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Developmental changes of cortical
white–gray contrast as predictors of autism
diagnosis and severity
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Abstract
Recent studies suggest that both cortical gray and white-matter microstructural characteristics are distinct for subjects
with autism. There is a lack of evidence regarding how these characteristics change in a developmental context. We
analysed a longitudinal/cross-sectional dataset of 402 magnetic resonance imaging (MRI) scans (171 subjects with
autism and 231 with typical development) from the Autism Brain Imaging Data Exchange, cohorts I–II (ABIDE-I-II). In
the longitudinal sample, we computed the rate of change in the white–gray contrast, a measure which has been
related to age and cognitive performance, at the boundary of the cerebral cortex. Then, we devised an analogous
metric for the cross-sectional sample of the ABIDE dataset to measure age-related differences in cortical contrast.
Further, we developed a probabilistic model to predict the diagnostic group in the longitudinal sample of the cortical
contrast change data, using results obtained from the cross-sectional sample. In both subsets, we observed a similar
overall pattern of greater decrease within the autistic population in intensity contrast for most cortical regions (81%),
with occasional increases, mostly in primary sensory regions. This pattern correlated well with raw and calibrated
behavioural scores. The prediction results show 76% accuracy for the whole-cortex diagnostic prediction and 86%
accuracy in prediction using the motor system alone. Our results support a contrast change analysis strategy that
appears sensitive in predicting diagnostic outcome and symptom severity in autism spectrum disorder, and is readily
extensible to other MRI-based studies of neurodevelopmental cohorts.

Introduction
Autism spectrum disorder (ASD) is a complex and

heterogeneous cluster of developmental abnormalities
characterised by disrupted social reciprocity, repetitive
behaviours and restricted interests1. Such behavioural
abnormalities are found to have certain brain-structural
and physiological correlates on the level of the cortical
gray matter (GM)2–4. It has also been found that ASD
features not only GM aberrations, but also abnormal
white-matter (WM) microstructure5–7, specifically evi-
dent as age-related difference between ASD and typical
development (TD) in adolescent developmental trajec-
tories8. Combining cortical features of GM and WM in

one analysis might provide a more complete under-
standing of the disorder. One way to establish such a
combination is to compute the ratio of MRI intensities
sampled in- and outside of the white–gray matter
boundary, referred to as white–gray contrast (WGC).
Such a contrast metric, proposed almost a decade ago9,
reflects both gray and white-matter properties and has
proven sensitive in predicting such features as biological
age and cognitive performance with high accuracy10,11.
Utilisation of this metric in the autism domain is relatively
new. A histological study12 investigated the white–gray
matter boundaries in post-mortem tissue using sigmoid
curves to quantify cell distributions in the white–gray
transition zones, and found that the curves were steeper
for TD subjects than for individuals with ASD, suggesting
poorer contrast for the latter. In a recent MRI study13, the
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authors sampled intensity across multiple distances from
the white–gray matter boundary. The results consistently
yielded a greater decrease in ASD of a measure analogous
to WGC, particularly in bilateral temporal regions. In this
study, we take this approach one step further, taking into
account the fact that ASD is a developmental disorder and
thus crucial information can be retrieved from age-related
neuroanatomical changes14,15. Hence, instead of measur-
ing absolute ASD-TD group differences in WGC, we
assess how this contrast changes with age, in longitudinal
and cross-sectional contexts.
An additional strength of the WGC is that cortical

contrast measures seem generally less affected by erro-
neous brain registration and inherent irregularities in
tissue intensities16. Such problems, in combination with
poor signal-to-noise ratio in MRI images resulting from
insufficient or absent quality control, heterogeneities
related to symptoms, gender, age and data collection sites
often render observations unstable—occasionally provid-
ing even null results17—that contribute to the confusing
state of the literature on neuroanatomical and neuro-
physiological correlates of ASD18–22.
To increase sample sizes and gain a better under-

standing of the structural phenotype for autism, several
ASD data agglomeration initiatives have recently
emerged23–26. One such initiative, the Autism Brain
Imaging Data Exchange23,24 (ABIDE), assembled brain
imaging and behavioural phenotypic information from 25
international sites.
We analysed a large sample of MRI data from the

ABIDE database, featuring predominantly the age span of
adolescence, including both cross-sectional and long-
itudinal samples, using multivariate techniques, and
compared the age-related change of white–gray contrast
(WGC) to behavioural phenotypic measures. We hypo-
thesised that age-related WGC changes would be different
between ASD and TD groups, and that these differences
would be similar in longitudinal and cross-sectional
samples. To further evaluate this hypothesis, we devel-
oped a novel probabilistic approach for predicting the
diagnostic outcome given longitudinal cortical contrast
change from cross-sectional data.

Materials and methods
ABIDE-I and ABIDE-II databases
The Autism Brain Imaging Data Exchange (ABIDE)

database emerged as a large-scale multi-site initiative to
assemble structural, functional and diffusion magnetic
resonance imaging (MRI) data, along with accompanying
phenotypic descriptions23. Recently, this dataset has been
substantially augmented by the inclusion of a more
extensive sample, including longitudinal data, referred to
as ABIDE-II24. For most ASD subjects in the sample, a
comprehensive phenotypic inventory is provided,

including various scores relevant for symptom evaluation.
In the current study, we use the structural images, and the
Autism Diagnostic Observation Schedule (ADOS)
scores27.

MRI data processing
Surface extraction
The T1-weighted MRI data constituting 1031 images

from ABIDE-I and 1263 images from ABIDE-II were
processed with CIVET28 (version 2.1, released November
2016), a fully automated structural image analysis pipeline
developed at the Montreal Neurological Institute. CIVET
corrects intensity non-uniformities using non-parametric
non-uniform intensity normalisation16 (N3), aligns the
input volumes to the Talairach-like ICBM-152-nl tem-
plate29, classifies the image into white matter, gray matter,
cerebrospinal fluid, and background30,31, extracts the
white-matter and pial surfaces28, and maps these to a
common surface template32. These results were then
subjected to a manual quality control to ensure that the
white-matter surface was correctly placed at the inner
edge of the cortical gray matter. The placement of the
pial surface was ignored; the measures of white/gray
contrast are based only on the white surface. White/gray
contrast was measured on the data that passed this quality
control.

White–gray contrast (WGC)
White–gray contrast was measured as the ratio of the

intensity on the T1-weighted MRI 1mm inside the white
surface to the intensity 1 mm outside the white surface
(Supplementary Figure 1; see also Fig. 1 in ref. 10). To
obtain these measures, a distance map was created from
the white surface at 0.25 mm resolution; the distance map
was smoothed with a 0.5 mm full width at half maximum
(FWHM) Gaussian kernel; and a gradient vector field was
computed. A copy of the white surface was then moved
1mm inward along this gradient vector field to produce a
sub-white surface, and a copy was moved 1mm outward
to produce a supra-white surface. The T1-weighted
intensity values were sampled at each vertex of both the
supra-white surface and the sub-white surface. These
values were smoothed with a 20mm FWHM Gaussian
kernel on the MNI152 average surface, and then the ratio
was computed by dividing the value at each vertex of the
sub-white surface by the value at the corresponding vertex
of the supra-white surface.

Resulting samples
After the quality control and application of all the

exclusion criteria, listed below, the resulting samples
included 380 subjects (158 ASD). Namely, the CIVET
procedure failed to process 186 images, 612 images sur-
vived the quality control, of which there were 115 female
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scans and 73 images from 17 sites falling into groups
containing less than four subjects, and were removed. To
ensure independence in comparisons and predictions, we
have separated the resulting dataset into two non-
overlapping samples: cross-sectional denoted crsc, and
longitudinal denoted lngt.

Cross-sectional sample
In the cross-sectional sample, sites containing less than

four subjects in either group were excluded from the
analysis; only male subjects were included in both diag-
nostic groups, ASD and TD. The site ABIDEII-SDSU_1
was excluded from the analysis as the only site that

Fig. 1 PLS analysis of the longitudinal and cross-sectional samples of the ABIDE dataset. a–c Longitudinal sample PLS results; d–f Cross-
sectional sample PLS results. a Top: group-related singular vector from the first latent variable (LV1) captures inter-group differences related to
diagnosis rather than to site; error bars depict confidence intervals from the bootstrap samples. a Bottom: a pattern most similar to between-site
difference is captured by LV2 and appears non-significant. b Bootstrap ratio (BSR) values depicting the cortical pattern captured by LV1. c Top:
change of MRI contrast in the vertices within the range between the lowest BSR and one standard deviation above that value. c Bottom: change of
MRI contrast in the vertices within the range between one standard deviation below the highest BSR and the highest BSR. d, e Analogous depiction
of PLS results for the cross-sectional sample; d Bottom: a pattern most similar to between-site difference is captured by LV3 and appears non-
significant. f Contrast change distributions for the cross-sectional sample, analogous to those in c for the longitudinal sample
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utilised a scanner from a manufacturer other than Sie-
mens or Philips, with a negligible contribution to the
sample. The part of the sample that represented long-
itudinal data was excluded to ensure cross-sectional and
longitudinal samples do not overlap (see the full lists of
these samples in Supplementary Text 2). The resulting
cross-sectional sample consisted of 359 subjects (146
ASD; see Table 1).

Longitudinal sample
The resulting analysis on the longitudinal sample

included 42 images from UCLA and UPSM data collec-
tion sites (12 subjects with ASD and 9 with TD, times two
time points; mean age at baseline scan 12.75 y.o., mean
age at the follow-up scan 15.06 y.o.; 3 females (1 ASD); see
Supplementary Table 1).

Proxy calibrated severity scores
Among the phenotypic information in the ABIDE data

are the Autism Diagnostic Observation Schedule23

(ADOS) scores for each ASD subject. ADOS represents a
semi-structured assessment of social interaction, com-
munication and stereotypical behaviours for individuals
with ASD. The ADOS applies to children as well as adults,
and to individuals ranging from non-verbal to verbally
fluent. But, different ADOS modules are utilized for
individuals at different stages of development, or different
language abilities, and the scores from different modules
are not directly comparable. To allow comparison of

ADOS scores across modules, these raw ADOS scores can
be transformed into calibrated severity scores33,34. These
calibrated severity scores utilize specific subsets of items
within each module to create a more comparable algo-
rithmic score33, followed by an additional adjustment for
age and ADOS module34. The ABIDE data do not provide
all of the information necessary to faithfully apply this
correction, but a proxy severity score can be derived using
the total of the social and communication ADOS scores in
place of the algorithm score35. In this work, we relate
contrast change to these proxy severity scores, as well as
to the total of the social and communication ADOS
scores.

Statistical analysis
In the longitudinal sample, to account for age-related

differences in WGCs, we devised a metric, called “angle”,
capturing how fast WGC changes with age, computed for
each vertex and denoted α, wherein the rate of change in
the WGC had a linear dependency on the difference
between age at baseline scan and age at follow-up scan:

αlngti ¼ arctan
WGCflp

i �WGCbsl
i

ageflpi � agebsli

 !
; ð1Þ

where αlngti is an angle of subject i, proportional to the
difference between WGC of the follow-up and WGC of
the baseline (denoted WGCflp

i and WGCbsl
i , respectively).

As this difference represents the opposite cathetus for the

Table 1 Cross-sectional sample of ABIDE data that passed quality control

Acquisition site nr. ASD’s nr. TD’s nr. subjects Age, ASD Age, TD Scanner

CMU 6 6 12 22.5 ± 2.6 24.7 ± 4.8 Siemens Magnetom Verio syngo MR B17

KKI 11 17 28 10.4 ± 1.5 10.2 ± 1.2 Philips Achieva

LEUVEN_1 8 10 18 22.4 ± 3.2 24.0 ± 3.0 Philips Intera

LEUVEN_2 8 8 16 13.4 ± 1.1 14.9 ± 1.5 Philips Intera

NYU 25 30 55 14.5 ± 7.0 12.3 ± 3.9 Siemens Magnetom Allegra syngo MR 2004A

TRINITY 13 11 24 16.6 ± 2.9 17.1 ± 3.7 Philips Achieva

UCLA_1 6 9 15 14 ± 3.6 13.4 ± 1.5 Siemens Magnetom TrioTim syngo MR B15

ABIDEII-ETH_1 6 17 23 21.3 ± 4.4 22.6 ± 4.5 Philips Achieva

ABIDEII-GU_1 9 15 24 10.7 ± 1.7 10.7 ± 1.5 Siemens Magnetom TrioTim syngo MR B17

ABIDEII-KKI_1 10 44 54 11.0 ± 1.3 10.5 ± 1.2 Philips Achieva

ABIDEII-NYU_1 22 16 38 8.8 ± 3.0 8.8 ± 1.8 Siemens Magnetom Allegra syngo MR 2004A

ABIDEII-OHSU_1 6 7 13 12.0 ± 2.7 8.9 ± 0.7 Siemens Magnetom TrioTim syngo MR B17

ABIDEII-TCD_1 12 18 30 14.3 ± 3.3 15.7 ± 3.2 Philips Intera Achieva

ABIDEII-UCLA_1 4 5 9 12.0 ± 1.8 10.8 ± 2.9 Siemens Magnetom TrioTim syngo MR B17

Total 146 213 359 13.6 ± 5.4 13.7 ± 5.4 Siemens (168 subjects); Philips (193 subjects)

Age shown in format ‘mean ± s.d.’
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given angle and the age difference between follow-up and
baseline visits is the adjacent cathetus, the resulting angle
is computed from the opposite-adjacent division using the
arctangent function.
As an analogous angle metric for the cross-sectional

sample, we have proposed the following measure, com-
puted as a mean pairwise WGC change with age, for each
subject and the rest of the subjects from the same diag-
nostic group within a data collection site:

αcrsci ¼ arctan

Pj≠i
j¼1:Ndx

s
WGCi �WGCj
� �

Pj≠i
j¼1:Ndx

s
agei � agej
� �

0
@

1
A; ð2Þ

where αcrsci is computed for each vertex by obtaining the
average difference between the WGC of the ith subject
(denoted WGCi) and the WGCs of all the other Ndx

s
subjects from the same diagnostic group dx (either ASD
or TD) within a given acquisition site s, divided by the
corresponding average age difference between subject i
and the ages of the rest of subjects from that site, and
taking the arctangent from the resulting fraction. This
definition essentially represents the per-subject specifi-
cation of a developmental trajectory and provides a ben-
efit of diminishing inherent site effects. All the subsequent
analyses in this study will use this definition as a metric,
rather than a single time point WGC estimate.

The metrics αlngt and αcrsc were subjected to partial least
squares (PLS) analysis36, which was designed to identify
common brain patterns for a given set of diagnostic
groups or experimental conditions. PLS makes use of
singular value decomposition (SVD) to re-express the data
as latent variables (LV), akin to eigenvectors in principal
component analysis. For that analysis, the αlngt values
were split into four groups: ASDUCLA, TDUCLA, ASDUPSM

and TDUPSM, corresponding to individuals diagnosed with
autism and scanned at the UCLA site, those featuring
typical development and scanned at the UCLA site, sub-
jects diagnosed with autism and scanned at the UPSM site
and those featuring typical development and scanned at
the UPSM site, respectively. To ensure the same number
of LVs in the PLS analysis of the cross-sectional sample,
we split the αcrsc values into the following four groups,
arranging the angle data by diagnostic groups and scan-
ners: ASDSIEMENS, TDSIEMENS, ASDPHILIPS and TDPHILIPS.
Following SVD, PLS analysis performs two instances of
statistical testing, permutation and bootstrapping. The
former technique assesses statistical significance by
resampling without replacement to reassign the order of
groups for each subject. For each new sample, PLS is
recalculated, counting the number of times the permuted
singular values exceed the original calculation output,
resulting in a null hypothesis probability. Conversely,
bootstrapping assesses the reliability by resampling with

replacement while keeping the group assignment fixed,
providing confidence intervals for each group. To incor-
porate this reliability in the singular vector representing
cortical patterns, a set of bootstrap ratio values (BSRs) is
obtained by means of dividing the cortical representation
of the group differences by the bootstrap standard errors.
To assess how strongly each subject expresses the pattern
on a given LV, the metric called brain score (abbreviated
as BrSc) is obtained by means of multiplying the original
mean-centred matrix with the angle values by the matrix
with BSR values.

Predictive models for longitudinal data using cross-sectional
samples
The model to predict diagnostic group from angle

values was devised in a Bayesian setting:

P dxjαð Þ / P αjdxð Þ ´P dxð Þ; ð3Þ

where P(dx|α) is a posterior probability of a diagnosis
given the angle wherein the angle values were standar-
dised to emphasise shape of a distribution over its mag-
nitude, P(α|dx) is a likelihood of angle value given the
diagnosis, and P(dx) is the prior probability representing
acquired knowledge about the diagnosis. The likelihood
term was represented by an extreme value distribution of
the form:

P αjdxð Þ ¼ σ�1 exp
± α� μ

σ

� �
´ exp � exp

± α� μ

σ

� �h i
;

ð4Þ

where σ is the scale parameter of the distribution, α is the
set of cross-sectional angle values and μ is the location
parameter of the distribution. This distribution was
represented in a generalised form wherein the skewness
direction was regulated by the sign of α dependent on the
best fit to the actual α values, measured using Pearson
correlation. The prior parameter was informed by boot-
strap ratio (BSR) values derived using PLS analysis and
represented by a sigmoid function of the form:

P dxð Þ ¼ 1þ exp ±
x ´BSR
BSRmax

� �� 	�1

; ð5Þ

where x 2 αcrscmin; α
crsc
max


 �
and the sign in the round brackets

is positive if dx= TD (monotonically increasing if BSR <
0) and negative if dx=ASD (monotonically increasing if
BSR > 0; see Results for details on such prior choice). To
emphasize the shape of distributions over their magni-
tude, both αlngt and αcrsc were z-scored. This model is
summarised in Supplementary Figure 2.

A second model was devised to predict proxy severity
scores35 in the longitudinal subset from BrSc values in the
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cross-sectional subset:

Slngti ¼ βcrsc0 þ βcrsc1 � BrSccrsci þ
P

i�w<k<iþw εk
K

; ð6Þ

where Slngti is a predicted proxy calibrated severity score
for the ith subject in the longitudinal subset, βcrsc0 is an
intercept in the severity general linear model (GLM)
constructed from the cross-sectional sample (with BrSc
being the independent variable), βcrsc1 is that model’s slope,
and the rightmost term is representing mean residual
error from the window surrounding the ith BrSc value
with an interval w set to be equal to 5% from the max-
imum BrSc value; considering there are K data points
within such an interval, εk represents the residual error for
each of them. Of note, ABIDE-II provides a single-score
ADOS information for each subject in the longitudinal
sample, i.e. there is no information on the per-subject
ADOS difference between baseline and follow-up visits.

Code availability
CIVET pipeline: http://www.bic.mni.mcgill.ca/

ServicesSoftware/CIVET-2-1-0-Table-of-Contents

Results
PLS analysis results
The two instances of PLS analyses yielded similar cor-

tical distributions (Fig. 1), with an overall greater cortical
contrast decrease for ASD as compared to TD across the
cortical mantle, but with occasional focal increases (in
early visual, medial temporal and somatomotor areas) in
ASD as compared to TD.

Longitudinal PLS results
For the four groups in the longitudinal sample (ASDUCLA,

TDUCLA, ASDUPSM and TDUPSM), the first latent variable
(LV) (p= 0.018, permutation test) from the PLS analysis
yielded the following design scores: (0.79, −0.53, 0.04,
−0.3). The alternating sign of this first LV indicates that
the most covariance in the data (72%) was explained by
diagnostic groups rather than sites (Fig. 1a, top). The
between-group difference patterns normalized by a stan-
dard error across the bootstraps (bootstrap ratio, BSR;
Fig. 1b) showed a distribution suggesting slightly greater
increase of white–gray contrast (WGC) patterns within
early visual areas, bilateral sensorimotor strip, and a
scattered set of ventral stream regions among the ASD
subjects. Conversely, a greater increase (p < 0.05, two-
sample t-test for the vertices within one standard devia-
tion from the minimum BSR) of WGC among the TD
group was observed in a wide network of regions span-
ning large portions of lateral and medial frontal, parietal
and posterotemporal areas in particular (Fig. 1c, top).

Cross-sectional PLS results
The four groups assembled for the PLS analyses for the

cross-sectional data (ASDSIEMENS, TDSIEMENS, ASDPHILIPS

and TDPHILIPS) showed a similar pattern of overall greater
decrease of the cortical tissue contrast for the ASD sub-
jects as compared to TD controls (design scores: (0.11,
−0.2, 0.74, −0.64); see Fig. 1d). The most prominent
WGC increase in ASD as compared to TD was observed
in early visual areas (particularly in the left hemisphere),
most of the remaining cortex featured predominant
decrease in ASD as compared to TD (Fig. 1e, f).
Both longitudinal and cross-sectional instances of PLS

analysis showed a broad set of regions across the cortex
featuring greater decrease in WGC with age in ASD
compared to typically developing subjects; indeed, vertices
with a mutual decrease in both samples represent 81% of
the entire cortical sheet (Fig. 2). Notably, considering
WGC as a static measure per subject (no age-related
change), an analogous PLS analysis yielded no result: the
latent variable capturing most of diagnostic difference
explained 0.27% of covariance (p= 0.74, permutation test;
result not shown).

Relation to behavioural metrics
We observed correlation between raw ADOS scores and

the positive part of BrSc values on the log scale, denoted
log(BrSc+), suggesting that the more ASD subjects
expressed the pattern on the LV1, capturing the most
difference between the two diagnostic groups, the more
severe the symptoms were (r= 0.36, p < 0.005; Fig. 3a). A
greater correlation was observed between ADOS proxy
calibrated severity scores and log(BrSc+) (r= 0.42, p <
0.001; Fig. 3b).

Longitudinal prediction results
We devised a model to predict diagnostic assignment in

the longitudinal sample using the training data from the
cross-sectional sample (Supplementary Figure 2). The
angle value histograms are well approximated with
extreme value distributions that use location parameter μ
and scale parameter σ (Supplementary Figure 2C). Infor-
mation from PLS analysis can be used to inform prior
distributions: if the BSR value is negative, indicating a
contrast decrease for ASD as compared to TD, the sim-
plest way to create a prior distribution is to form a sig-
moid curve with a negative slope for the ASD sample and
a positive slope for the TD sample, with its steepness
informed by the given BSR value (Supplementary Figure
2D). The opposite holds if the BSR value is positive.
Ultimately, using likelihood and prior functions, the
posterior probability obtained is used to predict a diag-
nostic outcome from a given angle value (Supplementary
Figure 2B).
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We will refer to the fraction of correctly predicted ASD
diagnosis outcomes as sensitivity, and the fraction of
correctly predicted TD outcome as specificity. Using the
mean cortical distribution of angle values, our model
resulted in 83% sensitivity (10 out of 12 correctly pre-
dicted ASD outcomes) and 67% specificity (6 out of 9
correctly predicted TD outcomes; see Supplementary
Table 1, last column), thus achieving overall accuracy of
76%. Notably, prediction based on bilateral motor regions
alone yielded 89% specificity while retaining the whole-
cortex model sensitivity, resulting in 86% overall accuracy.
Using single-vertex models at each of the vertices in the
average template, we investigated cortical distributions of
sensitivity and specificity (Fig. 4), including the 50%
mutual cutoff representation (Fig. 4c, d) to avoid trivial
cases such as 100% sensitivity and 0% specificity and vice
versa. Analysis of cortical vertices that contributed to both
>50% sensitivity and >50% specificity suggested a gen-
erally left-lateralised pattern confined predominantly to
the lower sensorimotor strip and temporo-parietal junc-
tion (Fig. 4c, d; see Supplementary Figure 3 for the
sensitivity-specificity conjunction result).

Prediction of behavioural scores
The proposed model for predicting severity scores in

the longitudinal sample using BrSc values in the cross-
sectional sample (Eq. 6) resulted in the following out-
comes. The correlation between actual proxy calibrated
severity scores in the longitudinal sample and their
counterparts predicted from the cross-sectional sample
was marginally significant (r= 0.54, p= 0.084). The cor-
relation between the longitudinal sample proxy calibrated
severity scores (independent variable) and raw ADOS
scores, predicted from the BrSc value in the cross-
sectional sample (dependent variable), was strong and
significant (r= 0.63; p < 0.05).

Discussion
The finding of overall greater contrast decrease in ASD

than in TD is consistent with previous studies12,13, while
extending their original notions with age-related contrast
change. Vertices exhibiting greater contrast decrease in
TD than in ASD displayed a regional distribution
weighted toward primary sensory areas; this distribution
was similar for both longitudinal and cross-sectional
samples. The main difference constituted a greater
somatosensory increase in the longitudinal sample for
ASD subjects (whereas cross-sectional data indicated an
increase only in a small dorsal portion of the left soma-
tosensory cortex, see Fig. 2), and a greater primary visual
increase for ASD subjects in the cross-sectional sample
(with a similar but less prominent pattern in the long-
itudinal sample). These primary sensory patterns are
likely reflecting complex cellular processes: whereas the

rates of overall axonal pruning and other related processes
such as apoptosis and cell migration may be reduced in
autism6, resulting in lower contrast, dendritic arborisa-
tions increase dramatically in the primary sensory areas
during the normal development37, resulting in an
increased gray matter intensity and hence reduced WGC
in those regions, while the opposite generally holds for
secondary and association areas10. Such increased den-
dritic arborisations in middle cortical layers normally
appear early in development, during the formation of the
cortical subplate, as thalamocortical afferents reach the
primary cortical regions38. This process affects primary
visual, auditory and somatosensory regions to a similar
extent and nearly simultaneously, resulting in an
increased myelination thereof39, affecting physiology and
corresponding perceptions40. This process might be dis-
rupted in ASD and manifest itself as an increased contrast
compared to TD. Consistent with this notion, a recent
MRI study41 observed greater gray matter volume and
resting state functional connectivity in the somatosensory
cortex of children diagnosed with ASD than in that of
their TD peers. Conversely, most of the remaining cortex
shows the opposite effect (Fig. 1b, e), possibly reflecting a
diminished abundance of dendritic arborisations related
to thalamocortical connections, as compared to its pri-
mary sensory counterparts, hence the increasing myelin
beneath the cortex yields relatively increasing contrast in
association regions during the normal adolescent devel-
opment. As a result, normal development features
positive-signed importance for age prediction in most of
the association cortex10, whereas this phenomenon
appears generally inverse in ASD, likely reflecting reduced
long-range connectivity and myelination (cf. Figure 1c, f).
Supporting this notion, a recent study concluded that
myelination appears a more plausible explanation of pri-
mary visual cortex thinning in childhood than pruning42.
The relative contrast decrease pattern appears wide-

spread, covering most of the non-primary cortex, which
might reflect long-range structural43,44 and functional23,45

cortico-cortical underconnectivity observed in ASD,
whereas subcortico-cortical intrinsic functional con-
nectivity commonly appears to be increased in ASD46.
This notion was confirmed from a dynamical connectivity
perspective47, and elaborated for thalamus and its con-
nectivity with cortex48,49. Such an increase, however,
should be interpreted with caution, considering that the
thalamus has multiple nuclei heterogeneous in their
intrinsic and extrinsic connectivity, yielding both
decreases and increases in connectivity with cortex in
ASD50.
With regard to diagnostic prediction, there has recently

been substantial progress in development of data-driven
machine learning methods using structural and functional
MRI51,52. In our study, we aimed at diagnostic prediction
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using structural MRI, understanding the mechanisms of
cortical contrast change, their comparison across long-
itudinal and cross-sectional domains, and incorporating
the knowledge about these mechanisms into the model,
instead of taking a fully data-driven prediction approach.
The angle value distributions, for both TD and ASD
populations, were well approximated by a family of
extreme value distributions with virtually equal modes
(Supplementary Figure 2). While this does not necessarily
mean that the modes of these distributions were non-
informative in estimating posterior probabilities, it does
indicate a large inter-subject variability in both diagnostic
groups and a possibility that a large number, if not a
majority, of subjects might contribute only weakly to the
overall predictive power. Some previous studies have
reported a high heterogeneity across ASD/TD samples
that results in no significant diagnostic group

differences18. On the other hand, longitudinal samples
generally provide less heterogeneity in diagnosis-related
patterns15, which might explain why our diagnostic pre-
diction model resulted in high accuracy (76% for the
whole cortex and 86% for the motor system only), despite
a relatively small number of subjects in the longitudinal
sample.
Even though most developmental WGC change differ-

ence patterns captured by PLS analysis were bilateral,
there were certain effects of lateralisation in the diagnostic
prediction results. Most notably, specificity of the per-
vertex models was substantially higher for the left than for
the right hemisphere (Fig. 4d). A recent study on the
ABIDE-I dataset observed similar left-sided laterality for
the cortical thickness differences between ASD and TD
subjects, as well as lateralisation of cortical pattern related
to symptom severity2. Other researchers observed related

Fig. 2 Conjunction analysis of PLS outputs for longitudinal and cross-sectional samples. Blue colours, covering 81% of the cortex, indicate
negative bootstrap ratio (BSR) values in both samples, shades of red stand for mutually positive BSRs. Green shades indicate positive BSR in the cross-
sectional and negative BSR in the longitudinal samples, while yellow colours stand for longitudinal positive and cross-sectional negative. The
histograms depict BSR value distributions within longitudinal and cross-sectional samples. Colour intensities reflect BSR value magnitude, averaged
across longitudinal and cross-sectional samples
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functional MRI activation differences in the ABIDE-I
sample53,54, followed by a growing body of research
highlighting the importance of exploring functional and
physiological changes in a developmental context as
well55,56. Another recent study found disrupted diffusion
connectivity patterns in the left superior longitudinal
fasciculus in ASD7. Such lateralisation might result from a
more rapid development of many cortical regions within
the left hemisphere than of their right hemisphere
homologues57, specifically language related areas, such as
Broca’s, Wernicke’s and multiple regions adjacent to the
arcuate fasciculus. In line with that, another diffusion MRI
study identified substantial age-related change in frac-
tional anisotropy and mean diffusivity in the superior
longitudinal fasciculus in adolescence, an effect that
appeared disrupted in an ASD population8.

Limitations
When dealing with heterogeneous agglomerative data-

sets, such as ABIDE, multiple confounders may exist.
Indeed, site differences constitute a major problem which
cannot be fully resolved even with larger samples18. The
approach we took allowed us to compute the metric of
interest within each site, which would not be fully feasible
using standard general linear model approaches, where
controlling for site as a categorical variable might retain
confounding effects58.
A second concern related to the neuropsychiatric

datasets is a potential contribution of head motion to
diagnostic results. We performed an assessment of
motion effects on diagnostic discrimination by evaluating
the gradients within the white-matter core

(Supplementary Figure 4). As motion produces ‘ringing’-
like artefacts on MRI images (see Supplementary Figure 9
for some examples), the variance of the gradient in a
motion-contaminated image would be higher than its
counterpart in an image featuring less motion. Thus,
standard deviation of the gradient within the white-matter
mask core can serve as a motion proxy metric (Supple-
mentary Figure 5); it yielded no difference between ASD
and TD groups (p= 0.3, two-sample t-test), and no cor-
relation with ADOS scores (p= 0.1, permutation test).
This approach is summarised in more detail in Supple-
mentary Text 1. In addition to the fact that motion did
not appear as a confounder in our study, it should be
mentioned that previous studies2,15 reported increases of
cortical thickness in multiple regions in ASD subjects,
whereas it is known that motion causes an apparent
decrease in cortical thickness59.
A third problem inherent in the ABIDE dataset is the

small sample size and rather compromised quality of the
currently available longitudinal sample. Indeed, a change in
a single subject’s diagnostic label would result in 11% sen-
sitivity change in the available longitudinal sample used in
this study; this issue can only be resolved with the avail-
ability of larger samples. Regarding the data quality, we
compared our quality control (QC) outcomes to the signal-
to-noise ratio (SNR) values provided by MRIQC60 within
ABIDE-II24. The images accepted by our QC (Supplemen-
tary Figure 6) had significantly higher SNR than those
rejected (p < 0.01, t-test, see Supplementary Figure 7).
A fourth potential confounder is an inclusion of females

in the longitudinal sample, whereas cross-sectional sam-
ple included only males. However, a study which also

Fig. 3 Correlations between phenotypic scores and PLS-derived brain scores in the cross-sectional sample of the ABIDE database. a
Correlation between raw total ADOS scores and natural logarithm of positive brain scores. b Correlation between proxy calibrated severity scores and
natural logarithm of positive brain scores
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utilised the ABIDE dataset found no sex differences in
cortical thickness between ASD and TD subjects, albeit
such differences were found for cortical gyrification61.
Moreover, another study designed specifically to identify
possible gender predispositions in ASD, found cortical
thickness in certain regions to be related to greater risk of
ASD in males62; however, these regional differences were
almost exclusively located in inferior temporal regions (cf.
Figure 4). Despite these counter-examples, it is known
that sex differences are related to ASD traits63, and thus
further investigations on larger and more balanced sam-
ples must be done to understand whether and how WGC
change is related to sex differences in ASD.
Another possible source of heterogeneity in the agglom-

erative datasets is concerned with the variability of medi-
cation taken by the subjects. ABIDE-II provides information

on medication taken by a subset of subjects (most of which
are ASD), which allowed us to perform preliminary quali-
tative evaluations regarding possible links between medi-
cation and WGC angle values (Supplementary Figure 8).
Besides a few cases highlighted in that figure, it is of note
that the only TD subject in the sample which was reported
to have medical treatment, was incorrectly predicted as
ASD. Obviously, this is a single case from a small sample,
hence further investigations should be done when larger
samples with more detail on medication, nutrition and
other phenotypic data become more available25,26.

Conclusion
We have presented an MRI study involving longitudinal

and cross-sectional samples from ASD patients and age-
matched TD controls. We have devised a metric, wherein

Fig. 4 Sensitivity and specificity of cross-sectional/longitudinal predictions from individual vertex models. a Cortical model sensitivity
distribution. b Cortical model specificity distribution. c, d Sensitivity and specificity maps thresholded at a condition of both being higher than 50%
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the rates of change in cortical contrast are measured as
differences in the contrast, relative to age. In both long-
itudinal and cross-sectional samples, we observed a gen-
eral decrease across most of the cortex (81% cortical
overlap between longitudinal and cross-sectional coun-
terparts, see Fig. 2). The ASD subjects’ ADOS scores, as
well as the severity values derived therefrom, correlated
well with the cortical pattern related to ASD/TD group
differences. We have implemented a Bayesian model to
predict diagnostic outcomes in the longitudinal sample
from its cross-sectional counterpart. Full-cortex predic-
tion yielded 76% accuracy, constituting 83% sensitivity
(ASD predicted as ASD) and 67% specificity (TD pre-
dicted as TD). Prediction based solely on bilateral motor
regions achieved 83% sensitivity and 89% specificity,
yielding 86% overall accuracy. The second model’s out-
come suggested that the relation between BrSc values
from PLS analysis and ADOS severity in the cross-
sectional sample is predictive of the ADOS raw diagnostic
scores in the longitudinal sample.
In the future, we plan to adapt the presented approach

to other cohorts. In particular, we plan to investigate
whether the explored effects take place in other age
groups, especially among infants. We hypothesise that
certain model adaptations might be needed, as WGC
change data are likely far from being ergodic, i.e. con-
sistent across the space-time continuum, making the
longitudinal/cross-sectional inferences particularly chal-
lenging64. Nevertheless, with growing amounts of long-
itudinal and cross-sectional data available15,25,26,65, and
with necessary model generalisations, this endeavour
becomes increasingly more realistic.

Acknowledgements
This research has been supported by grant ANRP-MIRI13-3388 from the Azrieli
Neurodevelopmental Research Program in partnership with the Brain Canada
Multi-Investigator Research Initiative (to A.C.E.). The research was also enabled
in part by support provided by Calcul Quebec (www.calculquebec.ca) and
Compute Canada (www.computecanada.ca). We thank Adriana Di Martino,
Michael P. Milham and the ABIDE staff, as well as Vladimir Fonov,
Budhachandra Khundrakpam, Penelope Kostopoulos, Sebastian Urchs, Seun
Jeon, Francois Chouinard-Decorte, Konrad Wagstyl, Andrew Reid, Jose Maria
Mateos, Bratislav Misic, Kelly Shen, Andrew Doyle, Carolina Makowski.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-018-0296-2).

Received: 14 May 2018 Revised: 18 September 2018 Accepted: 5 October
2018

References
1. Wing, L. The autistic spectrum. Lancet 350, 1761–1766 (1997).
2. Khundrakpam, B. S. et al. Cortical thickness abnormalities in autism spectrum

disorders through late childhood, adolescence, and adulthood: a large-scale
MRI study. Cereb. Cortex 27, 1721–1731 (2017).

3. Lainhart, J. E. Brain imaging research in autism spectrum disorders: in search of
neuropathology and health across the lifespan. Curr. Opin. Psychiatry 28, 76–82
(2015).

4. Piven, J. et al. Magnetic resonance imaging evidence for a defect of cerebral
cortical development in autism. Am. J. Psychiatry 147, 734–739 (1990).

5. Dean, D. C. et al. Multivariate characterization of white matter heterogeneity in
autism spectrum disorder. Neuroimage Clin. 14, 54–66 (2017).

6. Hutsler, J. J. & Casanova, M. F. Review: cortical construction in autism spectrum
disorder: columns, connectivity and the subplate. Neuropathol. Appl. Neurobiol.
42, 115–134 (2016).

7. Libero, L. E. et al. White matter diffusion of major fiber tracts implicated in
autism spectrum disorder. Brain Connect. 6, 691–699 (2016).

8. Lisiecka, D. M. et al. Developmental white matter microstructure in autism
phenotype and corresponding endophenotype during adolescence. Transl.
Psychiatry 5, e529 (2015).

9. Salat, D. H. et al. Age-associated alterations in cortical gray and white matter
signal intensity and gray to white matter contrast. Neuroimage 48, 21–28
(2009).

10. Lewis, J. D., Evans, A. C. & Tohka, J., for Brain Development Cooperative Group;
Pediatric Imaging, Neurocognition, and Genetics Study. T1 white/gray contrast
as a predictor of chronological age, and an index of cognitive performance.
Neuroimage 173, 341–350 (2018).

11. Norbom, L. B., et al. Probing developmental patterns of intracortical myeli-
nation using gray/white matter contrast and associations with cognitive
abilities and psychopathology in youth. BioRxiv; https://doi.org/10.1101/
305995.

12. Avino, T. A. & Hutsler, J. J. Abnormal cell patterning at the cortical gray-white
matter boundary in autism spectrum disorders. Brain Res. 1360, 138–146
(2010).

13. Andrews, D. S. et al. In vivo evidence of reduced integrity of the gray-white
matter boundary in autism spectrum disorder. Cereb. Cortex 27, 877–887
(2017).

14. D’Souza, H. & Karmiloff-Smith, A. Neurodevelopmental disorders. Wiley Inter-
discip. Rev. Cogn. Sci. 8, 1–2 (2017).

15. Zielinski, B. A. et al. Longitudinal changes in cortical thickness in autism and
typical development. Brain 137, 1799–1812 (2014).

16. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for auto-
matic correction of intensity nonuniformity in MRI data. IEEE Trans. Med.
Imaging 17, 87–97 (1998).

17. Haar, S., Berman, S., Behrmann, M. & Dinstein, I. Anatomical abnormalities in
autism? Cereb. Cortex 26, 1440–1452 (2016).

18. Lefebvre, A., Beggiato, A., Bourgeron, T. & Toro, R. Neuroanatomical diversity of
corpus callosum and brain volume in autism: meta-analysis, analysis of the
autism brain imaging data exchange project, and simulation. Biol. Psychiatry
78, 126–134 (2015).

19. Martinez-Murcia, F. J. et al. On the brain structure heterogeneity of autism:
parsing out acquisition site effects with significance-weighted principal
component analysis. Hum. Brain. Mapp. 38, 1208–1223 (2017).

20. Müller, R. A. & Amaral, D. G. Editorial: time to give up on autism spectrum
disorder? Autism Res 10, 10–14 (2017).

21. O’Reilly, C., Lewis, J. D. & Elsabbagh, M. Is functional brain connectivity atypical
in autism? A systematic review of EEG and MEG studies. PLoS ONE 12,
e0175870 (2017).

22. Picci, G., Gotts, S. J. & Scherf, K. S. A theoretical rut: revisiting and critically
evaluating the generalized under/over-connectivity hypothesis of autism. Dev.
Sci. 19, 524–549 (2016).

23. Di Martino, A. et al. The autism brain imaging data exchange: towards a large-
scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19,
659–667 (2014).

24. Di Martino, A. et al. Enhancing studies of the connectome in autism using the
autism brain imaging data exchange II. Sci. Data 4, 170010 (2017).

25. van Rooij, D. et al. Cortical and subcortical brain morphometry differences
between patients with autism spectrum disorder and healthy individuals
across the lifespan: results from the ENIGMA ASD working group. Am. J.
Psychiatry 175, 359–369 (2018).

Bezgin et al. Translational Psychiatry           (2018) 8:249 Page 11 of 12

http://www.calculquebec.ca
http://www.computecanada.ca
https://doi.org/10.1038/s41398-018-0296-2
https://doi.org/10.1038/s41398-018-0296-2
https://doi.org/10.1101/305995
https://doi.org/10.1101/305995


26. Payakachat, N., Tilford, J. M. & Ungar, W. J. National Database for Autism
Research (NDAR): big data opportunities for health services research and
health technology assessment. Pharmacoeconomics 34, 127–138 (2016).

27. Lord, C. et al. The autism diagnostic observation schedule-generic: a standard
measure of social and communication deficits associated with the spectrum
of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

28. Kim, J. S. et al. Automated 3-d extraction and evaluation of the inner and outer
cortical surfaces using a laplacian map and partial volume effect classification.
Neuroimage 27, 210–221 (2005).

29. Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3d intersubject
registration of MR volumetric data in standardized Talairach space. J. Comput.
Assist. Tomogr. 18, 192–205 (1994).

30. Zijdenbos, A. P., Forghani, R. & Evans, A. C. Automatic pipeline analysis of 3-d
MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med.
Imaging 21, 1280–1291 (2002).

31. Tohka, J., Zijdenbos, A. & Evans, A. Fast and robust parameter estimation for
statistical partial volume models in brain MRI. Neuroimage 23, 84–97 (2004).

32. Lyttelton, O., Boucher, M., Robbins, S. & Evans, A. An unbiased iterative group
registration template for cortical surface analysis. Neuroimage 34, 1535–1544
(2007).

33. Gotham, K., Risi, S., Pickles, A. & Lord, C. The Autism Diagnostic Observation
Schedule: revised algorithms for improved diagnostic validity. J. Autism Dev.
Disord. 37, 613–627 (2007).

34. Gotham, K., Pickles, A. & Lord, C. Standardizing ADOS scores for a measure of
severity in autism spectrum disorders. J. Autism Dev. Disord. 39, 693–705
(2009).

35. Moradi, E. et al. Predicting symptom severity in autism spectrum disorder
based on cortical thickness measures in agglomerative data. Neuroimage 144,
128–141 (2017).

36. McIntosh, A. R., Chau, W. K. & Protzner, A. B. Spatiotemporal analysis of event-
related fMRI data using partial least squares. Neuroimage 23, 764–775 (2004).

37. Hübener, M. & Bonhoeffer, T. Neuronal plasticity: beyond the critical period.
Cell 159, 727–737 (2014).

38. Kostović, I. & Judaš, M. The development of the subplate and thalamocortical
connections in the human foetal brain. Acta Paediatr. 99, 1119–1127 (2010).

39. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based
on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31,
11597–11616 (2011).

40. Green, S. A., Hernandez, L., Bookheimer, S. Y. & Dapretto, M. Reduced mod-
ulation of thalamocortical connectivity during exposure to sensory stimuli in
ASD. Autism Res 10, 801–809 (2017).

41. Wang, J. et al. Increased gray matter volume and resting-state functional
connectivity in somatosensory cortex and their relationship with autistic
symptoms in young boys with Autism Spectrum disorder. Front. Physiol. 8,
588 (2017).

42. Natu, V. S., et al. Apparent thinning of visual cortex during childhood is
associated with myelination, not pruning. BioRxiv preprint 2018; https://doi.
org/10.1101/368274.

43. Aoki, Y., Abe, O., Nippashi, Y. & Yamasue, H. Comparison of white matter
integrity between autism spectrum disorder subjects and typically developing
individuals: a meta-analysis of diffusion tensor imaging tractography studies.
Mol. Autism 4, 25 (2013).

44. Vogan, V. M. et al. Widespread white matter differences in children and
adolescents with autism spectrum disorder. J. Autism Dev. Disord. 46,
2138–2147 (2016).

45. Chen, H., Nomi, J. S., Uddin, L. Q., Duan, X. & Chen, H. Intrinsic functional
connectivity variance and state-specific under-connectivity in autism. Hum.
Brain. Mapp. 38, 5740–5755 (2017).

46. Cerliani, L. et al. Increased functional connectivity between subcortical and
cortical resting-state networks in autism spectrum disorder. JAMA Psychiatry
72, 767–777 (2015).

47. Fu, Z., et al. Transient increased thalamic-sensory connectivity and decreased
whole-brain dynamism in autism. Neuroimage 2018; pii: S1053-8119(18)30510-
X.

48. Woodward, N. D., Giraldo-Chica, M., Rogers, B. & Cascio, C. J. Thalamocortical
dysconnectivity in autism spectrum disorder: an analysis of the autism brain
imaging data exchange. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 76–84
(2017).

49. Tomasi, D., Volkow, N. D. Reduced local and increased long-range functional
connectivity of the thalamus in autism spectrum disorder. Cereb. Cortex 2017;
https://doi.org/10.1093/cercor/bhx340.

50. Nair, A. et al. Regional specificity of aberrant thalamocortical connectivity in
autism. Hum. Brain Mapp. 36, 4497–4511 (2015).

51. Hazlett, H. C. et al. Early brain development in infants at high risk for autism
spectrum disorder. Nature 542, 348–351 (2017).

52. Heinsfeld, A. S. et al. Identification of autism spectrum disorder using deep
learning and the ABIDE dataset. NeuroImage Clin. 17, 16–23 (2017).

53. Cheng, W. et al. Autism: reduced connectivity between cortical areas involved
in face expression, theory of mind, and the sense of self. Brain 138, 1382–1393
(2015).

54. Nielsen, J. A. et al. Abnormal lateralization of functional connectivity between
language and default mode regions in autism. Mol. Autism 5, 8 (2014).

55. Uddin, L. Q. Idiosyncratic connectivity in autism: developmental and anato-
mical considerations. Trends Neurosci. 38, 261–263 (2015).

56. Vakorin, V. A. et al. Developmental changes in neuromagnetic rhythms and
network synchrony in autism. Ann. Neurol. 81, 199–211 (2017).

57. Dubois, J. et al. Structural asymmetries in the infant language and sensori-
motor networks. Cereb. Cortex 19, 414–423 (2009).

58. Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S., Bethlehem, R. A. I.
Synaptic and transcriptionally downregulated genes are associated with cor-
tical thickness differences in autism. Mol. Psychiatry 2018; https://doi.org/
10.1038/s41380-018-0023-7.

59. Reuter, M. et al. Head motion during MRI acquisition reduces gray matter
volume and thickness estimates. Neuroimage 107, 107–115 (2015).

60. Esteban, O. et al. MRIQC: advancing the automatic prediction of image quality
in MRI from unseen sites. PLoS One 12, e0184661 (2017).

61. Schaer, M., Kochalka, J., Padmanabhan, A., Supekar, K. & Menon, V. Sex dif-
ferences in cortical volume and gyrification in autism. Mol. Autism 6, 42 (2015).

62. Ecker, C. et al. Association between the probability of autism spectrum dis-
order and normative sex-related phenotypic diversity in brain structure. JAMA
Psychiatry 74, 329–338 (2017).

63. Jung, M. et al. Sex differences in the default mode network with regard to
autism spectrum traits: a resting state fMRI study. PLoS ONE 10, e0143126
(2015).

64. Louis, T. A. et al. Explaining discrepancies between longitudinal and cross-
sectional models. J. Chron. Dis. 39, 831–839 (1986).

65. Lewis, J. D. et al. The emergence of network inefficiencies in infants with
autism spectrum disorder. Biol. Psychiatry 82, 176–185 (2017a).

Bezgin et al. Translational Psychiatry           (2018) 8:249 Page 12 of 12

https://doi.org/10.1101/368274
https://doi.org/10.1101/368274
https://doi.org/10.1093/cercor/bhx340
https://doi.org/10.1038/s41380-018-0023-7
https://doi.org/10.1038/s41380-018-0023-7

	Developmental changes of cortical white&#x02013;nobreakgray contrast as predictors of autism diagnosis and severity
	Introduction
	Materials and methods
	ABIDE-I and ABIDE-II databases
	MRI data processing
	Surface extraction
	White&#x02013;nobreakgray contrast (WGC)
	Resulting samples
	Cross-sectional sample
	Longitudinal sample
	Proxy calibrated severity scores

	Statistical analysis
	Predictive models for longitudinal data using cross-sectional samples

	Code availability

	Results
	PLS analysis results
	Longitudinal PLS results
	Cross-sectional PLS results
	Relation to behavioural metrics
	Longitudinal prediction results
	Prediction of behavioural scores

	Discussion
	Limitations

	Conclusion
	ACKNOWLEDGMENTS




