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Structural neuroimaging correlates of social
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Abstract
Autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder
(OCD) have been associated with difficulties recognizing and responding to social cues. Neuroimaging studies have
begun to map the social brain; however, the specific neural substrates contributing to social deficits in
neurodevelopmental disorders remain unclear. Three hundred and twelve children underwent structural magnetic
resonance imaging of the brain (controls= 32, OCD= 44, ADHD= 77, ASD= 159; mean age= 11). Their social deficits
were quantified on the Social Communication Questionnaire (SCQ) and the Reading the Mind in the Eyes Test (RMET).
Multivariable regression models were used to examine the structural neuroimaging correlates of social deficits, with
both a region of interest and a whole-brain vertex-wise approach. For the region of interest analysis, social brain
regions were grouped into three networks: (1) lateral mentalization (e.g., temporal–parietal junction), (2) frontal
cognitive (e.g., orbitofrontal cortex), and (3) subcortical affective (e.g., limbic system) regions. Overall, social
communication deficits on the SCQ were associated with thinner cortices in the left lateral regions and the right insula,
and decreased volume in the ventral striatum, across diagnostic groups (p= 0.006 to <0.0001). Smaller subcortical
volumes were associated with more severe social deficits on the SCQ in ASD and ADHD, and less severe deficits in
OCD. On the RMET, larger amygdala/hippocampal volumes were associated with fewer deficits across groups. Overall,
patterns of associations were similar in ASD and ADHD, supporting a common underlying biology and the blurring of
the diagnostic boundaries between these disorders.

Introduction
Social deficits are a defining feature of autism spectrum

disorder (ASD), but also frequently affect children with
attention-deficit/ hyperactivity disorder (ADHD)1, and
can occur in obsessive-compulsive disorder (OCD) as

well2–5. Increasingly, recognition of the overlapping and
related nature of both the symptoms and the biology of
different neurodevelopmental disorders6–8 has led to a
call for research that spans diagnostic boundaries, and
focuses instead on dimensions of psychopathology9.
Decades of neuroimaging research have begun to

delineate the neural substrates of sociality. Different the-
oretical models of the social brain have been put forward
from meta-analyses10,11 and reviews of the literature12–14

(summarized in Supplementary Table 1). Across models,
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three functional/structural groups emerge. Brain regions
hypothesized to be involved in mentalization and empathy
(group 1), cluster along the midline and lateral aspects of
the brain, including the temporal–parietal junction (TPJ),
superior temporal gyrus/sulcus (STS/STG), dorsal medial
prefrontal cortex, temporal poles, and the posterior cin-
gulate. Anterior and prefrontal regions (group 2),
including the anterior and dorsal cingulate, orbital frontal
cortex, and the dorsal and ventral lateral prefrontal cor-
tices, may contribute to executive function and cognitive
control over affective and social processes. Deeper cortical
and subcortical structures (group 3), including the insula,
amygdala, hippocampus, and the dorsal and ventral
striatum, are more central to affective responding, mem-
ory, and social reward processing (Supplementary
Table 1).
Structural neuroanatomical differences in many of these

regions have been detected in individuals with OCD, ASD,
and ADHD compared to controls8,15–21. For example,
recent meta-analyses suggest increased frontal lobe
thickness in ASD20, thinner temporal/parietal thickness in
ASD and OCD20,22, and smaller subcortical volumes in
ASD and ADHD20,23. The extent to which social deficits
may differentially localize to specific brain regions/net-
works in different disorders is unclear, however24. In ASD,
social deficits have been associated with both larger25–29

and smaller27,30,31 cortical measurements, particularly in
frontal and temporal–parietal regions. In ADHD, social
deficits were associated with greater overall cortical gray
matter volume32 and smaller left caudate volumes33.
Cortical gray matter volume is a product of cortical

thickness and surface area. Recent work has provided
evidence that cortical thickness and cortical surface area
measurements are under distinct genetic influences34, and
follow unique developmental timelines35,36, necessitating
that they be studied independently. Cortical thickness
measurements on magnetic resonance imaging (MRI) are
thought to reflect the underlying cortical microstructure,
involving the number and organization of cortical neu-
rons, neuronal dendritic arborization, the number and
size of glial cells, and to some extent the maturation of the
adjacent white matter37. Cortical thickness, including the
timing and rate of cortical thinning, has been a major area
of study across neurodevelopmental disorders, particu-
larly in ASD24.
The association between brain (i.e., cortical thickness/

subcortical volume) and behavior (i.e., social deficits) was
the focus of the following study, in efforts to identify and
compare the neural substrates of sociality across dis-
orders. Given that the specific behavioral dimensions that
contribute social impairments may vary across neurode-
velopmental disorders (e.g., impaired mentalization in
ASD38, executive function in ADHD39, and reward pro-
cessing in OCD40), one hypothesis is that the neutral

substrates of sociality will also differ by diagnosis (e.g.,
primarily lateral mentalization regions in ASD, frontal
cognitive regions in ADHD, and subcortical regions
OCD). An alternative hypothesis is that the brain regions
associated with social deficits will span diagnostic
boundaries. In children with ASD, ADHD, and OCD, for
example, white matter fractional anisotropy correlated
with adaptive functioning abilities, irrespective of diag-
nosis8. Neuroimaging analyses comparing the structural
neuroanatomical correlates of social deficits across chil-
dren with ASD, ADHD, or OCD have not yet been
performed.
To address this knowledge gap, we first compared

cortical thickness/subcortical volume measurements in
social brain regions across a group of children with ASD,
ADHD, OCD, or controls. Next, we examined how cor-
tical thickness/subcortical volume corresponded with
social deficits across disorders. We hypothesized that
social deficits would correlate with structural anatomy,
irrespective of diagnosis.

Methods
Participants
Participants were recruited via the Province of Ontario

Neurodevelopmental Disorders Network, across four
Centers in Ontario, Canada (Holland Bloorview Kids
Rehabilitation Hospital, Toronto; The Hospital for Sick
Children, Toronto; McMaster Children’s Hospital,
Hamilton; and Lawson Health Research Institute, Lon-
don). Controls were recruited through advertising in
public transit, in hospitals, and on social media. Inclusion
criteria were age <18 years, and a clinical diagnosis of
ADHD, ASD, or OCD. Controls had no developmental
diagnosis, and no first-degree family history of such.
Participants were recruited into the study based on their
primary psychiatric diagnosis; potential comorbid symp-
toms/traits were captured on symptom surveys (described
below). Standardized research assessments confirmed the
primary clinical diagnosis using established metrics (the
Autism Diagnostic Observation Schedule—241, the Aut-
ism Diagnostic Interview-Revised (ADI-R)42, the Kiddie-
Schedule for Affective Disorders and Schizophrenia43, the
Parent Interview for Child Symptoms44, and the Chil-
dren’s Yale-Brown Obsessive-Compulsive Scale45).
Research ethics board approval was obtained at each
institution.

Social metrics: The Social Communication Questionnaire
and the Reading the Mind in the Eyes Test
The Social Communication Questionnaire (SCQ) is an

established 39-item measure that quantifies risk for ASD
through parent/caregiver report on social abilities and
behaviors46. For our analyses, we focused on the 28 items
assessing current and past social communication/

Baribeau et al. Translational Psychiatry            (2019) 9:72 Page 2 of 14



interaction skills, excluding items on repetitive behaviors.
The Reading the Mind in the Eyes Test (RMET) is a
validated social perception task, in which study partici-
pants are asked to label the emotion/mental state in a still
image of human eyes47. This metric quantifies social
perception abilities. Participants in this study completed
the child version of the RMET, which included at total of
28 items48. For simplicity and congruence with the SCQ,
we examined the number of incorrect RMET items.
Therefore, for both measures, higher scores indicate
greater social deficits.

Other measures
To characterize the study sample, ADHD symptoms

were quantified across groups using the Child Behavior
Checklist (CBCL) ADHD subscale. This is a parent report
measure that yields age- and sex-normed T-scores. T-
scores >65 are suggestive of elevated symptomatology49.
To quantify OCD symptoms, the Toronto Obsessive-
Compulsive scale was used. This is a parent report mea-
sure, where items are scored −3 to +3; total scores >0
discriminated OCD cases from controls in a community
sample50.

MRI and image analysis
All structural MRI data were collected at the Hospital

for Sick Children in Toronto, between June 2012 and July
2017. The majority of scans (74%) took place on the
3-Tesla Siemens Trio TIM; a hardware upgrade to the
Siemens Prisma scanner took place in June of 2015 (this
affected 26% of the ADHD sample, 24% of the ASD
sample, 62% of controls, and 7% of the OCD sample).
Cortical thickness measures were extracted from

T1-weighted images using the CIVET pipeline (version
2.1.0)51 The CIVET pipeline applies a non-uniformity
correction on the images52 followed by stereotaxic regis-
tration to the Montreal Neurologic Institute (MNI
ICBM152) template (non-linear sixth-generation tar-
get)53,54. Next, brains were masked, extracted, and clas-
sified into gray matter, white matter, and cerebrospinal
fluid, which were used to generate gray and white matter
surfaces55–59. A surface-diffusion kernel was applied60,
and regions were registered to the automated anatomical
labeling atlas61–63. Cortical thickness measurements were
taken from the distance between the two smoothed sur-
faces64,65. Quality assurance was assessed at the time of
the scan for motion artifact, and was analyzed through the
CIVET quality control (QC) analysis pipeline. Scans that
were flagged on the QC analysis were manually reviewed
for quality, and potentially excluded. Thickness mea-
surements from the automated anatomical labeling atlas
regions were grouped into regions of interest to reflect the
three primary social neural networks10,12–14 (see Supple-
mentary Table 1). We computed the vertex-wise thickness

for each combined region of interest, and also examined
the individual vertices across the whole brain. Subcortical
structures were segmented using multiple automatically
generated templates (MAGeT) and their volumes deter-
mined from the segmentation results66. For the region of
interest analysis, we examined the association between
mean thickness/volume measurements and social deficits
in both the left and right hemispheres combined, except
where previous data suggested significant lateralization
effects (i.e., the temporal–parietal region24,29,67, the
amygdala68,69, the dorsal striatum33, and the insula70].

Statistical analyses
Statistical analyses were performed using SAS (Uni-

versity Edition) version 9.4, and R version 3.5.1.
As a preliminary analysis, we initially tested for diag-

nostic differences in brain structure for the combined
social regions of interest, as well as mean whole-brain
cortical thickness and volume. For this, we used a linear
regression model to estimate the least-squares (LS) mean
cortical thickness (in mm) by region, or mean volume
(mm3) for subcortical structures, treating diagnosis (ASD,
ADHD, OCD, or control) as a categorical predictor vari-
able, while also including age, sex, and hardware upgrade
as covariates to account for their effects.
Next, we used a logistic regression model to examine

the proportion of items selected on the social measures
(SCQ score/28 items, or RMET incorrect score/28 items)
as the dependent variable, predicted by each millimeter
increase in cortical thickness, or 0.1 cm3 increase in sub-
cortical volume. Regions were examined in the three
structural/functional groups. Odds ratios (ORs) are pre-
sented; ORs >1 indicate greater deficits with increasing
size, whereas ORs <1 indicate fewer social deficits with
increasing size. We included age, sex, hardware upgrade,
and diagnosis as covariates, while also testing for inter-
actions between thickness/volume and diagnosis. Where
the thickness/volume-by-diagnosis interaction term was
non-significant (p > 0.05), the interaction term was drop-
ped from the model and ORs were presented across all
groups combined. Where the interaction term was sig-
nificant, ORs were presented for the diagnostic groups
separately. Logistic regression analysis was chosen given
that scores on the SCQ and RMET have a ceiling/floor,
and follow a binomial distribution. Results are presented
without correction for multiple comparisons in order to
convey overall patterns; associations that remained sig-
nificant after a false discovery rate (FDR) correction71 are
indicated in the text/tables.
As a secondary analysis, the association between cortical

thickness and social behavior was examined using a
whole-brain vertex-wise approach, with the same logistic
regression models applied to 70,000 vertices across the
entire brain. ORs for vertices that remained significant
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after an FDR correction (q < 0.05) are presented graphi-
cally. The proportion of significant voxels, and the num-
ber of significant peaks (i.e., significant statistical maxima
within a five vertex radius) per region of interest are also
presented.

Results
Demographic characteristics
Of 343 initial scans, 31 (9%) were excluded due to low

quality. Demographic data for all remaining participants
are presented in Table 1. As expected, the ASD group had
the highest level of social deficits on the SCQ and the
RMET. All groups separated in terms of ADHD symp-
toms on the CBCL (ADHD >ASD >OCD > controls). The
ADHD and control groups were similar in terms of OCD
symptom severities. Correlations between behavioral
measures are presented in Supplementary Table 2.

No diagnostic differences in social brain structures
between groups
The multivariable predicted LS means for the regions of

interest for each diagnostic group are presented in Sup-
plementary Table 3. There were no significant differences
in brain structure between diagnostic groups with the
exception of the hippocampus, where diagnosis had a
nominal effect on hippocampal volumes (F= 4.10, p=
0.007, non-significant after FDR correction). On pairwise
comparisons, the OCD group had larger mean hippo-
campal volumes. Also adjusting for whole-brain volume
yielded a less significant main effect of diagnosis on hip-
pocampal volume (F= 2.62, p= 0.05); other structures
remained non-significant.

Structural neuroimaging correlates of social
communication deficits are similar in ASD and ADHD; OCD
has some unique features
Contrary to our initial hypotheses, the association

between social brain region size and social deficits as
measured by the SCQ varied significantly by diagnosis in
the right lateral regions, frontal regions, left and right
amygdala, hippocampus, bilateral dorsal striatum, and the
left insula (p < 0.008 for all region-by-diagnosis interac-
tion terms) (Table 2). Distinct patterns emerged for each
diagnostic group (Fig. 1). In the control group, thinner
lateral regions and insula, and smaller left amygdala and
ventral striatal volumes were associated with higher SCQ
scores, therefore greater social deficits (OR <1.0). Con-
versely, in the OCD group, while thinner cortical regions
were associated with greater social deficits, smaller sub-
cortical volumes and left insular thickness were associated
with fewer social deficits (OR >1.0). In ADHD and ASD,
thinner cortical and smaller subcortical structures were
associated with increased social deficits in a similar pat-
tern. Findings remained significant after FDR correction

(Table 2). The distinct subcortical pattern (e.g., OR >1.0 in
OCD, and <1.0 in ASD and ADHD) persisted after also
adjusting for comorbid OCD symptoms (on the TOCS) or
ADHD symptoms (on the CBCL-ADHD subscale) (data
not shown). Across all findings, wide confidence intervals
and significant spread on scatter plots (shown in Sup-
plementary Figure 1) suggested a high degree of hetero-
geneity in patterns of association.

Social perception deficits inversely correlated with
amygdala and hippocampal volumes across diagnoses
On the RMET, region-by-diagnosis interaction terms

were only significant in the right and left lateral regions
(p= 0.02 and 0.04) and the right insula (p= 0.02),
although findings became non-significant after FDR cor-
rection. For these regions, interaction terms were kept in
the model to convey patterns, however. Specifically, the
ASD group showed a significant association (thinner
cortex= greater deficits) and other groups were non-
significant (Table 3, Fig. 2 (top panel)). Elsewhere, larger
left amygdala volume (p < 0.0001), right amygdala volume
(p= 0.003), and hippocampal volumes (p= 0.001) were
associated with fewer social deficits across groups. As a
sensitivity analysis, we also adjusted for IQ in the model,
given data showing that RMET scores vary with cogni-
tion1. Adjusting for IQ resulted in a similar pattern of
associations (Supplementary Table 4).

Whole-brain vertex-wise analysis
On whole-brain vertex-wise analysis, for the SCQ, pat-

terns of associations were similar as found with the region
of interest approach (Fig. 3, Supplementary Tables 5 and
6). Specifically, in the right lateral regions, 12% of voxels
were significant in ADHD, 24% in ASD, and 87% in OCD,
where generally thicker cortices were associated with
fewer social deficits. For the left lateral regions, group
differences were less pronounced (17% in ADHD, 22% in
ASD, and 30% in OCD). Similarly, for the combined
frontal regions, 18% of voxels were significant in ADHD,
39% in ASD, and 70% in OCD. The number of statistical
peaks within a five vertex radius generally mirrored the
proportion of significant voxels (Supplementary Tables 5
and 6). No associations remained significant after FDR
correction for the control group. For OCD, vertex-wise
associations were more lateralized than with the region of
interest approach. The majority of the right hemisphere
showed significant associations (where thicker cortex=
fewer deficits); there were reciprocal effects (thicker cor-
tex= greater social deficits) in the left insula (see Fig. 3).
For the RMET, participants with ASD had fewer social
deficits with thicker cortices in both the left (16% of
voxels) and right (24% of voxels) lateral regions, with
scattered frontal associations (30% of voxels), partially
consistent with patterns in the region of interest analyses
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(Fig. 2, bottom panels). For the ADHD group, thicker
cortices were associated with greater social deficits in the
right temporal lobe, and the left occipital lobe. No regions
remained significant after FDR correction for the OCD or
control groups on the RMET.

The association between brain structure and social
communication abilities may vary by age
As an exploratory analysis, we also examined for age

effects on the association between brain region and social
deficits by checking for age-by-region interaction terms
for the regions of interest. On the SCQ, the right lateral
region showed a highly significant (χ2= 21.82, p < 0.0001)
age-by-region interaction. Specifically, the association
between right lateral region thickness and SCQ score was
more pronounced at younger ages (age 7 OR: 0.17
(0.10–0.30)), and was less significant in older children (age
11 OR: 0.39 (0.29–0.53), age 15 OR: 0.89 (0.57–1.35)).
Several other regions showed a similar pattern, although
the effect was less pronounced and would become non-
significant after a correction for multiple comparisons
(age-by-region interaction term p value for left lateral
regions= 0.03, frontal regions= 0.02, hippocampus=
0.02, right dorsal striatum= 0.01). There were no sig-
nificant age-by-region interactions for analyses involving

the RMET. For the right lateral region, we then also tested
for a three-way interaction term “age-by-region-by-diag-
nosis,” to determine whether the age effects on the
brain–behavior relationship varied across diagnostic
groups. There was a nominally significant three-way
interaction term (p= 0.05). ASD and ADHD had more
significant associations between brain and behavior on the
SCQ at younger ages (OR age 7 for ASD: 0.20 (0.10–0.40);
OR age 7 ADHD: 0.24 (0.08–0.70); OR age 15 ASD: 1.81
(1.07–3.06); OR age 15 ADHD: 0.94 (0.23–3.82)), whereas
the opposite pattern was observed for the OCD and
control groups (OR age 7 control: 0.24 (0.03–1.80), OR
age 7 OCD: 0.50 (0.02–14.2); OR age 15 control: 0.02
(0.01–0.4), OR age 15 OCD (0.12 (0.03–0.45)).

Exploratory analysis involving oxytocin receptor (OXTR)
polymorphisms
There were 100 participants with ASD, and 51 partici-

pants with ADHD who also had genotype data available
regarding single-nucleotide polymorphisms (SNPs) in the
OXTR gene (Supplementary Table 7). Previous work on
the same study sample suggested three SNPs in OXTR
(rs53576, rs237997, and rs2254298) modify the severity of
social deficits in ASD and ADHD72. We therefore exam-
ined for associations between OXTR genotype and brain

Table 2 Association between social regions of interest and social deficits on the SCQ

Region Wald Χ2, p value OR ASD, 95% CI OR ADHD, 95% CI OR OCD, 95% CI OR Control, 95% CI

Region Region × Dx

Lateral mentalization regions

Left lateral regions 12.21, 0.0005 0.55, 0.39–0.77 0.55, 0.39–0.77 0.55, 0.39–0.77 0.55, 0.39–0.77

Right lateral regions 16.62, 0.008 0.71, 0.48–1.03 0.54, 0.27–1.07 0.17, 0.083–0.33 0.12, 0.03–0.57

Frontal cognitive regions

Frontal regions 18.85, 0.0003 0.49, 0.30–0.79 0.44, 0.18–1.05 0.03, 0.01–0.10 0.29, 0.55–1.48

Deeper and subcortical affective regions

Left amygdala1 27.53, <0.0001 0.92, 0.87–0.98 0.79, 0.73–0.87 1.20, 1.03–1.41 0.60, 0.41–0.87

Right amygdala1 35.05, <0.0001 1.01, 0.96–1.07 0.84, 0.76–0.93 1.39, 1.21–1.61 0.96, 0.87–1.07

Hippocampus1 38.73, <0.0001 0.93, 0.88–0.97 0.97, 0.89–1.06 1.43, 1.25–1.63 0.96, 0.84–1.10

Left dorsal striatum2 32.97, <0.0001 0.88, 0.81–0.96 0.80, 0.68–0.93 1.72, 1.36–2.19 0.99, 0.67–1.48

Right dorsal striatum2 25.32, <0.0001 0.87, 0.80–0.95 0.80, 0.68–0.92 1.60, 1.24–2.05 1.00, 0.70–1.43

Ventral striatum2 14.86, <0.0001 0.63, 0.50–0.80 0.63, 0.50–0.80 0.63, 0.50–0.80 0.63, 0.50–0.80

Left insula 12.79, 0.005 1.05, 0.75–1.46 1.41, 0.65–3.04 6.71, 2.53–17.84 1.40, 0.38–5.19

Right insula 7.52, 0.006 0.70, 0.53–0.90 0.70, 0.53–0.90 0.70, 0.53–0.90 0.70, 0.53–0.90

Dx diagnosis, ASD autism spectrum disorder, ADHD attention-deficit/hyperactivity disorder, OCD obsessive-compulsive disorder, SCQ Social Communication
Questionnaire, social interaction, and communication items only, OR odds ratios, FDR false discovery rate
ORs are the odds of scoring on an SCQ item per mm increase in thickness, or 10.1cm3 increase in volume, or 21.0 cm increase in volume. Models treat SCQ scored/total
as the dependent variable, and have been adjusted for the effects of age, sex, diagnosis, scanner upgrade, and diagnosis-by-region interactions, as well as whole-brain
volume for volumetric structures. Where diagnosis-by-region interactions were non-significant (p > 0.05), they were dropped from the model. Bolded values remained
significant (q < 0.05) after FDR correction
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Fig. 1 Log odds ratios of the association between brain structure in social regions of interest and social communication deficits on the
SCQ. The figure shows the log odds ratios (ORs) for regions where p < 0.05 in the multivariable model. ORs indicate the change in SCQ score per
increase in size (per mm increase in thickness, 0.1 cm3 increase in volume for the amygdala/hippocampus, or 1.0 cm3 increase in volume for other
subcortical structure). Blue indicates ORs <1, where thicker/larger structures are associated with fewer deficits. Orange indicates ORs >1, where
thicker/larger structures are associated with greater social deficits. OCD: obsessive-compulsive disorder, ADHD: attention-deficit/ hyperactivity
disorder, ASD: autism spectrum disorder, SCQ: Social Communication Questionnaire
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structure in brain regions previously found to be affected
by OXTR genotype in control populations (insula, limbic
system, dorsal cingulate, temporal–parietal (lateral)
regions)73–80. Exploratory analyses (described in Supple-
mentary Methods) failed to detect any significant asso-
ciations between OXTR genotype and brain structure after
correction for multiple comparisons (Bonferroni correc-
tion with 24 tests, p= 0.002), with the exception of the left
insula, in ADHD (Supplementary Table 8). Here, rs53576
AA allele carriers had thicker cortices in the insula
compared to other genotype groups (AA vs. GA p=
0.0005, AA vs. GG p= 0.0008).

Discussion
In this study, we examined and compared the structural

neuroimaging correlates of social abilities across a large
sample of children and youth with different neurodeve-
lopmental disorders. Overall data suggest similarities in
the biological substrates of social communication abilities
in ASD and ADHD; both had widely distributed associa-
tions between brain structure and SCQ score, involving
multiple subcortical and cortical regions. Exploratory
analyses identified age-associated difference in this effect
in the right lateral regions, which were congruent in ASD
and ADHD as well. For social perception on the RMET,

all four groups showed a similar pattern of associations
involving subcortical regions, while participants with ASD
also had significant findings in the right insula and the
right lateral regions. Across all diagnostic groups, asso-
ciations were highly heterogeneous.
Our results are consistent with emerging data suggest-

ing ASD and ADHD may be overlapping conditions, with
related neuropathology and symptomatology81,82. For
example, diffusion tensor imaging has shown a lack of
diagnostic differences in fractional anisotropy of white
matter tracts between ASD and ADHD, while OCD
appeared distinct8. Latent class analysis of symptom sur-
veys and cognitive profiles suggest overlapping cognitive
deficits in both disorders81. Patterns of social perception
deficits were strikingly similar in ASD and ADHD as
well1. Rare copy number variants affecting many of the
same genes have been shown to contribute to risk for both
ASD and ADHD83.
Previous studies examining the association between

brain structure and social deficits have yielded incon-
sistent results. Most studies have used the Social
Responsiveness Scale (SRS) or subscales of the ADI-R to
quantify social communication deficits, primarily in con-
trol populations. Recent work suggests the SRS may be
highly sensitive to non-specific behavioral problems,

Table 3 Association between social regions of interest and social deficits on the RMET

Region Wald Χ2, p value OR ASD OR ADHD OR OCD OR Control

Region Region × Dx

Lateral mentalization regions

Left lateral regions 8.16, p= 0.04 0.60, 0.36–0.98 1.34, 0.73–2.46 2.77, 0.72–10.61 1.42, 0.50–4.12

Right lateral regions 9.51, p= 0.02 0.55, 0.35–0.86 1.52, 0.86–2.68 1.24, 0.60–2.55 0.94, 0.34–2.65

Frontal cognitive regions

Frontal regions 0.58, p= 0.4 0.85, 0.55–1.30 0.85, 0.55–1.30 0.85, 0.55–1.30 0.85, 0.55–1.30

Deeper and subcortical affective regions

Left amygdala1 23.34, p < 0.0001 0.88, 0.83–0.92 0.88, 0.83–0.92 0.88, 0.83–0.92 0.88, 0.83–0.92

Right amygdala1 8.74, p= 0.003 0.94, 0.90–0.98 0.94, 0.90–0.98 0.94, 0.90–0.98 0.94, 0.90–0.98

Hippocampus1 10.71, p= 0.001 0.93, 0.89–0.97 0.93, 0.89–0.97 0.93, 0.89–0.97 0.93, 0.89–0.97

Left dorsal striatum2 0.05, p= 0.8 0.99, 0.92–1.07 0.99, 0.92–1.07 0.99, 0.92–1.07 0.99, 0.92–1.07

Right dorsal striatum2 0.00, p= 0.9 1.00, 0.92–1.08 1.00, 0.92–1.08 1.00, 0.92–1.08 1.00, 0.92–1.08

Ventral striatum2 0.47, p= 0.5 1.09, 0.86–1.38 1.09, 0.86–1.38 1.09, 0.86–1.38 1.09, 0.86–1.38

Left insula 0.58, p= 0.4 0.89, 0.65–1.21 0.89, 0.65–1.21 0.89, 0.65–1.21 0.89, 0.65–1.21

Right insula 9.63, p= 0.02 0.48, 0.33–0.69 1.21, 0.72–2.03 1.02, 0.48–2.17 0.61, 0.28–1.31

Dx diagnosis, ASD autism spectrum disorder, ADHD-attention-deficit/hyperactivity disorder, OCD obsessive-compulsive disorder, RMET Reading the Mind in the Eyes
Test incorrect item, OR odds ratios
ORs are the odds of scoring incorrectly on an RMET item per mm increase in thickness, or 10.1cm3 increase in volume, or 21.0cm increase in volume. Models treat
RMET incorrect/total as the dependent variable, and have been adjusted for the effects of age, sex, diagnosis, scanner upgrade, and diagnosis-by-region interactions,
as well as whole-brain volume for volumetric structures. Where diagnosis-by-region interactions were non-significant (p > 0.05), they were dropped from the model.
Bolded values remained significant (q < 0.05) after FDR correction
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Fig. 2 Log odds ratios of the association between brain structure and social perception deficits on the RMET. Top panels show the region of
interest approach; log odds ratios (ORs) are for regions that were significant the multivariable model after false discovery rate (FDR) correction (q=
0.05). The bottom panels present the vertex-wise analysis for ASD and ADHD; vertices are shown that remained significant after an FDR correction at
q= 0.05 (no vertices remained significant for the controls or OCD group). ORs indicate the change in RMET score per increase in size (per mm
increase in thickness, 0.1 cm3 increase in volume for the amygdala/hippocampus, or 1.0 cm3 increase in volume for other subcortical structures). Blue
indicates ORs <1, where thicker/larger structures are associated with fewer deficits. Orange indicates ORs >1, where thicker/larger structures are
associated with greater social deficits. OCD: obsessive-compulsive disorder, ADHD: attention-deficit/ hyperactivity disorder, ASD: autism spectrum
disorder, RMET: Reading the Mind in the Eyes Test

Baribeau et al. Translational Psychiatry            (2019) 9:72 Page 9 of 14



Fig. 3 Log odds ratios of the association between cortical thickness and social communication deficits on the SCQ using a vertex-wise
analysis. Vertices are shown that remained significant after an false discovery rate (FDR) correction at q= 0.05 (no vertices remained significant for
the control group). Odds ratios (ORs) indicate the change in SCQ score per increase in size (per mm increase in thickness, 0.1 cm3 increase in volume
for the amygdala/hippocampus, or 1.0 cm3 increase in volume for other subcortical structures). Blue indicates ORs <1, where thicker/larger structures
are associated with fewer deficits. Orange indicates ORs >1, where thicker/larger structures are associated with greater social deficits. OCD: obsessive-
compulsive disorder, ADHD: attention-deficit/hyperactivity disorder, ASD: autism spectrum disorder, SCQ: Social Communication Questionnaire
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reflecting general levels of impairment more so than
social deficits per se84. In this study, we used the SCQ,
which has been found to be a better screening instrument
for ASD compared to the SRS85, and is not affected by IQ
like other measures85,86. Despite different measures, our
results using the SCQ (i.e., thicker cortices in frontal/
temporal–parietal regions being associated with fewer
deficits) are broadly consistent with several studies
examining structural neuroimaging correlates of the SRS/
ADI-R in control participants87–89 and in ASD26,90. The
direction of our results are inconsistent with two larger
studies, the first using the SRS in a large population of
typically developing in 6–10 year olds24, and the second
using the Autism Diagnostic Observation Schedule in
ASD across the lifespan29. Difference in results may be
explained in part by true biological differences in the
neural substrates of these measures, heterogeneity across
disorders and populations, variability in the age ranges of
included participants, use of models that may or may not
account for comorbid symptomatology/differences in IQ,
and variation in the measurement aspects of the under-
lying social construct in different disorders.
Functional and structural neuroimaging work has

associated RMET performance with activation/size of the
inferior frontal gyrus, middle/posterior temporal regions,
and the amygdala/hippocampus in typically developing
adults91–94, although findings may defer in ASD67,95. Our
results for the RMET highlight subcortical structures as
being important across disorders; children with ASD also
had associations in the lateral mentalization regions and
in the insula. It is possible that this finding is reflective of
more immature or inefficient social perception abilities in
children with ASD, leading them to rely on additional
cortical circuits to make social evaluations96.
Exploratory analyses identified age-associated differ-

ences in the association between right lateral region
thickness and SCQ score; data also suggested that these
age-associated differences may vary by diagnostic group.
Existing literature supports the hypothesis that the neural
substrates of social abilities may change over the course of
development. For example, previous longitudinal work
has shown that the patterns of functional MRI (fMRI)
activation during facial/emotion recognition tasks change
with age, and in particular, after puberty97,98. In control
participants, completion of the RMET was associated with
activation in the posterior superior temporal sulcus across
age ranges, but younger children (with potentially more
immature social perception abilities) also activated the
prefrontal cortex, the inferior frontal gyrus, and the
temporal pole during this task as well96. Given that the
direction of the association between cortical thickness and
general intelligence may change over childhood (from a
negative correlation in younger children to a positive
correlation in older children)99, and that

neurodevelopmental disorders such as ASD and ADHD
are associated with aberrant cortical maturation15,18, fur-
ther research is merited in order to characterize disorder-
specific longitudinal changes in the neural substrates of
social deficits.
The pattern involving OCD on the SCQ is notably

different with larger subcortical structures being asso-
ciated with greater social impairments. Previous research
has found frontal–subcortical hyperactivity during pro-
cessing of emotional stimuli in OCD on fMRI100. There-
fore, it is possible that the social deficits associated with
increased subcortical volumes reflect aberrant processing
of social–emotional information in OCD. Consistent with
this hypothesis, the distinct OCD pattern in our data
persisted even after adjusting for severity of OCD symp-
toms. The OCD group also showed strong lateralization
effects with respect to the association between social
abilities and insula thickness, consistent with previous
data in control populations70. Overall, despite overlapping
symptomatology with other disorders (in particular,
repetitive behavior in ASD), the pattern of brain–behavior
associations involving the OCD group appeared quite
distinct.
The structural finding of nominally larger hippocampal

volumes in OCD is consistent with data from a recent
large meta-analysis showing a trend towards larger hip-
pocampi (p= 0.09) in 107 pediatric OCD patients com-
pared with 210 controls21. This stands in contrast to adult
populations, where smaller hippocampi were found21.
Notably, across other social brain regions of interest, there
were no significant structural differences in thickness or
volume between the four diagnostic groups. Meta-
analyses comparing over 1000 participants with ASD20,
or ADHD23, to control participants have found smaller
subcortical volumes in both ASD and ADHD. Cortical
differences have varied by study, and by age, for both
disorders, however18,20. These results further highlight a
lack of biological differences between ASD and ADHD in
spite of differences in mean scores on the SCQ and
RMET.
Oxytocin is a pituitary neuropeptide known to affect

social behavior. A few small studies, in typically devel-
oping adult cohorts, have examined whether common
genetic differences in the oxytocin receptor gene (OXTR)
corresponded with differences in structural neuroa-
natomy77–80,101. Specifically, different OXTR rs2254298
and rs53576 genotypes corresponded with differences in
amygdala volumes77,78,80, and OXTR rs2254298 genotype
was associated with differences in thickness of the right
insula and dorsal anterior cingulate as well79,101. Our
exploratory analyses did not reproduce these findings in
children with neurodevelopmental disorders, although
rs53576 genotype was associated with thickness in the left
insula in the ADHD group. Despite this, overall trends
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suggested a similar direction of gene–brain associations in
ASD and ADHD.
In terms of limitations, sample sizes were unequal

between groups, contributing to less confidence to detect
differences in the OCD and control groups. Regions were
grouped anatomically and functionally to facilitate
description of overall patterns; consensus has yet to be
reached with the respect to the specific regions and
functions of social neural networks. The SCQ is a parent
report measure that captures complex aspects of social
communication (making friends, using non-verbal com-
munication, interest in others); diagnostic differences in
the measurement aspects of this measure were not the
focus of the paper but could also contribute to results.
SCQ scores were right skewed in controls, ADHD, and
OCD, but left skewed in ASD, raising the possibility of
influential outliers driving results. Case-wise diagnostics
were conducted and repeat analyses excluding 13 poten-
tial influential outliers based on difchi-squared values
yielded the same pattern of findings (note no dfbetas were
>2). Restricting the range of SCQ scores to 0–15 resulted
in similar patterns as well, although less significant results.
The group with ASD tended to be higher functioning;
results may be less generalizable to a more severely
affected population. Also the oxytocin results should be
considered exploratory in view of the small sample size
and the multiple testing.
Overall, this study revealed that the structural neuroi-

maging correlates of social communication and social
perception deficits vary across neurodevelopmental dis-
orders. There were more similarities than differences
between ASD and ADHD, even on an ASD-specific out-
come measure. Data support a common underlying
biology and the blurring of the diagnostic boundaries
between these two disorders.
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