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Identification of suicidality in patients with major depressive
disorder via dynamic functional network connectivity
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Major depressive disorder (MDD) is a severe brain disease associated with a significant risk of suicide. Identification of suicidality is
sometimes life-saving for MDD patients. We aimed to explore the use of dynamic functional network connectivity (dFNC) for
suicidality detection in MDD patients. A total of 173 MDD patients, including 48 without suicide risk (NS), 74 with suicide ideation
(SI), and 51 having attempted suicide (SA), participated in the present study. Thirty-eight healthy controls were also recruited for
comparison. A sliding window approach was used to derive the dFNC, and the K-means clustering method was used to cluster the
windowed dFNC. A linear support vector machine was used for classification, and leave-one-out cross-validation was performed for
validation. Other machine learning methods were also used for comparison. MDD patients had widespread hypoconnectivity in
both the strongly connected states (states 2 and 5) and the weakly connected state (state 4), while the dysfunctional connectivity
within the weakly connected state (state 4) was mainly driven by suicidal attempts. Furthermore, dFNC matrices, especially the
weakly connected state, could be used to distinguish MDD from healthy controls (area under curve [AUC]= 82), and even to
identify suicidality in MDD patients (AUC= 78 for NS vs. SI, AUC= 88 for NS vs. SA, and AUC= 74 for SA vs. SI), with vision-related
and default-related inter-network connectivity serving as important features. Thus, the dFNC abnormalities observed in this study
might further improve our understanding of the neural substrates of suicidality in MDD patients.
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INTRODUCTION
Major depressive disorder (MDD) is a very common mood disorder
affecting more than 350 million people worldwide [1]. It is
characterized by a persistent feeling of sadness or/and loss of
pleasure [2]. MDD is a major risk factor for suicide, and 7% of men
and 4% of women with MDD die from suicide [3]. Suicide has been
reported to occur in a three-step gradual process consisting of
suicidal ideations (SIs), suicidal attempts (SAs), and suicidal death
(SD) [4–6]. Approximately 23% of those who have committed
suicide had previously attempted it [7]. Therefore, the identifica-
tion of patients with SI and SA may be an important intervention
point for predicting and preventing suicide in MDD patients.
However, the assessment of suicidality in patients with MDD is a
difficult task due to the subjectivity of psychological scales and the
unwillingness of patients to disclose their thinking or the acts they
have committed [8–10]. Thus, it is urgent to find an objective
biomarker to identify suicidality in MDD patients.
In recent decades, resting-state functional magnetic resonance

imaging (rs-fMRI) has been widely used to investigate the

suicidality of MDD patients based on the brain connectome
[11–15] and regional brain activity [16–18], and it has presented
inspiring results. For example, with the bilateral amygdala as a
region of interest, Kang et al. reported that SA patients had
significantly increased functional connectivity (FC) between the
left amygdala and the right insula, as well as the left superior
orbitofrontal area, and between the right amygdala and the left
middle temporal area, compared with those who had not
attempted suicide. Furthermore, they revealed a significant
correlation between SI scores and the FC of the right amygdala
with the right parahippocampal area in the SA group [12]. Using
the whole-brain FC analysis method, Chen et al. found that SA
patients had significantly higher FC strength in the right
orbitofrontal cortex and the bilateral dorsomedial prefrontal
cortex than non-SA patients, which is thought to be associated
with a higher risk of suicidal behavior in MDD patients [15].
Meanwhile, using the amplitude of low-frequency fluctuation
(ALFF) method, Fan et al. found that depressed patients with SA
had increased activity at a low frequency (0.01–0.08 Hz) in the
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right primary auditory cortex (superior temporal gyrus) compared
with the depression group without SA and the healthy control
group [17]. Although these studies have provided important
preliminary results, they also suffer from critical limitations. For
example, these studies evaluated brain activity or connectivity by
averaging the time series within the entire scanning period, which
ignored the time-varying neural activity during the scanning
period; thus, the results are far from conclusive.
More recently, dynamic functional network connectivity (dFNC)

has been developed to analyze dynamic functional coordination
between different parts of the nervous system in the human brain
and to uncover the hidden dynamic information embedded in the
resting state [19–23]. One can consider dFNC to be more specific
than static FC because it unpacks temporal features otherwise
averaged in static FC measures [24–26]. dFNC has been
successfully used to investigate the dynamic functional modula-
tions in patients with schizophrenia [20], patients with hepatic
encephalopathy [21], and healthy aged subjects [22]. However, no
study has been conducted to uncover the relationship between
dFNC and suicidality in MDD.
The purpose of this study was (1) to identify suicidality-related

modulations of dynamic functional coordination in MDD patients
with different suicide risk levels using resting-state functional
magnetic resonance imaging (rsMRI) and the dFNC method, and
(2) to investigate whether this dynamic information can be used
to screen MDD patients from healthy controls or even to
distinguish MDD patients with varying suicide risk levels.

MATERIALS AND METHODS
Subjects
MDD patients were recruited from the Department of Depression at
Shenzhen Kangning Hospital. They received a diagnosis of MDD according
to the DSM-IV criteria [27–30]. Other inclusion criteria were as follows: (1)
score ≥ 17 on the 17-item version of the Hamilton Rating Scale for
Depression (HAMD) [31]; (2) Chinese Han nationality; (3) age between 18
and 60 years; and (4) right-handedness. Patients were excluded from the
study if they had any other psychological disorder except MDD or had a
history of drug or alcohol abuse or dependence; prior significant
neurological or medical illness, including substantial head trauma; severe
physical illness or infectious disease; or contraindications for MRI.
Thereafter, MDD patients were further sorted into three subgroups
according to a system used in previous research [32, 33]. These groups
included 51 SA patients, defined as those having committed a
documented self-injurious act with the intent to die [32, 34]; 74 SI
patients, defined as those thinking about engaging in an act designed to
end their life but who have not attempted it [33]; and 48 NS patients,
defined as having no SAs or SIs. In addition, 38 age-, gender-, and
education-matched healthy controls (HCs) were recruited from the
community with the same criteria as MDD patients, except that HCs did
not have any personal or family history of significant psychiatric disorders
or other systemic diseases.
The study protocol was approved by the Research Ethics Committee of

Shenzhen Kangning Hospital (No. 2018-S017). All the patients provided
written informed consents in compliance with the code of ethics of the
World Medical Association (Declaration of Helsinki).

MRI data acquisition and pre-processing
rs-fMRI was obtained using a 3.0-Tesla scanner (Discovery MR750 System;
General Electric) with an eight-channel head coil. During the scanning,
each participant was asked to keep still with their eyes closed, but not to
fall asleep and not to think about anything. rs-fMRI was collected using an
echo-planar imaging (EPI) sequence with the following parameters: TR/
TE= 2000/30ms; flip angle = 90°; thickness/gap = 3.5/0 mm; acquisition
matrix = 64 × 64; field of view (FOV)= 224 mm2; 33 axial slices; and 240
time points (8 min).
The preprocessing of rs-fMRI data was performed using the Statistical

Parametric Mapping 12 (SPM12) software package and the Data Processing
Assistant for Resting-State fMRI (DPARSF) [35] as in our previous work
[21, 36]. The main steps were as follows: (1) we removed the first 10 time
points to allow for signal equilibration; (2) we performed slice-timing

correction and motion correction; and (3) we applied spatial normalization
to the Montreal National Institute space (MNI) and smoothing using a
6mm full-width at high maximum (FWHM) Gaussian kernel. Individuals
were excluded from further analysis if their maximum head motion
exceeded 2.5 mm in displacement or 2.5° in rotation.

Group independent component analysis
We analyzed the processed fMRI data using a group-level spatial
independent component analysis (ICA) in the GIFT package (version
3.0b) (http://mialab.mrn.org/software/gift/index.html). First, a two-stage
principal component analysis was conducted to decrease computational
complexity. The functional data were accurately dimension-reduced
temporally, and then the reduced data from all of the subjects were
concatenated into a single dataset along the temporal dimension and
passed through another dimension reduction. Second, we applied the
Infomax algorithm [37] to decompose the grouped data into 32
automatically estimated independent components (ICs). In this step, we
generated the spatial map and the time course of the BOLD signal for each
IC. To ensure the stability of decomposition, we repeated the GICA infomax
algorithm 100 times using ICASSO (http://research.ics.aalto.fi.ica/icasso)
[38]. Finally, the ICs for each participant were derived from a group ICA
back reconstruction step and were Fisher-transformed to z values.
Next, we eliminated nine ICs because of noise impact and the low-

frequency/high-frequency ratio [39]. The remaining 23 ICs were sorted to
eight large-scale networks based on their anatomical and functional
properties: the auditory network (AUD), visual network (VIS), sensorimotor
network (SMN), dorsal attention network (DAN), ventral attention network
(VAN), limbic network (LN), frontoparietal network (FPN), and default mode
network (DMN) [40, 41].

dFNC computation
We estimated the dFNC by computing Pearson’s correlations between time
courses of ICs using the sliding window method. We set a window size of
50 TRs (100 s) with a step size of 1 TR (3 s) for each participant in
accordance with previous studies [42–44], which resulted in a total of 180
23 × 23 FNC matrices for each subject. The graphical least absolute
shrinkage and selection operator (LASSO) algorithm was used to regularize
the matrices [45]. Then, we applied the K-means algorithm with the
sqEuclidean function to divide the dFNC windows into a set of separate
clusters [46, 47]. We repeated the clustering algorithm 500 times to
increase the chances of escaping the local minima [48]. Finally, we
computed the dFNC properties, including mean dwell time (DT), fraction
time (FT), and number of transitions (NT).

Statistical analysis
We performed the Kolmogorov–Smirnov test to indicate normally
distributed data for the majority demographic and clinical characteristics.
Two-sample t tests and one-way analysis of variance (ANOVA) were
performed to compare continuous variables, and the Chi-square test was
performed to detect intergroup differences in categorical variables. In
addition, we performed two-sample t tests to examine the group effect on
the dFNC parameters for each state, including the functional connectivity,
the mean DT, the FT, and the NT. Statistical significance was considered at
P < 0.05 (two-tailed), with FDR correction.

Feature selection and classification model construction
We used the F-score for feature selection, which is a simple and generally
quite effective method, as documented previously [49]. We used the
pairwise classification method of support vector machine (SVM) to build up
models for distinguishing MDD from HC and for further differentiating
MDD patients with different suicide risk levels (NS vs. SI, NS vs. SA, and SA
vs. SI) in the LIBSVM toolbox (http://www.csie.ntu.edu.tw/cjlin/libsvm/)
based on MATLAB (MathWorks, Natick, MA). Since not all of the subjects
had experienced all states, only the subset of subjects within a given state
was used for classification. First, the F-score of each feature (connection) in
the training set was calculated and ranked in descending order as in
previous studies [50]. Second, a subset of the original training set was
generated by including the features (connections) with the top N F-scores
successively, where N= 1, 2,…, m, and m is the total number of features
(connections) (23 × 22/2) [51]. Then, a grid search using leave-one-out
cross-validation (LOOCV) was carried out to find the optimized values of (C,
γ), where C denotes the penalty parameter, and γ represents the kernel
width parameter [52]. Thereafter, the optimized values of (C, γ) were used
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Table 1. Demographic and clinical characteristics of HCs and MDD with different suicide risks.

Demographic
characteristics

MDD
(n= 173)

SA
(n= 51)

SI (n= 74) NS
(n= 48)

HCs
(n= 38)

P Value
(MDD vs.HC)

P Value
(Subgroups
of MDD)

P Value
(subgroups of
MDD vs. HC)

Gender(male/
female)

57/116 12/39 25/49 20/28 13/25 0.88 0.30 0.22

Age(y) 35 ± 13 33 ± 15 35 ± 12 39 ± 13 37 ± 13 0.46 0.10 0.15

Education(y) 14 ± 3 14 ± 3 14 ± 3 13 ± 4 15 ± 4 0.07 0.19 0.30

Depression
severity
(HAMD)

23 ± 5 23 ± 5 24 ± 5 22 ± 5 – – 0.13 –

Anxiety
severity
(HAMA)

17 ± 7 16 ± 7 19 ± 6 17 ± 7 – – 0.20 –

Head motion 0.09 ± 0.07 0.08 ± 0.06 0.10 ± 0.06 0.09 ± 0.07 0.10 ± 0.08 0.15 0.59 0.31

MDD major depressive disorder, SA suicide attempter, SI suicide ideation, NS neither SA nor SI, HCs healthy controls, HAMD Hamilton Depression Scale, HAMA
Hamilton Anxiety Scale.

Fig. 1 Spatial maps of 23 independent components sorted into eight intrinsic networks overlaid on the Montreal Neurological Institute
(MNI) template. Color bar represents the independent component (IC). AUD auditory network, VIS visual network, SMN somatomotor
network, DAN dorsal attention network, VAN ventral attention network, LN limbic network, FPN frontoparietal network, DMN default mode
network, L left, R right, STG superior temporal gyrus, Fusiform, fusiform gyrus, Cuneus cuneus cortex, PCC posterior cingulate cortex, Calcarine
calcarine cortex, Occipital_Mid middle occipital gyrus, Postcentral postcentral gyrus, Precentral precentral gyrus, SMA supplementary motor
area, AG angular gyrus, MFG middle frontal gyrus, Parietal_Sup superior parietal gyrus, PCUN precuneus, IFG inferior frontal gyrus, MiFG
middle inferior frontal gyrus, lnsula insular cortex ACC anterior cingulate cortex, SFGmed superior frontal gyrus, medial, SFG superior frontal
gyrus, IPL inferior parietal lobule, MTG middle temporal gyrus, mPFC medial prefrontal cortex.
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to construct the SVM classifier, which was subsequently used to predict
labels in the test subset. The area under the curve (AUC), accuracy,
sensitivity, and specificity were obtained to evaluate the performance of
the classifier [53]. A permutation test was performed to determine whether
the obtained accuracy rate was significant (P < 0.05). For comparison, the
set of selected dFNC features was also fed to other machine learning
algorithms, which included random forest, Bayesian, and deep learning
algorithms. These classification algorithms are available in Python using
the scikit library [54].

RESULTS
Demographics and clinical characteristics
The details of demographic and clinical characteristics are shown
in Table 1. We did not observe any significant differences in age,
education level, gender, or head motion between MDD patients
and HCs (P > 0.05) or among the MDD subgroups.

dFNC states and properties
A total of 23 ICs were identified and categorized into eight large-
scale networks (Fig. 1). Table 2 lists the ICs’ labels and peak
activation coordinates. Finally, six functional states were deter-
mined by the cluster validity index and elbow criterion [55, 56]
(Fig. 2). States 1, 2, and 5 represented the strongly connected
states, which exhibited strong positive connectivity across SM,
AUD, VIS, and DMN. State 1 was engaged by 11 HC, 15 NS, 20 SI,
and 10 SA participants; state 2 was engaged by 17 HC, 17 NS, 24

SI, and 17 SA participants; state 5 was engaged by 18 HC, 18 NS,
25 SI, and 14 SA participants. States 3, 4, and 6 exhibited weaker
connectivity among all networks compared with states 1, 2, and 5.
State 3 was engaged by 15 HC, 19 NS, 37 SI, and 16 SA
participants; state 4 was engaged by 17 HC, 24 NS, 18 SI, and 30
SA participants; state 6 was engaged by 15 HC, 30 NS, 41 SI, and
28 SA participants. Among all of these states, state 3 had the
highest frequency and the longest average residence time.
Intergroup comparison revealed that MDD patients exhibited

lower connections involved in both the strongly connected (state
2 and state 5) and the weakly connected (state 4) states compared
with HCs (Fig. 3a–c). Specifically, MDD patients had inter-network
disconnectivity between the LN and the VAN and between the LN
and the AUD in state 2 (Fig. 3a); had reduced inter-network FC of
the SMN and the VIS, of the SMN and the DMN, and of the SMN
and the DAN in state 4 (Fig. 3b); and had attenuated inter-network
FC of the DMN and the VIS, of the DMN and the LN, and of the
SMN and the LN in state 5 (Fig. 3c). Moreover, we found that MDD
related weaker connectivity within the weakly-connectivity state
was mainly driven by SA, given that only SA demonstrated
significantly altered connections in state 4 compared with HCs,
with connections involving the SMN–VIS, SMN–DMN, and
SMN–DAN, and within the DAN (Fig. 3d) being altered. No
differences were found between other subgroups of MDD patients
and HCs.

Table 2. Independent components sorted into functional domains.

Functional domains and resting-state
network

IC number MIN peak coordinate

X Y Z

AUD STG 001 62.5 −5.5 0.5

Fusiform 011 −23.5 −99.5 −3.5

Cuneus 013 0.5 −90.5 2.5

VIS PCC 016 15.5 −57.5 6.5

Calcarine 028 2.5 −84.5 36.5

Occipital_Mid 029 26.5 −72.5 −14.5

SMN Postcentral 003 59.5 −3.5 24.5

Precentral_L 005 −32.5 −24.5 71.5

SMA 006 0.5 −44.5 71.5

Precentral_R 008 35.5 −21.5 71.5

DAN AG+MFG.L 026 −54.5 −59.5 41.5

Parietal Lobe 027 23.5 −69.5 60.5

Parietal_Sup 031 0.5 −65.5 62.5

PCUN 032 41.5 −77.5 35.5

VAN IFG 015 −50.5 15.5 −6.5

MiFG + lnsula + ACC 025 45.5 42.5 9.5

LN SFGmed.L 020 −3.5 45.5 −14.5

FPN R AG+ R SFG 009 44.5 −60.5 53.5

L IFG+ L IPL 019 −35.5 −69.5 53.5

DMN PCUN+ PCC 012 0.5 −74.5 38.5

MTG 018 53.5 −68.5 5.5

SFGmed.L+ PCC 023 −0.5 59.5 18.5

mPFC 024 −32.5 54.5 18.5

IC independent component, AUD auditory network, VIS visual network, SMN somatomotor network, DAN dorsal attention network, VAN ventral attention
network, LN Limbic network, FPN frontoparietal network, DMN default mode network, MNI Montreal Neurological Institute, L left, R right, STG superior temporal
gyrus, Fusiform fusiform gyrus, Cuneus cuneus cortex, PCC posterior cingulate cortex, Calcarine calcarine cortex, Occipital_Mid middle occipital gyrus, Postcentral
postcentral gyrus, Precentral precentral gyrus, SMA supplementary motor area, AG angular gyrus, MFG middle frontal gyrus, Parietal_Sup superior parietal gyrus,
PCUN precuneus, IFG inferior frontal gyrus, MiFGmiddle inferior frontal gyrus, lnsula insular cortex, ACC anterior cingulate cortex, SFGmed superior frontal gyrus
medial, SFG superior frontal gyrus, IPL inferior parietal lobule, MTG middle temporal gyrus, mPFC medial prefrontal cortex.
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Other dFNC indices
MDD patients had more DT than HCs in state 6 (weakly connected
state). Further comparison between MDD subgroups and HCs
revealed that the NS group showed more DT in state 6 (weakly
connected state), while the SA group had less DT in state 5
(strongly connected state) compared with HCs (Supplementary
Fig. 1). No significant difference in FT and NT was found between
MDD patients and HCs (Supplementary Fig. 2).
Among the MDD subgroups, the SA group had more DT in state

4 (weakly connected state) than the NS and SI groups and less DT
in state 5 (strongly connected state) than the SI group
(Supplementary Fig. 3). There was no significant difference in FT
and NT among the subgroups (Supplementary Fig. 2).

Classification of SVM
In the classification of MDD and HCs, the model constructed with
state 4 (weakly connected state) had the most powerful
discrimination efficiency (AUC= 0.82; ACC= 86.73; sensitivity =
0.78; specificity = 0.76) (Table 3 and Fig. 4). In this model, a total of
197 connections contributed to the classification (Fig. 5). In
stratifying MDD patients with different suicidal risk levels, models
constructed with state 3 (a weakly connected state) had the best
discrimination efficiency in classifying SA from NS (AUC= 0.88;
ACC= 80; sensitivity = 0.88; specificity = 0.74) (Table 3 and Fig. 4)
and in classifying SI from NS (AUC= 0.78; ACC= 75; sensitivity =
0.78; specificity = 0.74) (Table 3 and Fig. 4), with the VIS-, DMN-,
and DAN-related intra-network and inter-network serving as
important features (Fig. 5). We also found that state 6 (weakly
connected state) performed best in classifying the SA and SI
groups, with an AUC of 0.74, an ACC of 68.12, a sensitivity of 0.68,
and a specificity of 0.71 (Table 3 and Fig. 4), with the inter-network
FC of VAN–VIS serving as an important feature (Fig. 5). Models

constructed with SVM also performed well in distinguishing MDD
subgroups from HCs; details can be found in Supplementary Fig. 4,
Supplementary Fig. 5, and Supplementary Table 1.

Models constructed with other machine learning methods
Models constructed with deep learning and Bayesian algorithm
exhibited comparable classification efficiencies when compared
with the model constructed with the SVM, and also indicated that
the weakly connected state (state 4) performed best in
distinguishing MDD patients from HCs (AUC= 0.81 for deep
learning; AUC= 0.74 for Bayesian algorithm). In contrast, models
constructed with state 3 (weakly connected state) had the best
discrimination efficiencies in distinguishing SA from SI (AUC= 0.87
for deep learning; AUC= 0.82 for Bayesian algorithm); models
constructed with state 3 (deep learning) and state 5 (Bayesian
algorithm), which are both weakly connected states, performed
best in distinguishing SA from NS (AUC= 0.97 for deep learning;
AUC= 0.87 for Bayesian algorithm); and models constructed with
state 5 (a weakly connected state) performed best in distinguish-
ing SI from NS (AUC= 0.88 for deep learning; AUC= 0.76 for
Bayesian algorithm). The model constructed with random forest
presented relatively weak efficiency. Details can be found in the
Supplementary Materials (Supplementary Table 2 and Supple-
mentary Fig. 6).

DISCUSSION
To the best of our knowledge, this is the first study to investigate
suicidality in MDD patients using dFNC and machine learning
algorithms. Our results demonstrated that MDD patients exhibited
suicide risk-specific disruption in dFNC. Specifically, NS patients
presented prolonged DT in a weakly connected state (state 6),

Fig. 2 State plots and the number of members in each group with each state. Whole-brain cross-correlation matrices of states 1–6 are
shown. The number of participants who entered each state is indicated above the state plots. SA suicide attempter, SI suicide ideation, NS
neither SA nor SI, HCs healthy controls, AUD auditory network, VIS visual network, SMN somatomotor network, DAN dorsal attention network,
VAN ventral attention network, LN limbic network, FPN frontoparietal network, DMN default mode network.

M. Xu et al.

5

Translational Psychiatry          (2022) 12:383 



while SA patients presented shortened DT in a relatively strongly
connected state (state 5); connectivity matrix analysis revealed
that MDD patients had widespread hypoconnectivity in both the
strongly connected states and the weakly connected states, while
the dysfunctional connectivity within the weakly connected state
was mainly driven by the SA group. Furthermore, dFNC matrices,
especially for the weakly connected state, can be used to
distinguish MDD patients from healthy controls and even to
identify suicidality of MDD patients, with the VIS-related and DMN-
related inter-network connectivity serving as important features.
Thus, the dynamic FNC abnormalities observed in this study might
further improve our understanding of the neural substrates of
suicidality in MDD patients.
As expected, we found that MDD patients had widespread FC

attenuation in both the strongly and the weakly connected states,
involving the intra-network and inter-network connectivity of the
primary network (VIS, AUD, SMN) and the high-level cognitive
network (DMN). The widespread dysconnectivity in MDD patients
has been well-documented previously [56, 57]. Using static
functional connectivity analysis, researchers have consistently
reported that MDD has widespread attenuation of brain
connectivity, mainly involving the DMN [58, 59], the VIS [60, 61],
the SMN [62, 63], and the FPN [41]. With dFNC analysis, a recent
study has also shown that MDD patients have widespread FC
attenuation across both strongly and weakly connected states.
Moreover, researchers have demonstrated that disrupted node
properties within both strongly and weakly connected states
correlate with the depressive symptom severity and cognitive
performance of MDD patients [46, 56, 64]. The present findings are

consistent with these studies. Furthermore, we found that MDD-
related attenuated FC within the weakly connected state was
mainly driven by SA patients, given that we did not find any
significant differences in NS and SI patients compared with HCs.
The exact mechanism for this finding is still unclear. The weakly
connected state has been well-documented to be related to self-
focused thinking [56, 65]; therefore, more DT and weaker FC
within the weakly connected state in SA patients may represent
more severe self-focused thinking than in HC and other MDD
patients. Given that increased self-focused thinking is closely
linked to suicidal behavior [66–69], it is reasonable to assume that
weaker FC within the weakly connected state in SA patients may
increase their vulnerability to suicidal behavior [46, 70, 71]. Taken
together, our present findings supplement current knowledge by
showing that MDD-related attenuated FC within the weak
connectivity state is mainly driven by SA patients, which may
underlie their suicidal behavior.
Interestingly, the classification model constructed with SVM also

demonstrated that the weakly connected state performed better
in distinguishing MDD patients from HCs and also in stratifying
suicidal risk among MDD patients than the strongly connected
state. This is not surprising, given that the weakly connected state
has been closely linked to depression [56, 57, 72], and the
intergroup differences between SA and NS in the present study
also pointed to the weakly connected state. Our model,
constructed with the weakly connected state for distinguishing
MDD patients from HCs, is comparable with previous classification
models constructed with cerebral functional features [73, 74] and
is superior to models constructed with structural features [75, 76].

Fig. 3 Functional network connectivity differences between patients with major depressive disorder (MDD) and HCs in state 2, state 4,
and state 5 and between SAs and HCs in state 4. Significance was corrected using the false-discovery rate (FDR) over the total of 253 (23 ×
22/2) dFNC values in each state. The circles indicate significant (P < 0.05, FDR-corrected) t tests. A wider line means a large group difference.
Red lines represent increased connectivity, while blue lines represent decreased connectivity between two groups. AUD auditory network, VIS
visual network, SMN, somatomotor network, DAN dorsal attention network, VAN ventral attention network, LN limbic network, FPN
frontoparietal network, DMN default mode network, L left, R right, STG superior temporal gyrus, Fusiform fusiform gyrus, Cuneus, cuneus
cortex, PCC posterior cingulate cortex, Calcarine calcarine cortex, Occipital_Mid middle occipital gyrus, Postcentral postcentral gyrus;
Precentral precentral gyrus, SMA supplementary motor area, AG angular gyrus, MFG middle frontal gyrus, Parietal_Sup superior parietal gyrus,
PCUN precuneus, IFG inferior frontal gyrus, MiFG middle inferior frontal gyrus, lnsula insular cortex, ACC anterior cingulate cortex, SFGmed
superior frontal gyrus medial, SFG, superior frontal gyrus, IPL inferior parietal lobule, MTG middle temporal gyrus, mPFC medial prefrontal
cortex.
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Table 3. Classification performance for linear SVM in each state between MDD and HCs and among MDD subgroups.

Groups State Acc AUC Sensitivity, % Specificity, % Cut off Point Number acc-P

MDD-HCs State 1 80.36 0.12 0.18 0.64 0.14 1 0.994

State 2 81.33 0.72 0.64 0.76 0.49 9 0.023*

State 3 82.76 0.31 0.42 0.47 0.19 1 1

State 4 86.73 0.82 0.78 0.76 0.59 156 0.001*

State 5 80 0.74 0.61 0.83 0.51 15 0.02*

State 6 86.84 0.57 0.60 0.60 0.36 1 1

SA-NS State 1 64 0.71 0.50 0.93 0.47 23 0.17

State 2 64.71 0.58 0.71 0.65 0.46 1 0.172

State 3 80 0.88 0.88 0.74 0.64 13 0.012*

State 4 79.63 0.81 0.83 0.75 0.63 99 0.008*

State 5 75 0.80 0.86 0.67 0.57 6 0.035*

State 6 72.41 0.75 0.71 0.77 0.55 1 0.018

SI-NS State 1 62.86 0.58 0.60 0.73 0.44 6 0.189

State 2 63.41 0.66 0.71 0.59 0.42 3 0.19

State 3 75 0.78 0.78 0.74 0.58 2 0.023*

State 4 62.75 0.61 0.70 0.58 0.41 99 0.15

State 5 72.09 0.72 0.68 0.78 0.53 46 0.027*

State 6 50.70 0.07 0.17 0.2 0.04 1 0.56

SA-SI State 1 66.67 0.48 0.4 0.85 0.34 202 0.16

State 2 63.41 0.61 0.88 0.42 0.37 4 0.194

State 3 77.36 0.63 0.63 0.78 0.49 39 0.014*

State 4 56.14 0.57 0.57 0.63 0.36 3 0.386

State 5 69.23 0.57 0.43 0.8 0.34 10 0.124

State 6 68.12 0.74 0.68 0.71 0.48 1 0.046*

Number, predictive accuracy as a function of the number of connections used in the best classification process.
Acc accuracy, acc-P the results of permutation test, MDD major depressive disorder, SA suicide attempter, SI suicide ideation, NS neither SA nor SI, HCs healthy
controls.
*P < 0.05.

Fig. 4 ROC of the best classifiers between groups. AUC area under the curve, MDD major depressive disorder, SA suicide attempter, SI
suicide ideation, NS individuals had neither SA nor SI, HCs healthy controls.
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Moreover, our models also had powerful efficiency in stratifying
patients with different suicidal risk levels, which supplements
previous findings on using structural features to stratify MDD
patients with diverse suicide risk [33, 77]. Applying a machine
learning approach, Hong et al. found that structural MRI could
correctly identify SA patients and SI patients, with an accuracy of
78.59% [77]. Our models constructed with SVM and the weakly
connected state had similar classification power, indicating that
dFNC may be an additional potential feature for stratifying MDD
patients with diverse suicide risk levels.
Notably, the features that contributed to stratifying MDD

patients with diverse suicide risk levels mainly involved the VIS-
related and DMN-related inter-network connectivity within the
weakly connected state. The VIS network plays an important role
in facial expression recognition and visual information processing
[78]. Dysfunction in the visual regions is significantly associated
with MDD [79, 80], while a disproportional reduction in the
amount of negative information held in visual working memory is
correlated with high level of SI [81]. The DMN plays an important
role in psychological processes related to suicidal behavior, such
as controlling the vividness of negative mental imagery and
improving self-referential processing [82]. Therefore, the discoor-
dination of the VIS and the DMN with other large-scale networks
may lead to increased negative information held in visual working

memory and inability to control the vividness of negative mental
imagery, which is subsequently involved in suicidal behavior in
MDD patients. Our study provides a new perspective on the
neurophysiological abnormalities of suicidality in MDD.

Limitations
Limitations of our work include that the subjects in the present
study were recruited from a single site; thus, the classification
models constructed with the SVM and dFNC lack external
validation, although we used LOOCV to compensate for this as
in previous studies [83, 84]. Future studies should collect data
from multiple sites and centers to validate these preliminary
results. Another drawback is that we used single-mode imaging;
features derived from a multimodal imaging approach (i.e.,
anatomical MRI, diffusion MRI, arterial spin labeling MRI) would
perform better in stratifying MDD patients with different suicide
risk levels than single-mode imaging [84, 85]. Therefore,
multimodal imaging should be considered in the future to
investigate diagnostic efficiency. Although structured interviews
are commonly used and reliable evaluation methods to assess
patients’ suicidal risk [86, 87], other suicidal risk assessment
scales, such as the Nurses’ Global Assessment of Suicide Risk
(NGASR), should be jointly used to assess the suicidality of MDD
patients in the future [88, 89].

Fig. 5 Consensus functional connections in distinguishing patients with major depressive disorder (MDD) from HCs and in distinguishing
suicidality among MDD patients. The brain region of each cluster is represented by a square on the circumference of the big circle. The lines
connecting two squares represent the connections between the corresponding two brain regions. The thickness of the line represents the
support vector classification weight of the connection. The thicker the line, the larger the weight. Red lines represent positive weight, while
blue lines represent negative weight. AUD auditory network, VIS visual network, SMN somatomotor network, DAN dorsal attention network,
VAN ventral attention network, LN limbic network, FPN frontoparietal network, DMN default mode network, L left, R right, STG superior
temporal gyrus, Fusiform fusiform gyrus, Cuneus cuneus cortex, PCC posterior cingulate cortex, Calcarine calcarine cortex Occipital_Mid
middle occipital gyrus, Postcentral postcentral gyrus, Precentral precentral gyrus, SMA supplementary motor area, AG angular gyrus, MFG
middle frontal gyrus, Parietal_Sup superior parietal gyrus, PCUN precuneus, IFG inferior frontal gyrus, MiFG middle inferior frontal gyrus, lnsula
insular cortex, ACC anterior cingulate cortex, SFGmed superior frontal gyrus medial, SFG superior frontal gyrus, IPL inferior parietal lobule,
MTG middle temporal gyrus, mPFC medial prefrontal cortex.
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CONCLUSION
In summary, MDD patients exhibit suicide risk–specific disruption
in dFNC, which advances our understanding of the neuromechan-
isms of suicidality in MDD patients. We also established models to
distinguish MDD patients from HCs and even to screen MDD
patients with different suicidal risk levels. Thus, altered dFNC may
emerge as a promising and quantifiable candidate marker of
suicidal risk levels in patients with depression.
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