
Warhaftig et al. Translational Psychiatry          (2021) 11:137 

https://doi.org/10.1038/s41398-021-01252-7 Translational Psychiatry

ART ICLE Open Ac ce s s

RNA editing of the 5-HT2C receptor in the central
nucleus of the amygdala is involved in resilience
behavior
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Erez Y. Levanon 1 and Gal Yadid 1,2

Abstract
Post-traumatic-stress-disorder (PTSD) is a stress-related condition that may develop after exposure to a severe trauma-
event. One of the core brain areas that is considered to be a key regulatory region of PTSD is the amygdala.
Specifically, the central amygdala (CeA) is involved in emotion processing and associative fear learning memory, two
main circuits involved in PTSD. Long term dysregulation of trauma-related emotional processing may be caused by
neuroadaptations that affect gene expression. The adenosine-(A) to-inosine (I) RNA editing machinery is a post-
transcriptional process that converts a genomic encoded A to I and is critical for normal brain function and
development. Such editing has the potential to increase the transcriptome diversity, and disruption of this process has
been linked to various central nervous system disorders. Here, we employed a unique animal model to examine the
possibility that the RNA editing machinery is involved in PTSD. Detection of RNA editing specifically in the CeA
revealed changes in the editing pattern of the 5-HT2C serotonin receptor (5-HT2CR) transcript accompanied by
dynamic changes in the expression levels of the ADAR family enzymes (ADAR and ADARb1). Deamination by ADAR and
ADARb1 enzymes induces conformational changes in the 5-HT2CR that decrease the G-protein-coupling activity,
agonist affinity, and thus serotonin signaling. Significantly, a single intra-CeA administration of a 5-HT2CR
pharmacological antagonist produced a robust alleviation of PTSD-like behaviors (that was maintained for three
weeks) as well as single systemic treatment. This work may suggest the way to a new avenue in the understanding of
PTSD regulation.

Introduction
Post-traumatic stress disorder (PTSD) is a trauma- and

stress-related disorder that may develop in survivors of a
life-threatening traumatic event and can cause intense
fear and a feeling of helplessness1. Currently, PTSD is
defined by the coexistence of four symptoms that may be
evoked initially by the traumatic event itself2, but then
may increase over time, in response to stress-associated
cues, despite the absence of further exposure to stress3.

Although the exact neuronal mechanism that underlies
PTSD is yet to be discovered, a wealth of data concerning
the biological circuits involved in fear and anxiety impli-
cate the amygdala as a region that is central to these
behaviors4. The amygdala has been shown to participate
in the acquisition of conditioned fear paradigms in animal
studies5,6 and in combat veterans, if this region is
damaged, the development of PTSD is neutralized5.
Whereas the amygdala has a number of nuclei with

diverse activities, the central nucleus of the amygdala
(CeA) deserves special attention due to its role in med-
iating the response to negative states associated with
stress7,8. A number of animal studies involving fear
learning reported that damage to the CeA causes a deficit
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in conditioned orientating and disrupts the fearful asso-
ciative learning process9. These results have implicated
the CeA as an important mediator in the physiological
and behavioral expression of conditioned fear5. In parti-
cular, the serotonergic system that projects to the amyg-
dala has been linked to PTSD and emotional regulation10

and has been implicated in the pathophysiology of mood
and anxiety disorders11,12.
Moreover, the CeA is known to be involved in an

innate- and learned-fear as well as in the regulation of
freezing behavior-responses13,14. Although neither a sin-
gle gene nor a single signaling pathway region may
entirely account for the development of a complex dis-
ease, low serotonergic activity and brain regional
abnormalities in serotonin neurotransmission have been
proposed as biological traits related to depression and
suicidal behavior15. Among the serotonin receptor family,
the serotonin 2c receptor (5-HT2CR) is of interest. Recent
studies examining the effect of 5-HTR2C agonists showed
that the CeA is highly sensitive to their effect on dopa-
minergic release, emphasizing the importance of this
receptor located in the CeA in different neuropsychiatric
diseases16,17. On the other hand, 5-HTR2C was suggested
to play an important role in preventing repeated restraint
stress in the amygdala18 and has been associated with
regulation of mood, appetite, sleep, and sexual beha-
vior19,20. Altered activity of the 5-HTR2C, a G-coupled
protein receptor, has been reported in a variety
of neuropsychiatric disorders21. For example, viral-
overexpression of this receptor in the amygdala resulted
in an anxiogenic effect22, which could be counteracted, at
least in the short term, by the injection of a pharmaco-
logical 5-HT2CR antagonist directly into the amygdala23.
However, the long term effects of exposure to a severe

traumatic event, even in the absence of further stress, have
not been much studied3. Interestingly, the 5-HT2CR is a
target of post-transcriptional adenosine-to-inosine (A-to-
I) RNA editing24,25 carried-out by the adenosine deami-
nases acting on RNA enzymes (ADARs) family. The
editing modifies an A to an I, leading to alterations in the
amino acid sequence, and can generate a diversity of
proteins that are different from those encoded in the
genomic-DNA. It was previously shown to alter the 5-
HT2CR affinity to its ligand through this machinery25–29.
Nonetheless, the cellular and molecular targets in the CeA
underlying the specific effect of RNA editing of the 5-
HTR2C are still inconclusive30.
Since PTSD is characterized as a memory disorder31,

and the neuroadaptation dynamic of learning and mem-
ory may be responsible for the distressing memories of an
emotionally traumatic event, we hypothesize that the
regulation of gene expression in the CeA may contribute
to the enduring plasticity of PTSD32. If 5-HT2CR- RNA
editing in the CeA indeed plays a causal role in PTSD-like

behavior, then targeting the dynamic changes in this
pathway could be expected to influence the PTSD-like
behavioral phenotype. A variety of experimental protocols
have been designed to follow long-lasting responses to
fear in rodents over periods of 24 h to 7 days post a single
traumatic exposure33–39. Nonetheless, the vast majority of
these protocol studies do not monitor the behavioral
manifestation longer than the initial traumatic event40,41.
In the current study, we used an established animal

model for the study of PTSD, which mimics the clinical
expression of PTSD, including anxiety, social avoidance,
and hyperarousal behavior40–43, and in addition, provides
the opportunity to examine the effects of the action of the
RNA editing machinery on the 5-HT2CR longitudinally to
exposure to a traumatic event. Specifically, we aim to test
whether the CeA-ADAR enzymes are involved in PTSD-
like susceptibility and resilience behaviors and to track
any consequent changes in the A-to-I RNA editing pat-
terns of the 5-HT2CR. Detection of such changes may
reveal a role for the RNA editing machinery in PTSD-like
susceptibility to a trauma-related memory.

Methods
Animals
Adult male Sprague–Dawley rats (250–270 g; Envigo,

Rehovot, Israel) were housed under conditions of constant
temperature (22 °C) and 50% humidity, with a 12-h
light–12-h dark cycle. The rats were allowed to habi-
tuate to the animal house for one week before beginning
the experiments. Rats were housed three per cage, where
two of the animals were experimental rats, and the third
was a companion rat. The same three rats remained
together until the end of the study. Food and water were
provided ad libitum. All experiments were performed
between 07:00 and 17:00, in daylight. All animal proce-
dures were approved by the Bar-Ilan University Animal
Care Committee and were carried out in accordance with
the NIH Guide for the Care and Use of Laboratory
Animals.

Behavioral measurements
The PTSD-animal model, based on Kesner et al. and

Elharrarr et al.41,42, consists of several stages spread over
8 weeks (Fig. 1A and Supplementary Materials and
Methods). Briefly, adult male Sprague–Dawley rats were
exposed to a predator-associated ‘trauma’ (cat scent) and
then placed in an open field. The freezing response was
monitored, during a series of three clinically relevant
behavioral scenarios (5 min each): (a) situated alone
(‘exploration’), (b) with a habituated companion animal
(‘social interaction’), and (c) during post-startle response
after exposure to loud noise (‘hyperarousal’). Baseline
response to the three behavioral scenarios was monitored
on day 1 (baseline). Subsequent behavioral responses were
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measured 7 days after the initial exposure to the trauma
(bedding with cat scent), and then after reminders of the
trauma (litter with the same texture but without predator
bedding), on day 14 (first reminder) and day 35 (second
reminder).

Behavioral data analysis
Baseline behavioral data were analyzed by Explore

(SPSS 11), to define the range for each basal behavioral
parameter within the population. The upper and lower
levels of this range were considered the boundaries of the
‘normal’ baseline. Deviations from this range were used to
define PTSD-like behavior retrospectively (after the con-
clusion of the second reminder testing). According to the
results, animals were categorized either as ‘susceptible’
(exhibiting PTSD-like behavior above baseline under all
three conditions) or ‘resilient’ (exhibiting at least one
behavior within baseline range)41,42.

RNA and cDNA preparation
Brains were removed immediately after the second

reminder and were placed in a perspex brain matrix and

sliced into 1.0 mm segments. The CeA was punched using
a 13G-14G microdissecting needle and was frozen at
−70 °C until the RNA was extracted using the Total RNA
Purification Micro Kit (Norgen biotek CORP, Canada)
according to the manufacturer’s instructions. Extracted
RNA (2 µg) was treated with DNase and reverse-
transcribed to generate cDNA (qScript cDNA Synthesis,
Quanta BioSciences).

Amplification of the target regions containing the target
editing sites using the Fluidigm Access Array Microfluidic
system
To precisely detect and measure the levels of A-to-I RNA

editing in susceptible and resilient animals, targeted ampli-
cons were generated and barcoded using a two-step PCR
strategy, which also minimized the total number of primers
required. The specific primers of the targeted genes were
designed using Primer 3.0 (http://frodo.wi.mit.edu) and were
tested for specificity and sensitivity by PCR before they were
included in the primers set. Quantification of multiple RNA
editing sites was followed by next-generation sequencing
(see Supplementary Materials and Methods for full details).
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Fig. 1 Behavioral response in the PTSD model. (A) Schematic depiction of the experimental model. The animals began the experimental
procedure after two weeks of acclimation and habituation to the home cage and the open field. Baseline response to the three behavioral scenarios
was monitored on day 1. Day 7: Exposure to ‘trauma’ (Initial exposure). Day 14: first exposure to the ‘trauma’s’ reminder (‘first reminder’). Day 35:
second exposure to the ‘trauma’s reminder (‘second reminder’). Day 56: third exposure to the ‘trauma’s reminder (‘third reminder’). Day 77: fourth
exposure to the ‘trauma’s reminder (‘fourth reminder’). (B) Freezing behavior during: exploration, (C) social interaction, and (D) hyperarousal tests.
After exposure to trauma and the reminders, susceptible but not resilient animals showed an increase from baseline in freezing behavior, i.e.,
incubation of fear over time in all three behavioral tests (exploration: *p < 0.05 and ***p < 0.001 susceptible vs. resilient; social interaction: ***p <
0.001 susceptible vs. resilient and hyperarousal: *p < 0.05 and ***p < 0.001 susceptible vs resilient). Data presented as mean ± SEM; n= 26–35 per
group. (E–G) Pearson’s product-moment correlation between the following tests: (E) exploration×social interaction, (F) hyperarousal×exploration,
and (G) hyperarousal×social interaction (r > 0.33; *p < 0.005).
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Fluidigm library sequencing
Libraries were pooled and sequenced on Ion-Torrent

PGM using the Ion PGM Sequencing 200 Kit v2 and the
1G-Ion 318 Chip Kit v2, all according to the manu-
facturer’s instructions (Life Technologies). The sequen-
cing adaptors and tag barcodes that were attached to each
PCR product (amplicon) were used to identify each
sample by the sequence in the Fluidigm access-array
library, prepared as described in the Supplementary
Materials and Methods.

Bioinformatic sequence analysis and cluster analysis of the
5-HT2CR isoforms
We used the UCSC genome browser Rat. 2004 (Baylor

3.4/rn4) assembly to identify any discrepancies between
the RefSeq RNA data and the RNA sequencing output.
For our focused screen, we employed a targeted-
sequencing variation of next-generation sequencing
(NGS) to generate and sequence multiple PCR amplicons
from pre-determined genes, which contained the target
editing site/s. The data obtained were screened for any A/
G mismatches within the cDNA sequences. The signal
strength of such mismatches was summed and scored
according to the overall coverage as manifested by the
output number of reads, and more importantly, by the
percentage of A-to-G levels (see Supplementary Materials
and Methods for full details). For cluster analysis of the 5-
HT2CR, we detected the editing sites of the 5-HT2CR in
each read. Next, we joined all the isoform combinations of
the editing sites of the receptor and calculated the
abundancy of each isoform from the total number of reads
(see Supplementary Materials and Methods for full
details).

qRT-PCR Analysis
Expression levels of 5-HT2CR, ADAR and ADARb1

were assessed by qRT-PCR of total RNA extracted from
the CeA and reverse transcribed to generate cDNA. The
qRT-PCR reactions were carried out on a Step One Plus
Real-time PCR system using fluorescent SYBR Green fast
mix technology (see Supplementary Materials and
Methods for full details).

Western blot protein analysis
Whole-cell proteins were extracted from the central

amygdala and analyzed by western blot to evaluate the
protein levels of ADAR and ADARb1 (see Supplementary
Materials and Methods for full details).

Central amygdala intracerebral injection of RS-102221
After the second reminder (day 35), susceptible and

resilient animals were anesthetized by intraperitoneal
administration of ketamine hydrochloride (100 kg/mg)
and xylazine (10 mg/kg). Each experimental group was

randomly divided into two sub-groups, then the animals
in each group were implanted bilaterally with a guide
cannula (30 gauge) placed 1 mm above the CeA, sealed
with a cannula dummy (Plastics One), and secured to the
skull with screws and dental acrylic cement. The coordi-
nates of the cannula, relative to Bregma44, were: CeA:
anterior –2.56, lateral –4/+4, ventral –7mm. Correct
placement was achieved by using a computer-guided
stereotaxic instrument and a motorized nano-injector
(Angle Two Stereotaxic Instrument, St. Louis, Missouri).
The selective 5-HT2CR antagonist RS-102221 (Tocris,
Bristol, UK) was injected (total of 0.2 ul, 0.02 ul/min per
side) through the cannula 15min before the third
reminder (day 11, see Supplementary Materials and
Methods for full details).

Fluorescent staining
Cannula placement was verified by histological

examinations of brain sections stained with propidium
iodide (PI) (see Supplementary Methods for full
details).

Statistical analysis
Data were analyzed by two-way ANOVA, one-way

ANOVA, and Student’s-t test (see Supplementary Meth-
ods for full details).

Results
Distinct freezing behavior characterization of ‘susceptible’
and ‘resilient’ animals exposed to trauma
Freezing behavior of Sprague-Dawley rats (n= 60)

exposed to ‘trauma’ and three subsequent trauma-
associated reminders (Fig. 1A) was measured under
three behavioral scenarios—exploration, social interaction
(with in-house companion rat), and hyperarousal. The
PTSD-like behavior of each animal was then compared
with the baseline and with the range of the population in
the three behavioral tests (Fig. 1B–D, for full details, see
Supplementary Materials and Methods, behavioral pro-
cedure and statistical analysis sections). The results
allowed us to unambiguously distinguish two sub-
populations, namely, resilient (n= 35) and susceptible
(n= 25) animals41,42. After experiencing the traumatic
event and the related reminders, susceptible animals
showed an increase in freezing behavior over time in all
three behavioral tests, while the resilient group did not.
Analysis of all baseline behavioral samples revealed that
the upper level for excluding outliers (95% confidence) in
the exploration, social interaction, and hyperarousal
conditions was twice the interquartile range. Animals in
the susceptible and resilient groups showed a high within-
group correlation (Fig. 1E–G, for full details, see Sup-
plementary Materials and Methods, statistical analysis
sections).
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Distinct A-to-I editing of the 5-HT2CR in the CeA of
susceptible and resilient animals
The CeA of animals retrospectively categorized as sus-

ceptible or resilient was punched immediately after the
second trauma reminder (day35), and samples were sub-
jected to the A-to-I RNA editing detection assay. Based on
the results of Pinto and colleagues45, we assayed 48 RNA
editing sites selected primarily because of their mamma-
lian conservation45. In order to improve the accuracy of
quantification of RNA editing levels (%), we discarded all
the measurements with the cutoff of read coverage < 700
and A-to-I editing levels < 5%. Hence, only editing sites
above this threshold and with a detectable signal in at
least 5 animals in each group were selected for subsequent
statistical analysis. The ten sites out of 48 that passed
these criteria are located in the 5-HT2CR (ChrX:
118431948, 118431950, 118431955, and 118431960),
Glutamate Ionotropic Receptor Kainate Type Subunit 2
(Grik2- Chr20: 55549608, 55549612, and 55579573),
Calcium Voltage-Gated Channel Subunit Alpha1 D
(CACNA1D- Chr16: 6068246 and 6068254), and Com-
ponent of Oligomeric Golgi Complex 3 (Cog3- Chr15:
61477446).
Statistical analysis did not reveal any significant differ-

ences in the CeA-edited sites of susceptible compared to
resilient animals (p > 0.05, Fig. 2A). Interestingly, 4 out of
the 10 edited sites were found to be located within the 5-
HT2CR which are known to have close genomic proxi-
mity. This receptor has five different editing sites: A-D
and C’ (which is the rarest site in rats and humans) that
span over 14 nucleotides on chr X46,47. The sites are
located in the second intracellular loop of the G-protein
coupled receptor and may, therefore, modulate the ser-
otonin neurotransmission signaling cascade26,48. The
edited isoforms were shown to have a robust reduction of
the agonist-stimulated G-coupled protein compared to
the non-edited form of the receptor48,49. Moreover, RNA
editing also led to a loss of the active state of this recep-
tor25 and a delay in agonist-stimulated calcium release in
the fully edited isoforms27. The ability to regulate the
RNA-editing of these five sites can, therefore, be expected
to generate high diversity by generating up to 32 different
mRNA transcripts that may then encode as many as 24
different protein isoforms that vary in their biochemical
properties.
Our evaluation of the RNA editing levels of the four

major 5-HT2CR sites (A-D) in the CeA did not uncover
any significant site-specific differences between the sus-
ceptible and resilient animals (Fig. 2A). However, analysis
of the isoform frequency (%) generated by the different
combinations of the editing process regulated by ADAR
and ADARb1 revealed a significant increase (*p < 0.05) in
the partially edited VNV isoform in the resilient group
compared to the susceptible group (Fig. 2B, see

Supplementary Methods and Statistical analysis for full
details). This isoform has 2-3 sites that are being edited
simultaneously (sites A+D and A+ B+D)50. In order to
evaluate whether the VNV isoform abundance was not
due to differences in the mRNA expression levels of the
receptor, we measured its expression levels in susceptible
and resilient groups. This analysis did not reveal any
significant changes in the expression levels of the 5-
HT2CR of the experimental groups (p > 0.05) (Fig. 2C).

Relative expression of ADAR and ADARb1 in the CeA of
susceptible and resilient animals
We next tested whether the observed higher frequency

of the VNV isoform was associated with increased
expression of the enzymes of the ADAR family that reg-
ulate the RNA editing process (Fig. 2D–I): ADARb1,
which acts on sites A and B of the 5-HT2CR51, and ADAR,
which edits site D of the 5-HT2CR52. qPCR analysis
revealed a significant increase in the mRNA expression
levels of ADAR and ADARb1 in the resilient group
compared to the susceptible group (*p < 0.05, Fig. 2D and
F, respectively). This was confirmed by western blot
analysis, which revealed a similarly significant increase in
the levels of both ADAR and ADAR1b proteins in the
resilient group compared to the susceptible group (*p <
0.05, Fig. 2E, H, G, I, respectively). Pearson’s correlation
test revealed that the exploration and the hyperarousal
measures significantly correlated with ADAR protein
expression (r=−0.7 and *p= 0.04, r=−0.7 and *p=
0.02, respectively) and the social interaction test demon-
strated a highly correlative trend with the ADARb1 pro-
tein expression (r=−0.6 and p= 0.07).

Alleviation of susceptible behavior by an intra-brain-
injection of 5-HT2CR specific antagonist into the CeA
As the next step, we examined whether the observation

that the resilient group had higher levels of the VNV
isoform could be translated into a therapeutic strategy.
For this purpose, we injected into the CeA (15 min before
the third trauma reminder) the RS-102221, a specific
antagonist to the 5-HT2CR that was previously tested in a
variety of mood disorders such as depression53,54. Like
editing, the antagonist might be expected to inhibit the
activity of the receptor. Interestingly, treatment with RS-
102221 significantly attenuated the freezing behavior in
susceptible animals in all three behavioral scenarios
compared with untreated susceptible controls (*p < 0.05,
Fig. 3A–F), (see Supplementary and Methods for full
details). Moreover, this effect on PTSD-like behavior in all
three scenarios was maintained for three weeks after the
single injection-treatment (fourth reminder-day 77)
(*p < 0.05, Fig. 3A–F). Pearson’s product-moment corre-
lation test revealed a high correlation between the third
and fourth reminders in the different behavioral scenarios
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(r < 0.45; *p < 0.05, Fig. 3G–I). The cannula placement in
the CeA is presented in Fig. 3J.

Alleviation of susceptible behavior by systemic injection of
5-HTR2C specific antagonist
In order to translate our results into a systemic treat-

ment, another group of animals was subjected to the
behavioral protocol of the PTSD-like animal model to
depict a new group of susceptible animals, as described
before. This group was divided into two sub-groups. One
received a single injection of RS-102221, and the other
received a vehicle as control (1 ml/kg), 30 min before the
third trauma reminder55. Behavior was measured imme-
diately after the third reminder. The results indicated that
RS-102221 treatment significantly attenuated freezing
behaviors in susceptible animals compared to treated
vehicle controls, immediately after the third reminder in

all three behavioral tests (*p < 0.05, Fig. 3K–M), (see
Supplementary and Methods for full details).

Discussion
In the present study, we revealed that animals that were

resistant to a traumatic event, compared with susceptible
animals, had a significantly higher abundance of the VNV
RNA edited isoform of the 5-HT2CR in the CeA. This
alteration was associated with higher expression in pro-
tein levels of ADAR and ADARb1. Since no changes in the
expression levels of 5-HT2CR transcript were shown, we
believe that the behavioral profile of the resilient group, at
least partly, stems from altering its editing. To emphasize
the role of the observed changes, showing that high
editing levels of the VNV isoform lead to resilience, we
evaluated the behavioral response after an injection of a
specific 5-HT2CR antagonist, RS-102221, directly into the
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CeA. The results showed that a single injection sig-
nificantly attenuated the freezing response in all three
behavioral situations tested. Interestingly, the relief of the
stress response of susceptible animals was maintained for
the long-term, when a following reminder of the trauma
was tested. This treatment did not alter the behavior of
the resilient group, suggesting that the effect was specific
for susceptible animals, with no negative effects on ani-
mals that did not exhibit PTSD-like behavior.
Moreover, systemic injection of RS-102221 attenuated

the susceptible behavior profile in all the three examined
tests, suggesting a translational approach to our results.
Importantly, our findings are not in accordance with

studies that associate 5-HT2CR agonists with greater fear.
Specifically, the effect of Lorcaserin and WAY-163909 on
dopaminergic release16,17 and other studies showing that
transgenic mice having only the fully edited VGV isoform
of 5-HT2CR, which thereby overexpress the receptor in
the brain, displayed greater fear expression, extensive fear
extinction deficits, and fear generalization56. It is possible
that editing of 5-HT2CR in different brain sites or dif-
ferent cell types might result in different apparent beha-
vior. In our study, we focused on the amygdala.
Nonetheless, tight cross-talk is found between this region
and other related brain regions, such as the BNST41,
parahippocampal gyrus, orbitofrontal cortex, sensor-
imotor cortex, the thalamus, and the anterior cingulate
cortex43, that may differently respond to trauma. Mod-
ulating the 5-HT2CR activity in these regions exerts dif-
ferent downstream signaling pathways such as the brain-
derived neurotrophic factor (BDNF)–tyrosine kinase B
(TrkB) pathway, the glutamatergic N-methyl-D-aspartate
(NMDA) receptor pathway, and the renin-angiotensin
system pathway. These signaling pathways may have dif-
ferent effect PTSD-like display57.
Alternatively, it might be that the fully edited isoform

functions differently than the partially edited one. Intri-
guingly, these data may suggest that the heritability of an
editing setup may express a variety of functional inten-
sities of the 5-HT2CR that are important to cope with
stress. Thereby, dominance of edited VGV may be found
in people that are more prone to develop PTSD when
exposed to a trauma event. This should be verified in
future studies.
It is noteworthy that the 5-HT2CR regulated by ADAR

enzymes is not the only participant in anxiety-related
disorders. Simmones and Karanovic have previously
identified a role for ADARb1 and 5-HTR2C in the
pathophysiology of major depressive suicide victims,
thereby linking genetic and epigenetic factors to an ele-
vated risk of suicide58,59.
The PTSD-like animal model used in this study gener-

ated a long-lasting susceptibility phenotypic behavior that
was accompanied by the downregulation of ADAR

enzymes combined with a decrease in the level of the
VNV isoform of the 5-HT2CR. Our results demonstrate
that blocking the 5-HT2CR by injecting RS-102221
antagonist into the CeA significantly attenuated the
PTSD-like behavior of susceptible animals, supporting the
hypothesis that the serotonin neurotransmission, via 5-
HT2CR, plays a causal role in inducing anxiety-like and
susceptibility behavior. Our observations are consistent
with previous reports that highlighted the relationship
between RNA editing of the 5-HT2CR and neu-
ropsychiatric disorders, specifically with impaired ser-
otonergic tone in PTSD. These studies showed that
desensitization of the 5-HT2CR in serotonin transporter
(SERT) knockout mice reduced the anxiety phenotype60.
In this context, an increase in the VNV compared with the
INI isoform, in the CeA, can cause a loss of 5-HT2CR
activity by reducing the ligand efficacy of the G-coupled
protein downstream. For this reason, 5-HT2CR antago-
nists are often used as pharmacological treatments for
generalized anxiety disorders61,62 and were previously
examined in a rat model for depression53,54 (in contrast to
agonists, which induce panic attacks in PTSD patients63).
Taken together, our results support the suggestion of a

causal role for the CeA as a critical brain region for the
expression of PTSD-like behaviors and reveal the
importance of specific 5-HT2CR -RNA editing as one
molecule out of a wide range of targets with the potential
to be edited. The specific cell type expressing the RNA
editing changes of the 5-HT2CR was not examined.
Therefore, a possible explanation for our results may
suggest that the RNA editing changes observed in the
resilience group may involve glutamatergic neuro-
transmission. As was previously reported, RS-102221 may
target the 5-HT2C receptors present on glutamatergic
cells, particularly of the CeA. Moreover, it is plausible that
receptors other than 5-HT2CR could be altered by
changes in ADARs’ expression and may participate in
resilient behavior. These receptors may include glutamate
receptors. This was previously reported in the study by
Brande-Eilat and colleagues, showing that acquisition of
conditioned freezing was associated with changes in
expression levels of ADARs followed by RNA editing of
glutamate ionotropic receptor kainate type subunit 1
(Grik1)64. Further studies examining the specific cell type
expressing the 5-HT2CR and other targets of ADARs may
provide a deeper understanding of the mechanistic basis
of PTSD. The present study explored other targets of
ADARs, CACNA1D, and Grik2, but not Grik1.
In Conclusion, the current study introduces a new

approach to our understanding of PTSD. We took
advantage of a unique PTSD-induced animal model, in
comparison with genetic-models56,65, that together pro-
vide a novel opportunity to converge on the role of RNA
editing mechanism in the context of stress-related
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disorders. Findings from such models demonstrate the
value of an unbiased, broad screening analysis of the RNA
editing mechanism in different gene networks that may be
reprogrammed in psychiatric diseases, by identifying a
differential outcome in animals with PTSD-like suscept-
ibility behavior compared to resilience. Our approach was
to isolate candidate therapeutic targets by screening a
wide variety of sites that could be involved in RNA editing
and PTSD and examining the specific behavioral char-
acteristics of each subject. Taken together, our results
suggest a causal role for the 5-HT2CR and RNA editing as
regulated by the ADAR enzymes in the CeA, for at least
partly the expression of PTSD-like behavior. The relief
produced by an antagonistic injection for this receptor in
both the short and long term and when administered
systemically after the traumatic event and its related
reminders, suggests that this direction could have future
therapeutic potential for PTSD patients.
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