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Abstract
The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential
signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined
130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40
healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16
candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor
(MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP),
alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18
were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome
activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance
(lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with,
additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs
(P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after
adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood
maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test
whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-
resistant depression, including combinations with anti-inflammatory medications.

Introduction
While there is overwhelming evidence of increased

inflammation in depression1–4, the molecular signature
underpinning this ‘pro-inflammatory’ phenotype is still
unknown. A multitude of studies and meta-analyses show
that patients with major depressive disorder (MDD) have,
on average, increased serum levels of pro-inflammatory
cytokines, like interleukin 1 beta (IL-1-beta), IL-6 and
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tumour necrosis factor alpha (TNF-alpha), and of the
acute phase protein, C-reactive protein (CRP)1,2,4,5.
Patients with ‘treatment resistant depression’ (TRD) are
more likely to have increased inflammation6,7, as do
patients with cardiovascular disorders, obesity, anxiety,
and a history of childhood maltreatment3,8–13.
Whole blood mRNA expression analyses measure

mRNAs coding for inflammatory genes and for genes
operating upstream and downstream of these immune
mechanisms, such as the glucocorticoid receptor (GR)14.
We have been the first to demonstrate that drug-free
depressed patients have increased mRNA expression of
IL-1-beta, IL-6 and TNF-alpha, together with reduced
expression of the GR and increased expression of the
FK506 binding protein 5 (FKBP5)15, which reduces GR
function and promotes inflammation16. Together, these
results suggest that inflammation in depression is poten-
tially caused by escape of the immune system from the
anti-inflammatory effects of glucocorticoid hormones
(glucocorticoid resistance) as well as the pro-
inflammatory effects of FKBP516. Interestingly, we have
also found that patients who do not respond to anti-
depressants have, before starting the antidepressant,
higher levels of IL-1-beta, macrophage inhibiting factor
(MIF) and TNF-alpha mRNAs, compared with
antidepressant-responsive patients15,17. Separately, we
have found increased mRNA expression of the GR-target
gene, SGK1, in the blood of depressed patients, in human
hippocampal cells treated with cortisol, and in the hip-
pocampus of rats exposed to stress, thus indicating that
mRNA in the human blood can reflect changes in the
brain18.
Other blood mRNA studies on depressed patients have

measured the whole genome, rather than focusing on a set
of candidate genes, and have consistently found pro-
inflammatory signatures. In one of the first such studies,
Savitz et al.19 measured mRNA expression in peripheral
blood mononuclear cells of depressed patients and iden-
tified differentially-expressed mRNAs that were linked to
inflammatory pathway, such as nuclear factor kappa-B
(NFkb), transforming growth factor beta (TGFb), and
extracellular signal-regulated kinase (ERK). In the Neth-
erlands Study of Depression and Anxiety (NESDA), Jan-
sen et al. found an upregulation of IL-6- and natural killer
cell-related related pathways20. Mellon et al. found over-
expression of genes involved in Type I interferon
responses, antimicrobial responses, and cytokine and
chemokine signalling21, and we have recently found over-
expression of genes specialised for innate immunity and
myeloid cells22. Two studies using RNAseq have found
differential regulation of type I interferon-related path-
ways23,24, with one study also showing enrichment for
several other pathways involving immune function23.
Finally, a very recent study has used genome-wide DNA

methylation and gene expression analyses in patients
prospectively-defined as responders and non-responders
to an 8-week trial of escitalopram treatment25, and found
two genes that exhibited increases in both DNA methy-
lation and mRNA expression in non-responders: CHN2,
which could affect hippocampal neurogenesis, and JAK2,
which activates both innate and adaptive immunity.
In order to understand the specific molecular signatures

associated with TRD vs. responsive depression, and their
interaction with antidepressant treatment, in the present
study we use whole blood mRNA quantitative polymerase
chain reaction (qPCR) to measure the expression of 16
candidate mRNAs in 130 depressed patients (58 TRD, 36
antidepressant-responsive and 36 currently drug-free) and
40 healthy controls. We have recently published, in an
overlapping sample, that only TRD patients have
increased inflammation as measured as body mass index
(BMI)-adjusted CRP3. Thus, here we hypothesise that
TRD patients have the strongest mRNA-based evidence of
inflammation and glucocorticoid resistance, as shown by
higher expression of IL-1-beta, IL-6, TNF-alpha and MIF,
together with lower GR, higher FKBP5 and higher SGK1
expression. Moreover, and examining mRNA expression of
genes hitherto unmeasured in psychiatric patients, we
hypothesise that this increased inflammation is associated
with higher expression of the purinergic receptor, P2RX7,
which mediates stress-induced activation of the inflam-
masome26; higher CCL2 and lower CXCL12 expression, as
in the well-established animal model of ‘repeated social
defeat’ (RSD) stress, characterised by increased inflam-
mation and glucocorticoid resistance27; higher expression
of CRP and of the other acute phase protein, alpha-2-
macroglobulin (A2M)4,28; and higher expression of the
interferon-responsive genes, acquaporin-4 (AQP4), ISG15,
STAT1 and USP-18, which we have recently shown to be
elevated in the blood mRNA of patients with chronic viral
hepatitis taking IFN-alpha29, an established model of
inflammation-induced depression30,31, and to mediate the
IFN-alpha-induced increase in neuronal apoptosis and
decrease in neurogenesis32. Finally, to explore the clinical
implications of these findings, we examined which genes
would best classify depressed subjects in either TRD or
antidepressant-responsive, even after adjusting for the
effects of other clinical and immune variables, including
serum CRP and white blood cells counts.

Methods
Study design and clinical measures
In total, 190 cases of MDD, meeting SCID-based DSM-

5 criteria for a diagnosis for MDD33, and 54 healthy
controls, were recruited in the non-interventional,
case–control, Biomarkers of Depression (BIODEP) study3;
130 depressed patients and 40 healthy controls with
available gene expression data are included in the present
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study. The cases were divided into three sub-groups based
on current depressive symptom scores at the Hamilton
Rating Scale for Depression (HAM-D), and current and
previous drug treatment: (1) responsive patients had no
depressive symptoms (HAM-D < 7) while currently on an
antidepressant at standard therapeutic dose for at least
6 weeks; (2) drug-free had depressive symptoms (HAM-D
> 17) and had not been medicated with any anti-
depressants for at least 6 weeks and (3) TRD patients had
depressive symptoms (HAM-D > 13) while currently on an
antidepressant at standard therapeutic dose for at least
6 weeks, plus they had at least one historical failure to a
different antidepressant. Lifetime antidepressants use was
measured using the antidepressant treatment response
questionnaire (ATRQ)34, anxiety using the Spielberger
State-Trait Anxiety Rating scale35 and exposure of stres-
sors in childhood using the childhood trauma ques-
tionnaire (CTQ)36.
The study was part of the Wellcome Trust Consortium

for Neuroimmunology of Mood Disorder and Alzheimer’s
disease (NIMA), approved by the National Research
Ethics Service East of England, Cambridge Central, UK
(15/EE/0092). The study was conducted according to the
Declaration of Helsinki, and all participants provided
informed consent in writing.

Clinical and sociodemographic features of the sample
Inclusion and exclusion criteria are presented in the

Supplementary Material. The demographic and clinical
characteristics of each group are summarised in Table 1.
We had n= 58 TRD patients, n= 36 responsive patients,
n= 36 drug-free patients and n= 40 healthy controls.
Briefly, all the main within-group comparisons were
similar to those already published in the larger sample3,
and the groups did not differ significantly in age, gender
distribution, educational level and BMI. As expected by
design, each group differed significantly from the others
on HAM-D total score (ANOVA, F= 683.6; df= 3, 166;
P < 0.001), with drug-free (HAM-D around 20) being
more depressed than TRD (HAM-D around 18), and
both being more depressed than responsive (HAM-D
around 3) and controls (HAM-D less than 1). Moreover,
both TRD and drug-free patients had higher state and
trait anxiety compared with responsive and controls
(ANOVA, F= 51.2 and 114.5, respectively; df= 3, 166;
P < 0.001). Finally, all patient groups had higher CTQ
scores than controls, and both TRD and untreated
patients had higher CTQ scores than responsive (gen-
eralised linear model (GLM), Wald chi-square= 106.6;
df= 1, 3; P < 0.001).
Similar to the published larger sample3, the majority of

TRD patients were currently taking selective serotonin
reuptake inhibitors (72%), with smaller numbers exposed
to noradrenergic and specific serotonergic reuptake

inhibitors (14%), mirtazapine (9%), tricyclic anti-
depressants (4%) or bupropion (1%). Treatment-
responsive patients were also predominantly taking
selective serotonin reuptake inhibitors (69%), followed
by noradrenergic and specific serotonergic reuptake
inhibitors (22%) and mirtazapine (9%). Drug-free
patients were all currently not on antidepressants for at
least 6 weeks; however, n= 20 (55% of the group) had
been on an antidepressant in the past, mostly (17 out of
20) on a selective serotonin reuptake inhibitor. As
expected, the TRD group had more failed treatments
than the other depressed groups (average of 1.7 vs. 0.8 in
responders and 0.9 in drug free, ANOVA, df= 3, 166;
P < 0.001; see Table 1).

Biomarkers
Venous blood was sampled from an antecubital vein

between 08:00 and 10:00 h on the day of clinical
assessment. Participants had fasted for 8 h, refrained
from exercise for 72 h, and had been lying supine for
0.5 h prior to venepuncture. Whole blood (2.5 mL) was
collected in PaxGene tubes at each recruitment site, and
all PaxGene tubes were then kept at −80 °C and later
transferred to a central site (Brescia) for RNA isolation
and gene expression analyses. Isolation of total RNA was
performed using the PAXgene blood miRNA kit
according to the manufacturer’s protocol (PreAnalytiX,
Hombrechtikon, CHE). RNA quantity and quality were
assessed by evaluation of the A260/280 and A260/230
ratios using a Nanodrop spectrophotometer (NanoDrop
Technologies, Delaware, USA) and by Agilent BioAna-
lyzer (Agilent Technologies); the RNA integrity number
was above 8 for all sample. Samples were stored at
−80 °C until processing.
Candidate gene expression analyses was performed

using real-time PCR. For quality control, all samples were
assayed in duplicate, and were randomised in different
plates, also adding a calibrator, in order to control for
possible differences in the efficiency of the Real Time
reaction. Each target gene was normalised to the expres-
sion of three reference genes (glyceraldehyde 3-phosphate
dehydrogenase, beta-actin, and beta-2-microglobulin).
We used commercially-available Taqman primer and
probes by using Taqman assays that are all available at the
Thermofisher website (https://www.thermofisher.com/us/
en/home/life-science/pcr/real-time-pcr/real-time-pcr-
assays/taqman-gene-expression.html) on a 384-wells Real
Time PCR System (Biorad); the assays had been already
tested for efficiency by Thermo Fisher Scientific; catalo-
gue numbers are available on request. The expression
levels of each target gene were normalised to the geo-
metric mean of all three reference genes, and the Pfaffl
method was used to determine relative target gene
expression of each gene in the patients’ groups compared
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with controls. The analyses were conducted by research-
ers who were blind to group allocation.
Methods for the immune assessments are described in

the Supplementary Material.

Statistical analyses
Socio demographic, clinical and immune measurements

were compared among the four study groups by ANOVA,
chi-square or GLM according to the statistical distribu-
tion of the variables (respectively, Gaussian, categorical
and non-Gaussian). Group mean comparisons of the 16
genes were evaluated by ANOVA test followed by post
hoc comparisons with Bonferroni correction. Correlations
among the genes, as well as between genes and immune
measures, were evaluated by Spearman’s rho coefficient.
Binomial and multinomial logistic regression models were
performed to detect the best predictors of the ‘study
group’ outcome variable while adjusting for the effects of
the other variables that were significantly different among
the study groups in previous analyses. A stepwise-forward
selection procedure was applied for the selection of the
best (in terms of goodness of fit) predictors of the cate-
gorical ‘study group’ outcome, and predictive perfor-
mances were evaluated by the Negelkerke pseudo-
Rsquare goodness of fit index. Partial least square-
discriminant analysis (PLS-DA) was conducted to define
which genes contributed to discriminate between each
study groups37,38; the contribution of each variable (gene)
in the group discrimination was displayed by the loadings
plots39. The data-reduction technique, principal compo-
nent analysis (PCA), was used to derive, through the
biplot, a graphical representation of the association
between genes and subjects, labelled by study group (see
Supplementary Material).

Results
TRD patients and drug-free depressed patients have the
strongest signatures of inflammation and glucocorticoid
resistance
TRD and drug-free depressed patients had increased

levels of circulating serum CRP (see Table 1), as previously
reported in the overlapping sample3. Specifically, CRP was
higher in TRD patients compared with responsive and
controls, and in drug-free patients compared with controls
(GLM, Wald chi2= 40.5; P < 0.001). Numerically, CRP was
higher in TRD patients (average of 5mg/L), followed by
drug-free (2.9mg/L), followed by responsive (2.2mg/L),
with controls averaging at around 1.1mg/L. There were
also significant differences in total white cell count
(ANOVA, F3,164= 4.09; P= 0.008) and absolute number of
neutrophils (ANOVA, F3,164= 3.3; P= 0.022): both were
significantly higher in TRD patients compared with con-
trols, and the gradient present for CRP (TRD > drug-free >
responsive > controls) was present also for these measures.

Thirteen of the 16 genes were significantly different
among the four groups (see Table 2, ANOVAs and post
hoc comparisons with Bonferroni correction). In general,
TRD and drug-free patients had similarly increased levels
of inflammation-related genes: this applied to both the
genes that had been measured before in depression (IL1-
beta, IL-6, TNF-alpha and MIF) and those never mea-
sured before (A2M, CRP, P2RX7, CCL2 and STAT1).
Moreover, TRD and drug-free patients also showed
similar evidence of glucocorticoid resistance (lower GR
and higher FKBP5 expression). Responsive patients had
an intermediate phenotype with only some of these genes
(IL-6, MIF, TNF-alpha and A2M as well as FKBP5) dif-
ferent from controls.
Contrary to our primary hypothesis that TRD patients

would have the strongest evidence of inflammation and
glucocorticoid resistance, none of the above genes were
significantly higher in TRD compared with drug-free
patients; indeed, CCL2 was significantly higher in drug-
free than in TRD patients (see Table 2). This suggests that
TRD and drug-free patients came, at least in part, from
phenotypically similar groups (see Discussion).
Interestingly, SGK1 was significantly higher only in the

drug-free group, while TRD and responsive patients had
levels similar to controls. Thus, albeit elevated in
depression as we hypothesised, SGK1 levels were not
linked with glucocorticoid resistance, since they were
normal in TRD patients even if they had low GR mRNAs
(see also correlation analyses below).
It is also of note that both P2RX7 and CXCL12 were

lower in the responsive group compared with controls.
For CXCL12, this confirms our hypothesis, based on the
RSD animal model27, that this gene would be reduced in
(at least some) patients with depression.
The three genes that were not differentially regulated

were three of the four interferon-responsive genes, AQP4,
ISG15 and USP-18.
The correlation matrix (Spearman’s rho) for 13 differ-

entially expressed genes together with serum CRP and
immune cell counts is presented in Fig. 1. There were
significant, positive correlations between P2RX7, pro-
inflammatory cytokines and FKBP5 mRNAs, and sig-
nificant negative correlations between all of these genes
and GR mRNA. Moreover, white cell and neutrophil
counts were (not-significantly) positively correlated with
FKBP5 (rh0= 0.20/0.21) and negatively correlated with
GR mRNA (rho=−0.21/−0.22). Together, these corre-
lations indicate that, as hypothesised, the inflammasome/
inflammatory gene over-expression and resulting immune
activation are associated with glucocorticoid resistance
and with FKBP5-mediated pro-inflammatory signalling.
Interestingly, GR was negatively correlated with FKBP5,
but neither was correlated with SGK1, confirming that
SGK1 is not a marker of GR resistance. It is also of note
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that serum CRP (largely produced by the liver) was sig-
nificantly, positively correlated with CRP mRNA (from
the whole blood).

Binomial logistic models show that a signature comprising
P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR,
discriminates between TRD and responder patients over
and above standard clinical and blood immune
assessments
Binomial logistics models were performed applying the

step-forward procedure, in order to examine the pre-
dicting performance of mRNA gene expression, clinical
data and blood immune variables, in classifying depressed
patients in the TRD or responders study group, while
addressing the co-variance between the immune genes
and adjusting for all the other clinical and immune vari-
ables (see Table 3).
The first model included the six clinical and immune

variables significantly different between the study groups
(see Table 1): state anxiety, trait anxiety, total score CTQ,

CRP, total white cells and neutrophils numbers. HAM-D
and number of failed antidepressants were excluded as
these were part of the decisional process leading to group
allocation. Trait anxiety and neutrophils numbers were
the only significant predictors, with a Nagelkerke’ pseudo-
R-squared equal to 0.53.
The second model included the 13 significant genes

from the univariate analyses (see ANOVA in Table 2).
Ten genes were significant predictors (P2RX7, IL-1b, IL-6,
MIF, TNF-alpha, CCL2, CXCL12, GR, FKBP5 and
STAT1), with a Nagelkerke’ pseudo-R-squared= 0.89.
Finally, the third model included the two significant

variables from model 1 (trait anxiety and neutrophils
number) and the ten significant genes from model 2. It
resulted in six genes (P2RX7, IL-1-beta, IL-6, TNF-alpha,
CXCL12 and GR) remaining the only significant pre-
dictors, with a Nagelkerke’ pseudo-R-squared= 0.90.
Thus, the expressions of these six genes remain significant
predictors of the allocation of depressed patients to the
TRD or responders group even after adjusting for the

Fig. 1 Correlations (Spearman’s rho) between significantly-different genes and immune measures. Coloured coefficients are statistically
different from zero at level P < 0.05; red= negative correlations, blue= positive correlations.
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other clinical and immune variables, whose variability was
fully captured by trait anxiety and neutrophils number,
and with a larger predictive ability than the standard
clinical and immune variables in Model 1 (Nagelkerke’
pseudo-R-squared= 0.90 vs. 0.53).
A second series of multinomial logistics models were

performed to examine the predicting performance of gene
expression, clinical data and blood immune variables, in
classifying all study subjects in the four study groups,
including drug–dree depressed patients and controls (see
Supplementary Results and Supplementary Table 1). We
found that a signature of five mRNAs (P2RX7, IL-6, GR,
SGK1 and TNF-alpha) together with trait anxiety sig-
nificantly predicted the allocation of subjects to their
study group.

PLSDA show that P2RX7 best discriminates TRD patients
vs. all other patients, while GR best discriminates
responsive vs. all other depressed patients
The PLSDA is presented in Fig. 2. This was conducted to

define which genes mainly contribute to discriminate
between each of the four groups or between the three
patient groups. Panel A (on the three depressed groups
only) shows that: P2RX7, and, less, CXCL12 and IL-1-beta
(all in red), best discriminate TRD vs. the other depressed
groups; CCL2, and, less, FKBP5 and MIF (all in green), best
discriminate drug-free vs. the other depressed groups; and
GR, and, less, IL-6 and A2M (all in blue), best discriminate
responsive vs. the other depressed groups. Panel B (on the
four groups) shows GR (in black) as the gene that best
discriminates controls from all the other depressed groups.
It is worth noting that the discriminant performance of
some genes overlaps on more than one patient group, as
also indicated by the PCA of the 13 differentially expressed
genes presented in Supplementary Material (Fig. S1).

Discussion
In a study examining whole-blood mRNA expression

of candidate genes in depressed patients characterised
for their depressive symptoms and response to anti-
depressants, and testing both established and hitherto
unmeasured mRNAs, we find evidence of inflamma-
some activation and glucocorticoid resistance in both
drug-free depressed patients and antidepressant-
treated TRD patients (less so in antidepressant-
treated responsive patients). Moreover, a mRNAs sig-
nature of six genes (P2RX7 and CXCL-12, both mea-
sured for the first time in psychiatric patients, as well as
IL-1-beta, IL-6, TNF-alpha and GR) is a significant
predictor of allocation of depressed patients to the
TRD or responder group in binomial logistics models,
even after adjusting for other clinical variables that are
different between groups, such as a history of child-
hood maltreatment and serum CRP.

Our data confirm our previous findings showing
increased whole blood mRNA expression of IL-6,MIF and
TNF-alpha in depressed patients vs. controls15, with
higher levels of IL-1-beta and MIF predicting TRD when
measured in drug free-depressed patients before starting
an antidepressant treatment15,17. This consistency is
particularly noticeable since the above-mentioned studies
are clinical trials with a pre–post assessment15,17, and thus
the biomarkers were measured before starting the anti-
depressants (at a time where patients were all drug-free
and their response status was still unknown) and the
response was measured prospectively. Admittedly, this
was a much better design than the present study, which
instead compares patients allocated to different groups
based on a combination of current symptomatology and
medication use as well historical treatment response. As
shown in Table 1, these leads to groups that are different
in a number of biological and clinical risk factors. All
things considered, it is thus reassuring that we replicate
both the increased IL-6, MIF and TNF-alpha in all our
depressed groups vs. controls, as well as the increased IL-
1-beta, TNF-alpha and MIF in TRD vs. responsive.
Meta-analyses of longitudinal studies have shown that

antidepressant treatment (on average, for 6–12 weeks) is
associated with decreases in serum or plasma cytokines,
such as IL-6 and TNF-alpha, both in general40 and for
SSRIs in particular41, with the most recent meta-analyses
showing that TNF-alpha, but not IL-6, is differentially
affected in responders only42. Data on longitudinal
changes in mRNA expression are much more limited; for
example, we published15 that 8-weeks of antidepressants
(escitalopram or nortriptyline) decrease IL-6 mRNA, but
this is driven by responders only, while TNF-alpha mRNA
levels do not change. In the present study we find that
levels of IL-6 and TNF-alpha mRNAs are higher in
responders than controls, although with slightly different
patterns, that is, responders have the highest IL-6 (higher
even than TRD) while TNF-alpha is lower than in TRD
patients. However, it is important to emphasise that it is
difficult to compare the present study with all the others,
because of the cross-sectional, rather than longitudinal,
nature of our study: we simply do not know what the
cytokines levels in these patients were before they started
the antidepressants.
P2RX7 is a purinergic receptor that activates the NLR

family pyrin domain containing 3 (NLRP3), a pattern-
recognition receptor that precipitates the pro-inflammatory
cascade26,43. P2RX7 is ubiquitously expressed in cells of the
immune system44, but recent research has identified its
expression also in neuronal cells, where it regulates the
function of neurotransmitters relevant to depression45. In
our study, P2RX7 is not only associated with other markers
of inflammation and with GR expression, as hypothesised,
but it is also the strongest predictors of TRD in the PLSDA,
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and one of the predictive genes in the signature originated
by the binomial and multinomial models. While one pre-
vious study found increased levels of NLRP3 in the
monocytes of depressed patients46, the only evidence so far
of a direct involvement of P2RX7 in depression comes from

genetic studies associating a polymorphism in the gene with
severity of depressive symptoms45,47.
We replicate here our previous findings showing

reduced GR mRNA and higher FKBP5 mRNA in
depressed patients15. While increased FKBP5 expression

Table 3 Binomial regression models output for detecting the best predictors of the binomial (two categories: Resp vs.
TRD) study group variable.

Logistic models Explanatory variables Likelihood ratio test Negelkerke’s pseudo-R2

Chi2 (degree of freedom) P value

Mod. (i) Trait-anxiety 23.9 (1) <0.001 0.53

State-anxiety 0.4 (1) 0.533

CRP 0.2 (1) 0.961

Neutrophils absolute 5.9 (1) 0.015

Total white cells 0.3 (1) 0.601

Total score CTQ 0.2 (1) 0.727

Mod. (ii) CXCL12 4.0 (1) 0.038 0.89

CCL2 4.9 (1) 0.023

IL-1beta 3.8 (1) 0.048

IL-6 3.6 (1) 0.037

GR 18.4 (1) <0.001

P2RX7 11.5 (1) 0.003

SGK1 2.2 (1) 0.125

TNF-alpha 3.7 (1) 0.042

FKBP5 4.5 (1) 0.004

A2M 2.1 (1) 0.076

MIF 6.1 (1) 0.018

STAT1 5.6 (1) 0.009

CRP 2.8 (1) 0.086

Mod. (iii) # GR 5.7 (1) 0.017 0.90

P2RX7 14.0 (1) <0.001

TNF-alpha 4.1 (1) 0.040

Trait-anxiety 3.9 (1) 0.051

IL-6 4.2 (1) 0.042

CCL2 3.8 (1) 0.053

IL-1beta 6.6 (1) 0.010

CXCL12 5.7 (1) 0.031

Neutrophils absolute 1.2 (1) 0.277

FKBP5 2.4 (1) 0.124

MIF 2.5 (1) 0.113

STAT1 1.4 (1) 0.235

#Explanatory variables of the model (iii) were standardised in order to take into account the different variable ranges.
Mod. (i) considering only (significantly different between group) clinical and blood immune variables; mod. (ii) considering only (significantly different between group)
genes variables and mod. (iii) considering both genes and clinical-blood immune variables resulted remained significant in mod. (i) and (ii).
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is well known to induce glucocorticoid resistance48,49,
new evidence indicates that FKBP5 can also directly
promote inflammation by strengthening the interactions
of NF-κB regulatory kinases16, and our findings showing
that pro-inflammatory genes are positively correlated with
FKBP5 expression confirm these functional links. Indeed,
the ultimate role of the reduced GRmRNA in our findings
is difficult to define, as most clearly exemplified by the fact
that responsive patients have GR levels indistinguishable
from controls yet have increased IL-6, MIF, TNF-alpha
and A2M levels. Moreover, recent data from the larger
BIODEP sample show that only drug-free patients have
increased cortisol levels50, but we show here that both
drug-free and TRD have reduced GR mRNA. While the
concept of reduced GR function and expression leading
to ‘glucocorticoid resistance’ in depression has been
extensively discussed before51–55, including for TRD
patients56–58, the present study shows that reduced GR

mRNA expression alone cannot fully explain the
increased inflammation. Indeed the aforementioned study
by Mellon et al.21 found upregulation of immune path-
ways in mononuclear cells from depressed patients in the
absence of changes in GR function, and our own clinical
meta-analysis on this topic has found only limited evi-
dence linking ‘glucocorticoid resistance’ to inflamma-
tion59. Furthermore, it is important to emphasise here the
additional confounding effects of antidepressant treat-
ment. Previous studies have shown that antidepressants
increase the expression and the function of the GR in
experimental and clinical models51,53,60,61, and we have
also found that GR mRNA levels are increased by anti-
depressants in the aforementioned longitudinal mRNA
gene expression study, irrespective of response15. In the
present study, we find that GR mRNA levels are ‘normal’
in responsive patients but lower in TRD, even if both
groups have similar profiles of antidepressant treatment.

Fig. 2 Partial least squares discriminant analysis outputs: loading plots. The partial least square discriminant analysis (PLSDA) was conducted to
define which genes contribute to discriminate between each of the four groups. The plots depict the loadings of each gene: the larger the loading,
the better the gene discriminates the study group from the others. Loadings summarise how the genes are related to each other as well as
discriminate between the groups: all genes with positive loadings are positive correlated with each other and negatively correlated with genes with
negative loadings; colours indicate the group for which the genes have a maximal median value. Panel A (on the three depressed groups only)
shows that P2RX7, and, less, CXCL12 and IL-1-beta (all in red), best discriminate TRD vs. the other depressed groups; CCL2, and, less, FKBP5 and MIF
(all in green), best discriminate drug-free vs the other depressed groups; and GR, and, less, IL-6 and A2M (all in blue), best discriminate responsive vs.
the other depressed groups. Panel B (on the four groups) shows GR (in black) is the gene that best discriminates controls from all the other depressed
groups.
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In contrast, we find increased levels of the GR-target gene,
SGK1, in drug-free depressed patients but not in
antidepressant-treated (TRD and responsive) patients,
and Frodl et al.62 also measured SGK1 mRNA in
depressed patients who were mostly on antidepressants
and found no differences compared with controls. As
mentioned above, the lack of longitudinal data in the
present study makes it difficult to dissect the differential
effects of antidepressant treatment vs. clinical improve-
ment on mRNAs expression.
CCL2 and CXCL12 are chemokines involved in the RSD

model of depression, characterised by increased inflam-
mation and glucocorticoid resistance27. These mice show
increased CCL2 in circulation and increased levels of the
receptor for CCL2, C–C chemokine receptor type 2
(CCR2), in the brain, leading to monocyte recruitment to
the brain and increased microglia activation. Consistently,
we find increased CCL2 mRNA expression in TRD and
drug-free patients, and other studies found elevated
serum CCL2 (also known as Monocyte chemoattractant
protein 1, MCP-1) in depressed patients63. Interestingly,
in the present study we find lower levels of CCL2 in TRD
patients than in drug-free patients (even if both are higher
than in controls), and we have previously found, in a
different sample, lower levels of serum CCL2 (MCP-1) in
TRD vs. responsive patients64. Thus, it is possible that
lower CCL2 in depression identifies a more severe, TRD
group. Differently from CCL2, CXCL12 inhibits the traf-
ficking of monocytes to the circulation, and in fact
CXCL12 levels are reduced in the RSD model55. A recent
meta-analysis did not find any studies measuring CXCL12
in depression63, but it is interesting that we find reduced
CXCL12 in responsive depressed patients in our study
(and normal levels in the other depressed groups),
showing some consistency with the RSD model.
Both CRP and A2M mRNAs are elevated in TRD and

drug-free depressed patients in our study. There is an
extensive literature showing elevated levels of serum
(protein) CRP in depression, with more than 13,000
patients included in recent meta-analyses2,4 and evidence
of increased CRP also in the cerebrospinal fluid65.
Interestingly, while the liver is considered the most
important source of CRP, CRP mRNA has been detected
in macrophages from the lung66 and from atherosclerotic
plaques67. Our study not only finds that CRP mRNA is
expressed in circulating blood cells, but also that the
whole-blood CRP mRNA is highly correlated with the
levels of (liver-produced) serum CRP protein. A2M is
another acute phase protein, like CRP, but there are only
three studies looking at A2M serum levels in depression,
with conflicting findings68–70. We have recently described
higher A2M mRNA in both whole blood mRNA of adult
humans exposed to early life trauma and the hippo-
campus of adult rats exposed to prenatal stress, and

identified seven polymorphisms in the A2M gene that
show significant gene × environment interactions with
childhood stress in predicting depressive symptoms in
adulthood28. Together, this evidence supports a role of
A2M in depression, but further studies are needed.
Finally, we measure here the four interferon-responsive

genes, acquaporin-4, ISG15, STAT1 and USP-18, which
are elevated in the whole blood29 and in human neurones
following IFN-alpha32. Only STAT1 is increased in the
present study, in both drug-free and TRD patients, sug-
gesting that the upregulation of the other three genes is
only visible after pharmacological inflammation induced
by IFN-alpha, or in brain tissue. Although this is the first
study measuring STAT1 in the blood of depressed
patients, the above-mentioned studies in the NESDA
cohort20 and in non-responders to citalopram25 found an
upregulation of, respectively, STAT3 and JAK2 mRNAs,
and another study found STAT3 cell signalling altera-
tions in depression71.
The study has two main limitations that must be

discussed. Firstly, as mentioned above, this is not a
clinical trial with pre–post measures of gene expression
or longitudinal ascertainment of antidepressant resis-
tance, and thus cross-sectional comparisons between
groups are likely to be influenced by other clinical and
sociodemographic variables that differ between groups.
Of course, our analyses attempt to adjust for such group
differences in the binomial/multinomial logistic
regression models. Moreover, we had already measured
the mRNA levels of seven of the 16 genes (IL-1-beta, IL-
6, TNF-alpha, MIF, GR, FKBP5 and SGK1) in drug-free
depressed patients15 and in ‘prospectively-defined’ TRD
patients15,17,18, and in the present paper we replicate all
of these findings. Nevertheless, the cross-sectional
design of the present study implies that, especially for
the genes never measured before, the findings need to
be replicated. The second important limitation is that
the measurement of mRNA gene expression is in the
whole blood rather than sorted immune cells. Of
course, the ‘whole-blood’ approach has the advantages
of speed and simplicity of blood collection and handling
‘at the bedside’, which is essential for the development
of clinically useful biomarkers. However, we do not
know which cells predominantly contributes to the
mRNA findings, and furthermore we lack functional
cellular data, for example, to measure inflammasome
activation or glucocorticoid resistance. Thus, future
studies should include an in-depth characterisation of
immune cells-specific mRNA profiles as well as func-
tional methodologies.
Notwithstanding these limitations, we believe that our

paper is relevant to novel approaches for personalised
psychiatry and novel targets for immune-related anti-
depressants therapies. We find that a combination of six
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genes (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL-12 and
GR) performs better than the routine clinical and
immunological variables in identifying patients who are
TRD or responsive to antidepressants. If replicated in
larger, longitudinal samples, this signature might be
helpful in identifying patients that should be fast-tracked
into augmentation regimes—potentially a step toward
overcoming the classic ‘trial and error’ approach in
treating depression. In terms of novel targets, antagonists
of P2RX772, JAK73, CCR274 and FKBP516 are all novel
antidepressant tools supported by our findings. Future
studies will need to examine if these new treatments work,
and whether responses to such new treatments can be
improved by selecting patients with abnormal levels of
relevant mRNAs75.
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