Reductions of FA are consistently reported in the corpus

callosum of patients with depression [5, 33–36] and a decrease of
myelin in the axons of the splenium has been demonstrated in a
post-mortem sample of patients with depression [37]. The
splenium is known to synchronize interhemispheric oscillatory
activity through the balanced excitation or suppression of the
contralateral homotopic and heterotopic cortical areas [38]. This is
important as depression is related to interhemispheric functional
synchronization deficits [39–42]. Interestingly, ECT has been
shown to selectively modulate this interhemispheric functional
synchronization [43]. As increased FA suggests increased fiber
coherence and organization [7], our results could suggest that ECT
restores interhemispheric connectivity through its neuroplastic
properties on splenial WM and its efferent fiber tracts. Of note,
also the left cortico-spinal tract showed an increased FA.
Psychomotor retardation, a core symptom of depression, seems
to be addressed by cortico-spinal connectivity, with higher FA
values reflecting a compensatory mechanism in depressed
patients [44]. With the potent impact of ECT on psychomotor
symptoms in mind [45] future studies should further investigate
the modulation of this pathway to comprehend the neurobiology
behind these effects.

Longitudinal effects of ECT on AD
Our post-ECT analyses revealed an increase of AD in the left
superior longitudinal fasciculus and the right inferior fronto-
occipital fasciculus. Altered integrity of these WM tracts has been
frequently observed in depressed patients and is suggested to
underpin fronto–subcortical dysconnectivity [33–36]. Some studies
have related lower AD to axonal damage and fragmentation, with
an increase of AD thought to represent the normalization of
alterations in axonal integrity [46]. Our finding complements
previous work of Lyden et al. [12] who observed an increase of WM
integrity in the superior longitudinal fasciculus [12]. Interestingly,
the superior longitudinal fasciculus participates in the modulation
of the dorsolateral prefrontal cortex (DLPFC) [47–49]. WM
dysconnectivity of this tract appears to drive an attenuated top-
down cognitive control from the DLPFC of limbic hyperactivity,
instigating ruminative or repetitive negative thinking, a core
behavior of the depressive syndrome [49, 50]. In unison with Lyden
et al. [12], it is thus tempting to propose that the microstructural
changes of the superior longitudinal fasciculus by ECT could
enhance top-down cognitive control over emotional states to
regulate mood, constituting in essence a core mechanism behind
the therapeutic effects of ECT [12]. This corroborates moreover the
functional imaging findings of our group demonstrating an
enhanced connectivity of the DLPFC following ECT [51].

Longitudinal effects of ECT on MD and RD
We observed an increase of MD, encompassing the left superior
longitudinal fasciculus, the left cortico-spinal tract, the left inferior
fronto-occipital fasciculus and the right forceps minor. These
findings are in line with both Repple et al. (2019) and Gryzelewski
et al. (2020) but in contrast to the study of Lyden et al. [12], who
observed a global decrease of MD [11, 12, 15]. To note, both the
studies of Repple et al. (2019) and Gryzelewski et al. (2020)
observed a right lateralization of the MD increase [11, 15]. This
could reflect the fact that the vast majority of patients were
stimulated unilaterally on the right side in these studies, whilst our
patients received both right unilateral and BT stimulation. MD is a
measure of the overall diffusivity in a particular voxel regardless of
direction [6]. It has been proposed that the MD increase could
reflect a moderate ECT-induced increase in water concentration
due to an increased permeability of the blood-brain barrier [52].
Further, coinciding with Gryzelewski et al., (2020), the increases of
MD were observed in the same regions showing FA and AD
effects. Respectively in the left cortico-spinal tract and the left
superior longitudinal fasciculus [11].
It is thought that during the transient increase of permeability

of the blood-brain barrier certain neuroactive reactants such as
the brain-derived neurotrophic factor (BDNF), an important
neuroplastic agent, may get released from the circulation to the
brain, promoting neuroplastic mechanisms [52, 53]. This could
explain the overlap between increased MD and FA/AD, thought to
reflect augmented WM integrity.
Similar to findings of Gryzelewski et al. (2020), we observed an

increase of RD in the right anterior thalamic radiation, the left inferior
longitudinal fasciculus, the right inferior fronto-occipital fasciculus, and
the right forceps minor [11]. On the other hand, Lyden et al. [12], did
observe a global decrease of RD, especially in those regions
presenting an increase of FA [12]. Whilst we did not replicate these
findings, we did however find an overlap with those regions
presenting an increased AD, as was the case for Gryzelewski et al.
(2020) [11]. Increases in RD may suggest WM de- or dys-myelination
[6]. The fact that the observed increases in AD did not translate into
an increase in FA could be attributed to the increase in RD [11].

Cross-sectional effects between responders and
non-responders at baseline
The identification of neuroimaging biomarkers of treatment
response holds promise toward personalizing ECT and improving
treatment outcomes. To our best knowledge, we are the first to
demonstrate smaller FA values in the left forceps major and
smaller AD values in the right uncinate fasciculus in responders
compared to non-responders. Whereas the forceps major emerges
from the splenium to connects regions of the parietal and
occipital lobes [31, 32], the uncinate fasciculus connects inferior
frontal regions with medial temporal regions, such as the
amygdala and hippocampus and is thought to be important for
the alterations of frontolimbic circuitry observed in depression
[54]. Our findings suggest thus a more decreased WM integrity at
baseline in the responder group.
The relationship between baseline neuroplasticity and treat-

ment outcome following ECT has been sparsely investigated, but
Neyazi et al., [55] found pre-ECT an increased p11 promoter
methylation in treatment-responders, which could reflect a
decreased gene expression of important neuroplastic agents such
as BDNF in this group [55]. This could suggest that ECT responders
do present a more altered neuroplasticity at baseline, which is in
in line with the decreased FA values of our study. It is thus
tempting, although also highly speculative, to propose based on
our results and those of Neyazi et al. [55], that ECT responders
could be constituted by a specific subgroup of patients,
characterized by a more altered neuroplasticity at baseline, who
are especially sensitive to and can benefit most optimally from the
potent neuroplastic effects of ECT.
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Beyond its longitudinal design, the main strength of our study
resides in its harmonization approach, in which the imaging data
are combined before performing statistical inferences, increasing
the statistical power compared to meta-analyses. In addition, by
pooling imaging data across sites our study enriched the clinical
picture of the sample by increasing the variability in symptom
profiles and demographic variables [17]. Moreover, by employing
the state-of-the-art ComBat harmonization technique, we
removed the unwanted variability introduced by site hetero-
geneity of the imaging measurements by differences in scanner
protocols while preserving biological variability [17]. Further, the
sensitivity of the TBSS approach to examine WM integrity using
scalar measures such as FA, MD, RD and AD has also been well
established across a number of neuropsychiatric disorders.
Despite the robustness of our results, there are also some
limitations to be considered. TBSS may indeed have some
limitations to characterize all the voxels that are specific to a
tract [56].
Further, the ComBat method assumes the site effect parameters

to follow a particular parametric prior distribution, which might
not generalize to all scenarios or measures, and it is not yet clear
how non-linearities in the signal due to site effects propagate
through the preprocessing techniques, as well as model fitting
procedures [57]. It should also be noted that diffusion metrics are
not a direct measure of WM integrity. Interpretation of these
metrics should be done carefully as all that is proven is that there
is a change in the diffusion parameters of water in a specific
neural region, the interpretation of which is merely a plausible
hypothesis [58].
The lack of a control dataset to confirm our findings should be

mentioned. As a matter of fact, the specificity of these ECT related
effects should be scrutinized by comparing them with a sample of
depressed patients put on other forms of treatment. Further,
differences in WM changes following ECT between treatment
resistant and other forms of depression should also be addressed,
as form specific alterations of structural brain characteristics have
been suggested by previous research [59]. Finally, as we were not
able to demonstrate a relationship between the observed changes
in diffusivity metrics and therapeutic response, our results should
be interpreted carefully and the proposed association with the
therapeutic effects of ECT remain speculative and should be
confirmed in larger samples.

CONCLUSION
In summary, ours is the first multicenter analysis to investigate
changes in diffusion metrics following ECT. Our data demonstrate
that ECT normalizes altered WM microstructure in important brain
circuits that are implicated in the pathophysiology of depression.
Importantly, our findings parallel functional neuroimaging find-
ings that ECT could enhance top-down cognitive control over
emotional states to regulate mood. Furthermore, initial evidence
indicates that ECT responders present a more altered WM integrity
at baseline, indicating as such a subgroup of depressed patients,
especially sensitive to ECT.
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