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Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related
conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior
work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors
contribute to older-appearing brains. Adults aged 18–57 years from the Netherlands Study of Depression and Anxiety underwent
structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to
obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients
with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After
correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen’s d= 0.25, 95% CI −0.10-0.60) and
anxiety patients (+2.91 years, Cohen’s d= 0.27, 95% CI −0.08-0.61), compared with controls. There were no significant associations
with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic
depression symptoms (b= 4.21 years per unit increase on average sum score) and antidepressant use (−2.53 years) to brain PAD.
Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology.
We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that
requires follow-up in future research.
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INTRODUCTION
Depression and anxiety are common and often comorbid mental
health disorders, and their effects can broadly impact a person’s
life. There is a plethora of evidence showing poorer quality of life,
functional disability, and increased mortality burden in these
patients [1, 2]. Depression and anxiety disorders further represent
a risk factor for aging-related conditions [3–5], as studies show
consistent evidence for poorer somatic and chronic disease
profiles in these patient groups [6], often with a premature onset.
Importantly, the incidence and burden of these disorders are a
strain on society, which has an important challenge to face in the
coming years, as the number of people aged >65 is expected to
reach 1.6 billion in 2050 [7]. Advancing mental health and well-
being across the lifespan and into old age should, therefore, be a
major priority on the research agenda.
Multivariate pattern-recognition techniques, and especially

machine-learning methods, have promoted a steep increase in
the development of ways to measure and quantify aging [8].
Central to this field is that multivariate (biological) patterns are
utilized and integrated into a single score: the biological age.
Biological age can be derived from, for instance, omics data (e.g.,

epigenetic clocks), but also clinical biomarkers obtained from, for
example, blood chemistries [9]. In the current study, we focus on
biological age based on a validated method of MRI-derived brain
structure [10, 11], with brain-predicted age difference (brain PAD,
predicted brain age minus chronological age) [12] as the main
outcome. This metric is relative to one’s chronological age, such
that positive values indicate an older-appearing brain, and
negative values resemble a younger-appearing brain than
normally expected at that age.
A handful of studies have investigated brain PAD in depression,

with studies showing +4.0 years [13], as well as no significantly
increased brain age [14, 15]. Recent findings from the Enhancing
NeuroImaging Genetics through Meta-Analysis (ENIGMA) consor-
tium using a more than ten-fold larger pooled sample of MDD
patients than the largest previous study suggest a 1.1-year higher
brain-PAD in MDD patients as compared with controls [16].
However, this difference did not seem to be driven by specific
clinical characteristics (recurrent status, remission status, antide-
pressant medication use, age of onset, or symptom severity). An
important aspect that remains relatively unknown is which
underlying mechanisms cause the brain-age metric to advance
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in depression, and, despite the increase of brain-age studies in the
past decade, in general [11].
Large pooled datasets from global consortia offer the statistical

power needed to detect small-effect sizes usually observed in
MDD, but a limitation of consortium data is that its collection is
commonly not harmonized across all sites and cohorts. Here, we
underline the complementary value of a more homogeneous
and clinically well-characterized sample from the Netherlands
Study of Depression and Anxiety (NESDA), to gain more insight
into the observed brain PAD difference between MDD patients
and controls. We extend prior work by exploring which specific
symptom clusters (mood/cognition, immunometabolic, and
somatic) of MDD are associated with brain PAD. To the best of
our knowledge, there are currently no brain-age studies in anxiety
disorders, although higher brain PAD has been observed in post-
traumatic stress disorder [17]. Given the frequent co-occurrence
and correlated symptoms [18] of depression and anxiety (i.e.,
family of internalizing disorders) [19], we also extend prior work by
including patients with MDD and/or anxiety disorders in the
current study.
Evidence is starting to emerge that brain PAD is associated

with reduced mental and somatic health, such as with stroke
history, diabetes diagnosis, smoking, alcohol consumption, and
some cognitive measures [20], but also intrinsic measures such as
genetic variants [21, 22]. This study seeks to further address the
research gaps, by examining whether three commonly dysregu-
lated biological stress systems in depression and anxiety
disorders (inflammation, hypothalamic pituitary adrenal [HPA]
axis, autonomic nervous system [ANS]) were predictive of brain
aging. Disruptions and dysregulations in these stress systems
were hypothesized to result in advanced brain aging across
diagnostic groups. We further associated various clinical, lifestyle,
and somatic health indicators with the brain-PAD metric for our
primary hypothesis to identify unique contributing factors to
brain aging.

MATERIALS AND METHODS
Study sample
A subsample of subjects of the NESDA were included for the MRI
substudy (total N= 301). Twelve participants were excluded due to poor
image quality, two because of claustrophobia, one control subject due to
high depression rating (Montgomery Asberg Depression Rating Scale
score >8), and one due to the large time difference between the
psychiatric and biological and MRI measurements (total excluded, N= 16).
For the current study, we therefore included N= 65 controls (65% female,
aged 21–55) and N= 220 patients with a current depressive and/or
anxiety disorder (69% female, aged 18–57). The NESDA sample consisted
of more than 94% persons from North European origin. The current study
was approved by the ethical review boards of the three participating
centers (Amsterdam, Groningen, and Leiden) and informed consent of all
participants was obtained.

Image processing and analysis
Magnetic resonance imaging (MRI) data were obtained using three
independent 3 T Philips MRI scanners (Philips Healthcare, Best, The
Netherlands) located at different participating centers. Scanners were
equipped with a SENSE 8-channel (Leiden University Medical Center and
University Medical Center Groningen) and a SENSE 6-channel (Academic
Medical Center) receiver head coil (Philips Healthcare). Standardized image
segmentation and feature-extraction protocols, using the FreeSurfer
processing software, developed by the ENIGMA consortium were used
(http://enigma.ini.usc.edu/protocols/imaging-protocols/) to extract 153
features from regions of interest, including the volumes of 14 subcortical
gray matter regions (bilateral nucleus accumbens, amygdala, caudate,
hippocampus, pallidum, putamen, and thalamus) and the two lateral
ventricles, cortical thickness and surface area from 68 cortical regions, and
total intracranial volume (ICV). Visual inspection of the segmentations
showed that the pallidum was underestimated in 27 individuals, and poor
segmentations of the thalamus (N= 1), caudate (N= 2), putamen (N= 9),

and accumbens (N= 1) were observed. These individual features were
subsequently median-imputed. In addition, segmentations were statisti-
cally examined for outliers and the FreeSurfer feature was excluded if it
was >2.698 standard deviations away from the global mean. However, if a
sample was a statistical outlier, but visual inspection showed that it was
properly segmented, it was kept in the dataset (0.4% of features).

FreeSurfer brain age prediction model
We used a publicly available brain age model (https://www.photon-ai.com/
enigma_brainage/) that was trained to predict age from 77 ((left+right
hemisphere features)/2 and ICV) FreeSurfer features (for more detail, see
[16]). Briefly, the ridge regression coefficients learned from two separate
models trained on 952 male and 1236 female control subjects (aged 18–75
years), respectively, were directly applied to the features of the current
samples (N= 285), also separately in male and female groups. Of note,
NESDA was not part of the development of the ENIGMA model, and the
current dataset is thus completely independent. The model’s general-
ization performance was assessed by calculating several metrics: (a) the
correlation between predicted brain age and chronological age, (b) the
amount of chronological age variance explained by the model (R2),
(c) the mean absolute error (MAE) between predicted brain age and
chronological age, and (d) root mean squared error (RMSE).

Diagnostic ascertainment
Participants in the current study included control subjects (no lifetime
history of psychiatric disorders) and patients with a current depression
and/or current anxiety disorder (i.e., generalized anxiety disorder, panic
disorder, and social anxiety disorder) within a 6-month recency. The
Composite International Diagnostic Interview (CIDI version 2.1) was used as
a diagnostic instrument to ascertainment [23].

Clinical assessment
We examined several clinical variables as predictors, including (a)
depressive symptoms as measured by the summary score of the Inventory
for Depressive Symptoms (IDS) at the time of scanning [24], (b) anxiety
symptoms as measured by the summary score of the Beck Anxiety
Inventory (BAI) at the time of scanning [25], (c) cumulative childhood
trauma index [26] (before the age of 16) as measured by a childhood
trauma interview, and (d) recent negative life events in the past year as
measured with the Brugha questionnaire [27]. Depressive symptoms from
the IDS were also categorized into three separate clusters (mood/
cognition, somatic, and immunometabolic symptoms). The mood/cogni-
tion and somatic symptom clusters were based on findings from a
principal component analysis (PCA) on a larger sample of ~3000
individuals [28], but a separate factor indicating an immuno-metabolic
symptom profile was added [29]. Briefly, the mood/cognition cluster
consisted of 16 items (e.g., feeling sad, irritable, anxious or tense,
concentration/decision-making problems, and general interest/interest in
sex), the immunometabolic cluster consisted of five atypical/energy-
related items (i.e., sleeping too much, increased appetite, increased weight,
low-energy level/fatigue, and leaden paralysis), and the somatic cluster
consisted of 13 items concerning bodily problems (e.g., sleeping problems,
aches and pains, and constipation/diarrhea). Within the patients only, we
also investigated associations with: (a) duration of symptoms, (b) age of
onset of illness, and (c) antidepressant medication use selective serotonin-
reuptake inhibitors (ATC code N06AB) and other antidepressants (ATC
codes N06AF, N06AG, N06AX). See Supplement for more details on these
measures and Supplementary Table S1 for a complete overview of the
depression-symptom profiles.

Somatic health assessment
Body mass index (BMI) was assessed during an interview by dividing a
person’s weight (in kilogram [kg]) by the square of their height (in meter
[m]). The number of self-reported current somatic diseases (heart disease,
epilepsy, diabetes, osteoarthritis, cancer, stroke, intestinal disorders, ulcers,
and lung-, liver-, and thyroid disease) for which participants received
medical treatment was counted.

Lifestyle assessment
Smoking status was expressed by calculating the number of cigarettes
smoked per day. Alcohol consumption was expressed as the mean
number of drinks consumed per week, measured by the AUDIT [30].
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Physical activity was assessed using the International Physical Activity
Questionnaire (IPAQ) and expressed in total metabolic equivalent (MET)
minutes per week [31].

Biological stress assessment
We included predictors from three major biological stress systems: (a) the
immune-inflammatory system (C-reactive protein [CRP], interleukin-6 (IL6),
and tumor necrosis factor-α (TNF-ɑ)), (b) the hypothalamic pituitary adrenal
(HPA) axis (cortisol-awakening response [CAR] and evening cortisol), and
(c) the autonomic nervous system (ANS: heart rate, respiratory sinus
arrhythmia [RSA], and pre-ejection period [PEP]). Details can be found in
Supplement.

Statistical analysis
All statistical analyses were performed using R version 3.5.3 (R Core Team,
2019). To confirm and extend the findings from earlier work [16], we first
used linear regressions to examine brain PAD differences between the
control and patient groups and explored brain-PAD associations with
several clinical characteristics within the patients only (i.e., duration of
symptoms, age of onset of illness, and AD use). Second, we used separate
linear regression models with brain PAD as measured outcome and
variables of interest as a predictor to explore and select contributors in all
participants, irrespective of the diagnostic group. Finally, to test our
primary aim, stepwise regression with forward selection was used to
successively add significant contributors (uncorrected for multiple
comparisons) to an intercept-only model, starting with the variable that
explained most variance and stopping if the model fit did not improve
anymore. The best subset of variables leading to the best model fit (i.e.,
lowest Akaike’s Information Criterion [AIC]) was selected to examine
unique contributions to brain PAD. To test the robustness of the findings,
we also repeated the stepwise regression using a backward elimination
procedure, starting with all predictors in the model, and iteratively
removing the least contributing predictors, and stopping when the model
only includes statistically significant predictors. Given the richness of the
NESDA dataset, we additionally computed exploratory intercorrelations
between the brain-PAD metric and other available biological age
indicators (i.e., telomere length, epigenetic, transcriptomic, proteomic,
and metabolomic age) in an overlapping sample of N= 98, while
correcting for chronological age. Inflammatory predictors were loge-
transformed due to highly skewed distributions and subsequently
corrected for fasting status and anti-inflammatory medication use. ANS
predictors were corrected for fasting status, heart medication use, and
mean arterial blood pressure. HPA predictors were corrected for fasting
status, awakening time, variable indicating whether it was a working day
or not, season, and smoking. All biological stress markers >3*sd away from
the mean were winsorized. Brain-PAD (predicted brain age minus age)
was used as the outcome, and age, sex, education level (years), and two
dummy variables for scan location were included as predictor variables in
all models. Analyses were tested two-sided and findings were considered
statistically significant at p < 0.05. All b-regression coefficients from all
models may be interpreted as added brain aging in years in response to
each unit increase of the predictor.

RESULTS
Sample characteristics
Demographics and assessed phenotypes of the current study
sample can be found in Table 1. Briefly, the patient group
consisted of patients with a current MDD diagnosis but no anxiety
(28.2%), patients with a current anxiety disorder but no depression
(30.5%), and patients with a current comorbid depression and
anxiety disorder (41.4%). The patient group (mean 37.37 ± SD
10.20 years) was younger than the control group (mean 40.81 ± SD
9.78 years) and had fewer years of education (mean 14.28 ± SD
2.86 years in controls vs. mean 12.39 ± SD 3.19 in patients). Control
and patient groups were similar in terms of male/female ratios,
but not distributed equally between scan locations (Amsterdam,
Leiden, and Groningen) (Χ(2)=6.26, p= 0.044).

Brain age prediction performance
Site-specific and other heterogeneous sources of variation
challenge the external generalization of machine learning models

in general, and brain age prediction models in specific. Using the
ENIGMA brain age model (www.photon-ai.com/enigma_brainage),
we obtained a correlation of r= 0.73 in the control subjects and
r= 0.72 in the patient group between predicted and chronological
age, but in both groups, brain-age predictions were overestimated
(mean brain PAD [SD], 8.18 [7.27] years in controls and 10.86 [7.73]
years in patients). The current sample showed significantly lower
cortical thickness values compared with healthy control samples
from the same age range obtained from other scanners,
specifically those that were used to train the brain-age prediction
model [16]. Given that the ENIGMA brain age model mostly relies
on thickness features to make predictions, and since thickness
decreases with age, the brain ages of the NESDA participants were
consistently overestimated by the model. To correct for the offset,
we calculated the mean brain PAD in the control group and
subtracted this from all individual brain-PAD estimates. This
correction resulted in an R2 of 0.45 and MAE of 5.97 (SD 4.09) years
in controls, and R2 of 0.36 and MAE of 6.73 (4.64) years in patients.
Important to note, however, is that we only subtracted a constant
from each individual brain-age prediction in both controls and
patients. While such a linear operation results in different group
mean values, it does not change the relative values of brain age
and brain PAD between individuals, and therefore has no effect on
subsequent statistics, including group comparisons and associa-
tions. Figure 1A shows the unaffected correlation between
predicted brain age (x axis) and chronological age (y axis) in
control subjects (r= 0.73, p < 0.0001) and in patients (r= 0.72, p <
0.0001). There also was also a well-known and commonly
described age bias (i.e., correlation between brain-PAD and age)
[17, 32, 33] in controls (r=−0.32, p= 0.01) and patients (r=−0.37,
p < 0.0001) in the current sample (Fig. 1B), which was statistically
dealt with by including age as a predictor variable in further
analyses (Fig. 1C) [32]. While other bias-correction procedures exist
that explicitly correct the predictions or brain-PAD metric, adding
age as a covariate in subsequent analyses is equally effective [34].
In contrast to the ENIGMA analyses, the goodness of fit did not
further improve by adding a quadratic age term (F= 0.28, p=
0.60), and, therefore, only a linear-age term was included.

Advanced brain aging in depression and anxiety disorders
Using diagnostic status as a dichotomous between-group
predictor we found that patients exhibited +1.75 years higher
brain PAD than controls, but this difference did not reach
statistical significance (Cohen’s d= 0.24). Within the patient
group only, we found no significant associations with the age of
onset of illness or duration of symptoms of either MDD or
anxiety. A linear regression with brain PAD as the outcome and
antidepressant use as predictor, showed that brain-PAD was
significantly lower in antidepressants (AD) using patients
compared with AD-free patients (b=−2.58 years, p= 0.01), but
not control subjects (b= 0.59 years, p= 0.65) (Fig. 2A), while
controlling for all covariates. Given the significant difference in
brain-PAD between AD-free and AD-using patients, we included
AD status as an additional covariate when comparing controls
with the patient group, resulting in significantly higher brain-PAD
in patients (+2.63 years [SE 1.10 years], Cohen’s d= 0.34, 95% CI
0.06–0.62, pFDR= 0.048). We also added AD status as an
additional covariate in a model to compare controls against
specific MDD, anxiety, or comorbid patient groups (the propor-
tion of subjects using AD in specific diagnostic groups was
marginally different, Χ(2)=5.91, p= 0.052). This revealed signifi-
cantly higher brain PAD in MDD (+2.78 years, Cohen’s d= 0.25,
95% CI −0.10–0.60, pFDR= 0.048) and anxiety patients (+2.91
years, Cohen’s d= 0.27, 95% CI −0.08–0.61, pFDR= 0.048), and a
similar effect in the comorbid MDD and anxiety group (+2.23
years, Cohen’s d= 0.21, 95% CI 0.10–0.53) although only
marginally significant (pFDR=0.08) (Table 2). There were no post
hoc differences in brain PAD corrected for AD use between
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Table 1. Participant characteristics of controls and patients.

Characteristic Na Controls, N= 65b Patients, N= 220b p-valuec

Demographics

Age (years) 285 40.81 ± 9.78 (21.26–56.67) 37.37 ± 10.20 (17.76–57.17) 0.02

Female Sex 285 42 (65%) 152 (69%) 0.60

Education Level (years) 285 14.28 ± 2.86 (5.00–18.00) 12.39 ± 3.19 (5.00–18.00) <0.001

Scan location 285 0.04

1 26 (40%) 66 (30%)

2 27 (42%) 78 (35%)

3 12 (18%) 76 (35%)

Clinical characteristics

Major depressive disorder 62 (28%)

Anxiety disorder 67 (30%)

Comorbid depression and anxiety 91 (41%)

Total depression severity score 280 4 ± 4 (0–21) 23 ± 12 (1–57) <0.001

Total anxiety severity score 278 2 ± 3 (0–11) 14 ± 10 (0–50) <0.001

Mood/cognition symptom cluster 285 1.09 ± 0.13 (1.00–1.47) 1.86 ± 0.50 (1.00–3.27) <0.001

Somatic depression symptom cluster 285 1.20 ± 0.21 (0.90–2.20) 1.64 ± 0.41 (0.80–2.80) <0.001

Immunometabolic symptom cluster 285 1.11 ± 0.21 (0.80–1.80) 1.60 ± 0.48 (0.60–3.60) <0.001

Childhood Trauma Index 285 1 ± 1 (0–8) 2 ± 2 (0–8) <0.001

Recent negative life events 285 0.57 ± 0.83 (0.00–3.00) 0.89 ± 1.09 (0.00–3.00) 0.05

Within patients

Antidepressant use 220 77 (35%)

Duration of depressive symptoms (proportion of time in the past
4 years)

190 0.34 ± 0.28 (0.00–1.00)

Duration of anxiety symptoms (proportion of time in the past
4 years)

192 0.42 ± 0.35 (0.00–1.00)

Age of onset of depression (years) 191 23.75 ± 10.44 (4.00–54.00)

Age of onset of anxiety (years) 170 18.15 ± 10.93 (4.00–52.00)

Somatic health

Body Mass Index (kg/m2) 285 24.36 ± 3.73 (19.03–37.42) 25.14 ± 4.72 (18.04–42.21) 0.35

Number of somatic diseases 285 0 ± 1 (0–3) 0 ± 1 (0–3) 0.66

Lifestyle

Alcohol intake (mean number of drinks per week) 285 6.2 ± 6.1 (0.0–25.0) 4.3 ± 6.5 (0.0–47.5) 0.01

Smoking behavior (cigarettes/day) 161 9.26 ± 7.61 (0.00–29.00) 12.56 ± 10.73 (0.00–70.00) 0.09

Physical activity (1,000 MET minutes per week) 271 3.8 ± 3.3 (0.3–16.5) 3.6 ± 3.5 (0.0–17.1) 0.19

Inflammation

C-Reactive Protein (mg/l) 280 −0.03 ± 0.52 (−1.00–1.08) 0.11 ± 0.59 (−1.00–1.35) 0.17

Tumor Necrosis Factor-α (pg/ml) 279 −0.16 ± 0.26 (−1.00–0.63) −0.12 ± 0.26 (−1.00–0.63) 0.39

Interleukin-6 (pg/ml) 280 −0.15 ± 0.31 (−1.12–0.57) −0.14 ± 0.48 (−2.29–1.74) 0.89

Autonomic Nervous System

Resting Heart Rate (bpm) 276 69 ± 8 (51–86) 68 ± 10 (44–96) 0.62

Respiratory Sinus Arrhythmia (ms) 276 51 ± 25 (14–130) 49 ± 26 (7–130) 0.59

Pre-injection Period (ms) 276 119 ± 17 (81–147) 119 ± 16 (75–168) 0.66

HPA-axis

Cortisol Awakening Response Area under the curve with respect to
the ground (nmol/l/hr)

197 0.57 ± 4.63 (−13.06–11.13) 2.44 ± 5.74 (−14.92–19.00) 0.10

Cortisol Awakening Response Area under the curve with respect to
the increase (nmol/l/hr)

197 16.89 ± 4.88 (8.49–32.13) 18.51 ± 6.75 (5.36–37.97) 0.23

Evening cortisol (nmol/l) 207 5.05 ± 2.44 (2.12–13.33) 5.04 ± 2.43 (1.09–12.96) 0.90

Bold p-values indicate significance at the p < 0.05 level
aN indicates non-missing observations
bStatistics presented: mean ± SD (minimum–maximum); n (%)
cStatistical tests performed: Wilcoxon rank-sum test; chi-square test of independence.
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specific patient groups (MDD vs. anxiety vs. comorbid patients;
P’s >0.46, Cohen’s d’s <0.07).
To gain more insight into the differences in brain-PAD between

AD-free and AD-using patients, we post hoc calculated a derived
daily dose by dividing the AD mean daily dose by the daily dose
recommended by the World Health Organization (also see [35]).
Brain-PAD was not significantly negatively associated with a

derived daily dose of antidepressants in n= 74 patients (b=
−0.91 year, p= 0.50) (Supplementary Figure S1). Of note, we
excluded three subjects from this analysis as these AD-using
patients were using Venlafaxine at doses higher than 150mg/day,
acting as a dual serotonin and norepinephrine reuptake inhibitor
rather than acting as a selective serotonin reuptake inhibitor (SSRI)
only [36]. Based on the above findings, both diagnostic and AD

Fig. 1 Brain-age prediction. A Correlation between predicted brain age and chronological age in controls (r= 0.73, R2= 0.45, p < 0.0001) and
patients (r= 0.72, R2= 0.36, p < 0.0001). Of note, predicted brain age reflects estimates corrected for the offset (brain agecorrected= brain age
− brain PAD−mean brain-PADcontrols). B There was a residual effect of age on the brain-PAD outcome in controls (r=−0.32, p= 0.01) and
patients (r=−0.37, p < 0.0001), C which was statistically corrected for by adding age as a covariate in all models.
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status were included in the multivariable model to test unique
brain-PAD contributions.

Selection of significant associations with clinical variables in
all participants
Using a dimensional approach based on symptoms rather than
diagnosis, we found that higher brain PAD was associated with
higher total depression (b= 0.07 years per unit change on the
Inventory of Depressive Symptoms, p= 0.03) and anxiety
severity scores (b= 0.11 years per unit change on the Beck’s
Anxiety Inventory, p= 0.01) across all participants (Fig. 2B, C). No
significant associations were found for the mood/cognition (b=
0.89 years per unit increase on the average sum score, p= 0.27,
Fig. 2D) or immunometabolic symptom clusters of depression
(b= 0.45 years per unit increase on the average sum score, p=
0.62, Fig. 2E), but higher brain-PAD was strongly associated with
more somatic symptoms of depression (b= 4.03 years per unit
increase on the average sum score, p < 0.0001, Fig. 2F). There
were no significant associations between brain-PAD and child-
hood trauma exposure (b= 0.23 years per unit change on the
childhood trauma index, p= 0.26) or recent negative life events
(b= 0.35 year per negative life event, p= 0.39).

Selection of significant associations with somatic health in all
participants
Higher brain PAD was associated with both higher BMI (b= 0.23
years per kg/m2, p= 0.02), as well as the number of somatic
diseases under medical treatment (b= 1.45 years per somatic
disease, p= 0.03). However, the latter association became
nonsignificant if those with >2 chronic diseases (n= 4) were
truncated to two chronic diseases (b= 1.29 years per somatic
disease, p= 0.08).

No associations with lifestyle or biological stress variables
There were no significant associations with any of the lifestyle
variables (smoking, alcohol, and physical activity) or biological
stress variables (inflammatory markers, ANS, and HPA axis),
although the association with cortisol awakening response was
trending toward significance (b=−0.23 years per nmol/l, p=
0.06). An overview of the separate linear regressions can be found
in Table 3. Only antidepressant use, duration of symptoms or
illness onset of depression and anxiety were assessed within
patients only. Of note, our primary aim was to select predictors to
subsequently include in one multivariable model. To avoid
missing potential unique contributors, we also included significant
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Fig. 2 Brain-PAD differences and clinical characteristics. A AD-free patients showed significantly higher brain PAD compared with AD-using
patients (+2.58 years [SE 1.02 years], Cohen’s d= 0.36, 95% CI 0.09–0.64) and controls (+2.63 years [SE 1.10 years], Cohen’s d= 0.31, 95% CI
0.01–0.60). B Advanced brain aging was associated with overall higher total depressive symptoms (b= 0.07 years per unit increase on the
Inventory of Depressive Symptoms, p= 0.03), C total anxiety symptoms (b= 0.11 years per unit increase on the Beck’s Anxiety Inventory, p=
0.01), but not specifically with D the mood/cognition (b= 0.89 years per unit increase on average sum score, p= 0.27) or E immunometabolic
(b= 0.45 years per unit increase on the average sum score, p= 0.62) symptom cluster. The association in (B) seemed to be driven mostly by F a
specific cluster of somatic symptoms (b= 4.03 years per unit increase on the average sum score, p < 0.0001). Brain-PAD estimates (in years)
were residualized for age, sex, education level (years) and two dummy variables for scan location.
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predictors uncorrected for multiple comparisons. However, if
considered separately, only somatic depressive symptoms would
survive multiple-comparison correction, pFDR= 0.003, with other
predictors becoming nonsignificant.

Multivariable model
The primary aim was to characterize the unique contributions of
the selected significant predictors on the brain-PAD outcome. To
this aim, we included diagnostic status (control vs. patient), MDD
and anxiety-symptom scores, BMI, AD use, and the number of
somatic diseases under treatment as predictors in a stepwise
regression model with forward selection. Thus, predictors were
successively added to an intercept-only model (Akaike’s Informa-
tion Criterion [AIC]= 1115.81), only adding regression coefficients
if they improved model fit (i.e., lower AIC). Using this method, we
found that the best subset of variables to explain brain-PAD
consisted of somatic depression symptoms and AD use (AIC=
1098.79). The results remained unchanged using a backwards
elimination procedure. In sum, unique contributions to brain-PAD
were observed for the somatic depression symptom cluster (b=
4.21 years per unit increase on average sum score, 95% CI
2.25–6.16, p < 0.0001) and AD use (b=−2.53 years, 95% CI
−4.36–0.70, p= 0.007).

Correlations with other biological clocks
With respect to the exploratory analyses with other biological
aging indicators, we found low, nonsignificant (P’s > 0.13),
correlations between brain-PAD, and three omics-based clocks
(epigenetic, transcriptomic, and metabolomic) and telomere
length (with Pearson r in the range of −0.03–0.15, Supplementary
Figure S2). Brain-PAD was negatively associated with the
proteomic clock (r=−0.24, p= 0.02), corrected for age.

DISCUSSION
The current study used a validated brain-age prediction model to
show unique contributions of somatic depression symptom
severity and antidepressant (AD) use to increased brain age
(positive brain-PAD). AD users exhibited similar average brain PAD
as control subjects, whereas those that were AD-free showed
higher brain PAD. Correcting for AD use, we also showed that not
only MDD patients, but also patients with anxiety disorder
exhibited older-appearing brains compared with controls. Taken
together, these findings may indicate the broad impact and
heterogeneity of depression and anxiety disorders, as we
illustrated that higher brain PAD was more selectively observed
among persons with high somatic depression symptom burden.
Surprisingly, there were no significant associations with lifestyle or
biological stress systems.
To the best of our knowledge, we are the first to report

advanced brain aging in anxiety disorders (i.e., generalized
anxiety disorder, panic disorder, and social anxiety disorder) with
an estimated +2.91 years on average, compared with controls,
when correcting for AD use. This is consistent with the literature
describing comparable effect sizes with respect to structural
brain alterations in social anxiety disorder (Cohen’s d= 0.20) [37],

and other anxiety-related disorders such as post-traumatic stress
disorder (PTSD) (Cohen’s d=−0.17) [38], with PTSD patients also
showing advanced brain PAD without correction for AD [17]. This
observation may potentially offer an explanation as to why clinical
anxiety is associated with an increased risk of dementia, even
independent from depression [39], although further evidence is
needed. The lack of any significant post hoc differences between
specific diagnostic groups can likely be explained due to, among
others, the high genetic correlation between the disorders [40],
shared environmental risks, and overlapping personality traits of
patients with depression and anxiety disorders [41]. Together
with the transdiagnostic associations, this indicates that the brain-
PAD metric is not sensitive to either depression or anxiety alone,
but rather a general indicator that is impacted by mental and
somatic health.
The most clinically relevant finding was that AD-using patients

showed a similar brain age to controls, but not to AD-free patients,
irrespective of specific depressive or anxiety disorder. This finding
was previously overlooked in consortium data, presumably due to
a lack of more detailed information on lifetime use, dosage, and
duration of use of AD [16], highlighting the complementary values
of well-characterized local samples and large-scale consortia. The
AD finding was particularly interesting as the AD-using patients
constituted a more severely depressed and anxious group as
indicated by higher symptom severities compared with AD-free
patients, potentially suggesting compensatory or normalizing
mechanisms of AD, at least on the brain-PAD metric. This accords
with earlier work reporting brain-PAD associations with therapeu-
tic drugs, suggesting neuroprotective effects of lithium treatment
in bipolar disorder patients (vs. no lithium) [42] and ibuprofen (vs.
placebo) in healthy participants in an exploratory randomized
controlled trial [43]. Yet, it remains unclear if and to what extent
the brain-age-protective mechanisms overlap with, for example,
increased neural progenitor cells [44], brain derived neurotrophic
factor (BDNF) [45], or other serotonergic neuroplasticity processes
implicated in AD use [46], or, alternatively, whether neurophar-
macology affects the MRI signal [47]. Brain PAD was not positively
associated with the duration of symptoms (either MDD or anxiety),
suggesting that the AD effect was not driven by the duration of
the disease and did not seem to be progressive. Taken together,
these findings may suggest an age-related neuroprotective effect
of AD, but interpretative caution is warranted as the current study
was cross-sectional in nature and the dose–response association
with AD not statistically significant. We also did not find
associations with physical activity, while a previous study found
an association between brain PAD and the daily number of flights
of stairs climbed [48]. Future clinical interventions are needed to
examine the short- and long-term effects of antidepressants and
physical activity on biological aging, and potential differential and
interaction effects of depression and anxiety disorders, an
objective currently pursued by the MOod Treatment with
Antidepressants or Running (MOTAR) study [49].
There were no associations with the cumulative childhood

trauma index or the number of recent negative life events, different
from the impact that adverse childhood experience commonly has
on other biological age indicators such as telomere length [50], or

Table 2. Higher brain-PAD in depression and anxiety with correction for antidepressant use.

Ref Predictor b (years) SE t value P PFDR Cohen’s d SE 95% CI

Controls Any patient 2.63 1.10 2.39 0.02 0.048 0.34 0.14 0.06–0.62

MDD 2.78 1.32 2.11 0.04 0.048 0.25 0.18 −0.09–0.6

Anxiety 2.91 1.31 2.22 0.03 0.048 0.27 0.17 −0.08–0.61

Comorbid MDD and anxiety 2.23 1.28 1.74 0.08 0.08 0.21 0.16 −0.11–0.53

Age, sex, education level (years) and two dummy variables for scan location were included in all models. Antidepressant status was additionally included as
covariate. Bold p-values indicate significance at the p < 0.05 level.
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epigenetic aging [51], albeit with small effects. Future studies with
larger samples may potentially be more sensitive in picking up
associations between brain PAD and childhood trauma. However,
taken together, the current study found that advanced brain aging
was more associated with current disease states, likely related to
current symptom severity, rather than the result of cumulative
exposure (i.e., no association with childhood trauma history, age of
onset of illness, and duration of symptoms) or traits.
Furthermore, Cole and colleagues (2020) found significant

associations between brain-PAD and several biomedical (e.g.,
blood pressure, diabetes, and stroke) and lifestyle variables (e.g.,
smoking status, alcohol-intake frequency), but not BMI, in the UK
Biobank [20], albeit with a different, multi-modal brain-age
prediction model but in a much larger sample size (>14,000 sub-
jects). Although the current findings with somatic health broadly
support previously associated diabetes [52] and stroke findings in
UK Biobank, as well as the null finding with respect to physical
activity, we did not identify associations with smoking or alcohol
behavior [52]. More work is needed in terms of identifying unique
or shared robust contributors to the brain-PAD metric, converging
evidence across and between datasets, processing methods, and
populations. Furthermore, each increase of one of the average
sum score (range 0.80–4.00) of somatic depression symptoms, was
associated with +4.20 years of added brain aging, independent
from AD use. The somatic symptom cluster studied here consisted
of items tapping into sleep, psychomotor, and other bodily

symptom problems (see Supplement for all individual items within
each cluster). This emphasizes the need to prevent and improve
both mental and somatic conditions to promote healthy brain
aging in psychiatric populations.
Surprisingly, none of the biological stress systems considered in

the current study were predictive of brain aging, despite the strong
association between brain PAD and somatic symptoms. This
suggests that the biological dysregulations that commonly link
depression to somatic health [5], were not directly contributing to
advanced brain aging. On the other hand, it might indicate that the
brain-PAD metric is more responsive to psychological stressors,
rather than biological stressors. Other explanations might also be
possible, as the current sample was relatively young (mean age ~40
years) and prior associations between, for example, brain aging and
TNF-α, were found in a much older sample (mean age ~65 years) of
which more than half also constituted patients with type two
diabetes mellitus [52]. Longer follow-up duration of the current
sample into old age and higher incidence of chronic disease may
reveal associations between brain aging and biological stressors in
the future. With respect to the inflammatory markers, it might be
possible that blood levels of inflammatory markers do not accurately
mirror central neuroimmune levels, although there is some evidence
that C-reactive protein (CRP) measured peripherally also reflects
central inflammation, at least in MDD [53]. Alternatively, a different
potential biological mechanism that may explain the observed
advanced brain aging in depression and anxiety disorders is

Table 3. Overview of the brain-PAD associations with predictors of Interest.

Assessment Predictor b (years) SE t value P PFDR
Clinical Depressive symptom severity 0.07 0.03 2.16 0.03 0.16

Anxiety symptom severity 0.11 0.04 2.50 0.01 0.11

Mood/cognition symptoms 0.89 0.81 1.10 0.27 0.50

Somatic depression symptoms 4.03 1.04 3.87 <0.00001 0.003

Immunometabolic symptoms 0.45 0.92 0.49 0.62 0.73

Childhood trauma index 0.23 0.20 1.13 0.26 0.50

Negative life events 0.35 0.41 0.86 0.39 0.63

Within patients Antidepressant use −2.58 1.02 −2.54 0.01 0.11

Duration of depressive symptoms (proportion of time in the past 4 years) −0.20 1.97 −0.10 0.92 0.95

Duration of anxiety symptoms (proportion of time in the past 4 years) −0.88 1.55 −0.56 0.57 0.73

Age of onset of depression (years) 0.04 0.06 0.61 0.55 0.73

Age of onset of anxiety (years) 0.01 0.05 0.09 0.93 0.95

Somatic health BMI (kg/m2) 0.23 0.10 2.31 0.02 0.14

Number of somatic diseases 1.29 0.72 1.79 0.08 0.30

Lifestyle Alcohol (mean drinks per week) −0.09 0.07 −1.33 0.19 0.49

Smoking (cigarettes per day) −0.07 0.05 −1.26 0.21 0.50

Physical exercise (MET-minutes) −0.06 0.13 −0.48 0.63 0.73

Inflammation CRP (mg/l) 0.57 0.76 0.75 0.46 0.70

TNF-α (pg/ml) 0.10 1.65 0.06 0.95 0.95

IL6 (pg/ml) 0.60 0.98 0.61 0.54 0.73

ANS Resting HR (bpm) 0.08 0.05 1.51 0.13 0.42

RSA (ms) −0.01 0.02 −0.46 0.65 0.73

PEP (ms) −0.04 0.03 −1.45 0.15 0.43

HPA-axis AUCi (nmol/l/hr) −0.23 0.12 −1.89 0.06 0.26

AUCg (nmol/l/hr) −0.11 0.11 −0.99 0.33 0.57

Evening (nmol/l) 0.33 0.29 1.15 0.26 0.50

Age, sex, education level (years) and two dummy variables for scan location were included in all models. BMI Body Mass Index, MET-minutes Metabolic
Equivalents, CRP C-reactive protein, TNF-α Tumor Necrosis Factor-α, IL6 Interleukin-6, ANS autonomic nervous system, HR heart rate, RSA respiratory sinus
arrhythmia, PEP pre-ejection period, AUCi cortisol awakening response: area under the curve with respect to the increase, AUCg cortisol awakening response:
area under the curve with respect to the ground, Evening Evening Cortisol. Bold p-values indicate significance at the p < 0.05 level.
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metabolic dysregulation. Future studies could characterize the brain-
PAD metric in more detail with respect to metabolic factors (e.g.,
blood pressure, triglycerides, and cholesterol), as these are well-
established risk factors for unfavorable somatic conditions [54–57]
and frequently co-occur with depression [58].
Only a handful of studies have compared multiple biological age

indicators side-by-side [59–62], but the current findings support
most work showing the very little overlap between biological clocks
from different types of data [9]. However, the small but significant
negative correlation between brain and proteomic aging suggests
that a further study with more focus on the interplay between this
peripheral and central proxy of aging is needed. Aging remains a
multifaceted and complex process that may manifest differently
across multiple biological levels and tissues.

Limitations
It is important to mention that our sample had low statistical power
to detect (some of) the relatively small-effect sizes in the current
study, and only the association between brain PAD and somatic
depressive symptoms would survive multiple-comparison correc-
tion if considered separately. At present, the large within-group
variance of brain-PAD lacks utilitarian validity in a clinical context.
We, therefore, emphasize the need for both methodological (i.e.,
brain-age models) and epidemiological replication (i.e., other and
larger samples) to test the robustness of the effects. Another
limitation is reflected by the lack of insights into the causal
pathways implicated in advanced brain aging, given the cross-
sectional nature of the study. However, a major strength is that we
used a pre-established reference curve for healthy brain aging that
has further potential for benchmarking, as the ENIGMA MDD
working group encourages local research samples like ours to
examine more detailed phenotypes that were not available within
the consortium. Also important to note is that the effects of
multivariate brain aging patterns (Cohen’s d= 0.34, between
controls and all patients) were higher or comparable to other
biological aging indicators (e.g., telomere length [Cohen’s d= 0.12]
[63], epigenetic aging [d= 0.14]) [64], biological markers (e.g., BDNF
[d= 0.23] [65], cortisol [d= 0.15–0.25] [66], and CRP [d= 0.15] [67]),
and, most importantly, neuroimaging markers (e.g., hippocampal
volume [d=−0.14] [68]), in other or (partly) overlapping samples.

CONCLUSION
In summary, advanced brain aging in patients with MDD and
anxiety seems to be most strongly associated with somatic
depressive symptomatology. We also revealed that antidepressant
medication use was associated with lower brain PAD, potentially
suggesting that its use may have a protective effect on the age-
related structural gray matter alterations observed in patients with
MDD and anxiety, an effect previously overlooked in consortium
data. Our results, therefore, emphasize the importance and
complementary value of smaller, yet more homogeneous,
datasets with harmonized data collection and well-characterized
clinical phenotyping, compared with the large-scale consortium
data needed for statistical power. Randomized clinical trials are
needed to confirm whether advanced brain aging can be halted
or reversed, by intervening on the cross-sectional somatic health
indicators identified here, in pursuit of the characterization of a
complex multifaceted process such as brain aging.
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