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Predicting the naturalistic course of
depression from a wide range of clinical,
psychological, and biological data: a
machine learning approach
Richard Dinga1, Andre F. Marquand2,3, Dick J. Veltman1, Aartjan T. F. Beekman1, Robert A. Schoevers4,
Albert M. van Hemert5, Brenda W. J. H. Penninx1 and Lianne Schmaal1,6,7

Abstract
Many variables have been linked to different course trajectories of depression. These findings, however, are based on
group comparisons with unknown translational value. This study evaluated the prognostic value of a wide range of
clinical, psychological, and biological characteristics for predicting the course of depression and aimed to identify the
best set of predictors. Eight hundred four unipolar depressed patients (major depressive disorder or dysthymia)
patients were assessed on a set involving 81 demographic, clinical, psychological, and biological measures and were
clinically followed-up for 2 years. Subjects were grouped according to (i) the presence of a depression diagnosis at 2-
year follow-up (yes n= 397, no n= 407), and (ii) three disease course trajectory groups (rapid remission, n= 356,
gradual improvement n= 273, and chronic n= 175) identified by a latent class growth analysis. A penalized logistic
regression, followed by tight control over type I error, was used to predict depression course and to evaluate the
prognostic value of individual variables. Based on the inventory of depressive symptomatology (IDS), we could predict
a rapid remission course of depression with an AUROC of 0.69 and 62% accuracy, and the presence of an MDD
diagnosis at follow-up with an AUROC of 0.66 and 66% accuracy. Other clinical, psychological, or biological variables
did not significantly improve the prediction. Among the large set of variables considered, only the IDS provided
predictive value for course prediction on an individual level, although this analysis represents only one possible
methodological approach. However, accuracy of course prediction was moderate at best and further improvement is
required for these findings to be clinically useful.

Introduction
Depression is among the leading causes of disability in

industrialized countries1. Around 20–25% of major
depressive disorder (MDD) patients are at risk for chronic
depression2. To effectively target interventions for
patients at risk for a worse long-term clinical outcome,

there is a need to identify predictors of chronicity and
remission at an early stage. This could allow a quicker
escalation of treatment for patients with a low long-term
chance of recovery, thus potentially avoiding initial
treatment resistance. Chronicity of depression has been
linked to various clinical and psychological characteristics,
such as the presence of anxiety2, longer symptom dura-
tion, higher symptom severity, earlier age of onset3, and
higher neuroticism, lower extraversion and lower con-
scientiousness4. In addition, previous studies have shown
that various biological markers including inflammatory
markers5, lower levels of vitamin D6, lower cortisone
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awakening response7, and metabolic syndrome8 are
associated with a chronicity of depression. The aim of
these studies, however, was to find statistically significant
group differences, but not to create a predictive model. A
statistically significant variable will not necessarily be
useful for prediction, due to low effect size or because of
its redundancy with respect to other variables. Conversely,
even seemingly insignificant variables may become
important when combined with other variables. In addi-
tion, studies to date have mostly focused on a limited
range of potential predictors. It is unknown which
(combination) of these many different clinical and biolo-
gical variables provides the most accurate prediction of
naturalistic outcome of depression.
Machine learning (ML)-based predictive models are

becoming increasingly more popular for combining large
amount of data into one model, and are optimized for
evaluating the model’s predictive value for previously unseen
individuals (e.g. “new” patients). ML methods have been
successfully used to predict MDD persistence, chronicity,
and severity9, as well as treatment response10, suicide
attempts of US Army soldiers11 and first and new onset of
MDD episodes12,13. These studies found the most important
variables to be severe dysphoria9, baseline Quick Inventory
of Depressive Symptomatology (QIDS) total severity score10,
male sex and previous nonviolent weapons offense11, life-
time depression screen, and family history12. Prediction
models in these studies were based on clinical and demo-
graphic variables and did not include biological measures.
In the last decades, high hopes have been expressed that

the inclusion of biological markers will significantly
improve prediction accuracy9,14. Biological measures,
such as blood and saliva-derived biological measures, may
be related to the underlying pathophysiology of depres-
sion and therefore may possess prognostic value for dis-
ease course14. However, currently they are not being
routinely used and their efficacy for the prediction is yet
to be established.
In the present study, we extended previous studies

aimed at identifying predictors of the naturalistic course
of depression by including additional psychological and
biological predictors and by employing a novel stability
selection approach that is designed to select the optimal
set of significant predictive variables from a multivariate
ML model. We used data from the Netherlands Study of
Depression and Anxiety (NESDA), including unipolar
depression patients recruited from the community, pri-
mary care, and specialized mental health care, thereby
capturing a broad range of illness severity15. Participants
with a depression diagnosis (MDD or dysthymia, n= 804)
were assessed at baseline and were clinically followed for 2
years. No specific intervention was applied; subjects could
have undergone a wide variety of treatments, or no
treatment at all. We aim to investigate which variables,

among a broad set of clinical, demographic, and psycho-
logical variables, as well as biological variables are
important and necessary predictors to distinguish
depressed patients with a chronic course from patients
with more beneficial outcomes over a 2-year course. We
focused on the biological variables that have shown to be
related to depression or chronicity of depression in the
previous cross-sectional studies, including biomarkers of
hypothalamic–pituitary–adrenal axis7, inflammation5,
metabolic markers8, autonomic nervous system36, vitamin
D6, and neuronal growth factors32. We employed ML
methods, in combination with a stability selection
approach, to identify the optimal set of significant mea-
sures that prospectively predict clinical outcome and
naturalistic course of depression over 2 years. In addition,
we compared the predictive performance of clinical,
personality, and biological data modalities. Specifically, we
evaluated whether additional data modalities would
improve predictive performance of commonly used clin-
ical measures. We employed ML methods, in combination
with a stability selection approach, to identify the optimal
set of significant measures that prospectively predict
clinical outcome and naturalistic course of depression
over 2 years.

Materials and methods
Participants
Data included in the current study were collected as

part of a larger, multi-center study: NESDA. The NESDA
aims to study long-term course of depressive and anxiety
disorders in a naturalistic cohort study. The sample was
recruited from the general population, general practices,
and mental health organizations. Subjects were allowed to
receive pharmacological or psychotherapeutic treatment
or even receiving no treatment at all. The method of
recruitment and selection criteria are extensively descri-
bed elsewhere15.
In the present study, we used data from 804 subjects

who satisfied additional selection criteria: (i) presence of a
DSM-IV MDD or dysthymia diagnosis (or both) in the
past 6 months at baseline, established using the structured
Composite International Diagnostic Interview (CIDI,
version 2.1);16 (ii) confirmation of depressive symptoms in
the month prior to baseline either by the CIDI or the Life
Chart Interview (LCI);17 and (iii) availability of 2-year
follow-up data on DSM-IV diagnosis and depressive
symptoms measured with the LCI. The ethical review
boards approved the research protocol and all participants
signed written informed consent. Sample characteristics
can be found in Table 1.

Definition of outcome groups
We defined outcome groups in two ways: (i) based on

the presence or absence of a current unipolar depression
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diagnosis (6-month recency MDD diagnosis or dysthymic
disorder) at 2-year follow-up, according to DSM-IV MDD
criteria and (ii) groups based with different trajectories of
burden of their depressive symptoms over a 2-year period
following baseline derived from a latent class growth
analysis (LCGA) conducted previously in the same sam-
ple18. The LCGA identified five different course trajectory
groups: a rapid remission trajectory, two groups with a
trajectory showing a gradual improvement of symptoms
that differ in initial severity of depressive symptoms, two
chronic trajectories (one with moderate initial severity
and the other with severe initial severity). Because the two

improving trajectories, as well as the two chronic trajec-
tories were similar in terms of trajectory of symptoms
(they differed only in initial symptom severity at baseline)
and for the purpose of increasing statistical power, we
combined these pairs, yielding three course trajectories:
(1) remission (REM), showing a rapid remission of
symptoms (n= 356); (2) improving (IMP), showing a
gradual improvement in symptoms from baseline to
follow-up (n= 273); and (3) chronic (CHR), showing no
relief from symptoms from baseline to follow-up (n=
175). See Rhebergen et al.18 and supplemental material for
detailed information about the LCGA procedure.

Table 1 Sample characteristics

A: Presence of unipolar depression at follow-up No Yes Statistics p-Value

Sample size N 407 (51%) 397 (49%)

Age 41.07 (12.55) 42.89 (11.83) F= 4.49 0.03*

Male 133 (33%) 145 (37%) χ2= 1.15 0.28

Years of education 11.60 (3.17) 11.51 (3.37) F= 0.14 0.71

Antidepressant use baseline 166 (41%) 189 (48%) χ2= 3.52 0.06

Antidepressant use follow-up 127 (31%) 175 (44%) χ2= 13.66 0.0002**

Months with antidepressant use between baseline and follow-up 20.58 (25.23) 16.07 (25.67) χ2= 1.35 0.25

Recruitment type (primary care/specialized care/general population) 162/209/36 143/229/25 χ2= 3.96 0.14

DD/Dysth/MDD diagnosis at baseline 75/16/316 122/18/257 χ2= 17.28 0.0002**

DD/Dysth/MDD diagnosis at follow-up NA 143/39/215 χ2= 118.33 < 0.0001**

B: Course trajectory groups Remitted Improved Chronic Statistics p-Value

Sample size N 356 (44%) 273 (34%) 175 (22%)

Age 40.60 (12.57) 42.36 (12.29) 44.13 (11.07) F= 5.16 0.01**

Males 109 (31%) 97 (36%) 72 (41%) χ2= 5.91 0.05*

Years of education 11.70 (3.15) 11.40 (3.2) 11.51 (3.59) F= 0.66 0.52

Antidepressant use baseline 139 (39%) 120 (44%) 96 (55%) χ2= 11.90 0.0026**

Antidepressant use follow-up 112 (31%) 106 (39%) 84(48%) χ2= 13.97 0.0009**

Months with antidepressant use between baseline and follow-up 21.9 (29.37) 13.99 (12.35) 20.02 (33.37) χ2= 1.66 0.19

Recruitment type (primary care/specialized care/general population) 147/178/31 101/155/17 57/105/13 χ2= 6.26 0.18

DD/Dysth/MDD diagnosis at baseline 56/13/287 78/8/187 63/13/99 χ2= 38 < 0.0001**

DD/Dysth/MDD/No diagnosis at follow-up 2/1/85/268 73/22/71/107 68/16/59/32 χ2= 223.42 < 0.0001**

C: Correspondence of the outcome definitions Course trajectory groups

Presence of unipolar depression at follow-up Remitted Improved Chronic

No 268 (75%) 107 (39%) 32 (18%)

Yes 88 (25%) 166 (61%) 143 (82%)

Data are given as mean (SD) or N (%)
The table shows characteristics of the sample divided by two outcome definitions: (A) Presence or absence of a unipolar depression diagnosis (major depressive
disorder or dysthymia) 2 years after baseline measurement. (B) Three course trajectories derived from a latent class growth analysis on burden of depressive
symptoms indicated for each of the 24 months between baseline and follow-up: a rapid remission, gradual improvement, and a chronic course. Duration of
antidepressant use is measured in months between baseline and 2-year follow-up. SD; standard deviation. (C) Overlap of outcome groups
MDD major depressive disorder, Dysth dysthymia, DD double depression (MDD+ dysthymia), *p ≤0.05, **p ≤0.01 two-tailed
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Baseline predictor variables
Clinical variables
We included 55 clinical variables as predictor variables,

including measures of depressive symptoms, as indicated
by the summary score of the inventory of depressive
symptomatology (IDS) questionnaire19. Diagnostic infor-
mation on MDD, dysthymia, and anxiety-related mea-
sures were derived from the CIDI16. The summary score
of anxiety severity was measured using the Beck Anxiety
Inventory (BAI)20. Childhood trauma (before the age of
16) was measured with a childhood trauma interview as
used in de Graaf et al.21 and family history (presence of a
first-degree family member with MDD or anxiety) was
measured using the family tree method22. Additional
information about variable scoring and collection can be
found in supplemental materials.

Psychological traits
We included five personality dimensions as predictor

variables, including neuroticism, extraversion, openness
to experience, agreeableness, and conscientiousness,
measured with the NEO five-factor inventory23. Each
dimension was measured by 12 items scored on a five-
point Likert scale.

Demographic variables
Age, gender, and number of years of education were

included as predictor variables.

Biological variables
We included general measures of somatic health

including body mass index, waist circumference, lung-
capacity, hand-grip strength, and number of chronic
somatic diseases under treatment. Inflammatory markers
included C-reactive protein (CRP), interleukin-6 (IL6),
and tumor necrosis factor-alpha. Metabolic syndrome
variables included triglyceride level, high-density lipo-
protein cholesterol level, systolic and diastolic blood
pressure, and fasting glucose level. Metabolic syndrome
variables were adjusted for medication use. Mean heart
rate and heart rate variability during interview were used
as measures of autonomic nervous system. We also
included measures of vitamin D, brain-derived neuro-
trophic factor (BDNF), and cortisol. The details of data
collection procedures can be found in supplemental
materials.

Statistical analysis
Prediction of MDD diagnosis at follow-up and trajectory
course groups
We used penalized (elastic-net) logistic regression from

the R package glmnet24 to predict the presence or absence
of a unipolar depression diagnosis at 2-year follow-up and
its multinomial generalization to predict the three LCGA

course trajectory groups. The elastic-net penalty allows
building a sparse model, thereby performing feature
selection (for details, see supplemental materials). To
assess generalizability, we performed 10-fold cross-vali-
dation, repeated 10 times. For each of 10 repetitions, the
complete dataset was divided into 10 equally sized sub-
samples, of which 9 were used as a training set to create a
model and the 10th was used as a test set. To quantify
generalization error, we measured the area under the
receiver operating curve (AUROC, the proportion of
times a randomly selected subject from a positive class is
ranked before a randomly selected subject from a negative
class), sensitivity, specificity, balanced accuracy (mean of
sensitivity and specificity), and positive and negative
predictive value. For multinomial predictions, we assessed
the same performance measures for predicting each group
separately from the other two (referred to as a “one vs. all”
configuration in the ML literature). We also assessed
mean sensitivity (mean of proportion of correctly classi-
fied subjects in each group) as a multi-class version of
balanced accuracy. We used balanced accuracy and mean
sensitivity instead of accuracy to accommodate unequal
group sizes. Permutation testing was used to determine
statistical significance (see supplementary materials for
more details). We conducted additional exploratory ana-
lyses to detect potential interaction or nonlinear effects by
testing additional models that include all two-way inter-
action terms and a polynomial expansion of age. A
description of the statistical procedure and the results of
these exploratory models can be found in supplementary
materials.

Identification of discriminating variables
Variable selection is well known to be a difficult pro-

blem in settings where the predictor variables are highly
collinear (as they are here). Specifically, the variables
detected can be highly sensitive to slight variations in the
data and it can be difficult to determine whether variables
are selected because they are directly useful in predicting
the outcome or because they help canceling out noise or
mismatch in other covariates25. To address this issue, we
used a stability selection approach26 that finds a stable set
of features that predicts the outcome and provides tight
family-wise error control over the number of falsely
selected variables (type I error rate). Specifically, the
model is fitted many times on different subsamples of the
data, to estimate the chance of each variable to be selec-
ted. Given a specified selection threshold (e.g., selection
threshold of 0.75 means that a variable has a 75% chance
of being selected, or in other words, the variable is
selected in 75% of the subsamples of the data, see sup-
plementary materials), stability selection theory, derived
from Meinshausen et al.26, provides a particular family-
wise error bound on the expected number of falsely
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selected features at each point along a “stability path” that
tracks the variables included in the model as a function of
regularization strength. These stability paths are also a
useful tool for visualization and show the region on the
stability path where the probability of a false selection is
sufficiently low. To perform stability selection, we used
the R package C06027.

Results
Demographic and clinical characteristics of the two

follow-up diagnosis groups and three LCGA course tra-
jectory groups can be found in Table 1.

Prediction of the presence of an MDD diagnosis at 2-year
follow-up
The penalized logistic regression trained on all demo-

graphic, clinical, psychological, and biological predictors
discriminated between patients with and without a uni-
polar depression diagnosis at 2-year follow-up with 0.66
AUROC and 62% balanced accuracy. The confusion
matrix is shown in Fig. 1a and the spread of predicted
outcomes in Fig. 1c. Graphs depicting positive and
negative predictive values can be found in supplementary
materials (Figures S2, S3).

Prediction of LCGA course trajectory groups
Using all clinical, psychological, and biological pre-

dictors, we could discriminate between the three course
trajectory groups; rapid REM with 0.69 AUROC and 66%
balanced accuracy, the gradual IMP group with 0.62
AUROC and 60% balanced accuracy, and the CHR group
with 0.66 AUROC and 61% balanced accuracy. In the case
of multinomial prediction, sensitivity for each group was
59% for REM, 37% for IMP, and 47% for CHR (chance
level with three groups is 33%). The confusion matrix for
the multinomial prediction is shown in Fig. 1b and the
spread of predicted outcomes in Fig. 1d. The average
sensitivity of all three groups was 0.47, which was sig-
nificantly higher than a chance level of 0.33 (p < 0.05).
Graphs depicting positive and negative predictive values
can be found in supplementary materials (Figures S2, S3).

Identification of discriminating variables
Figure 2a, b show stability paths indicating how often

each variable in the model is selected as a function of the
regularization applied. The IDS total score is the only
variable that survived family-wise error correction (with
pfwer < 0.05), both for predicting outcomes defined as the
three LCGA groups and as the presence of a unipolar
depression diagnosis at follow-up. Also, IDS score was
selected much sooner in the stability path than other
variables, indicating a high probability of the IDS score
being included in the model, even if that model would
contain a minimal number of variables. To examine the

direction of effect of stable predictors, we fitted a model
including only the first nine variables that cross the
selection threshold. The coefficients and univariate cor-
relations of these variables are in Table 2. The direction of
the effects of clinical variables is as expected, the presence
of dysthymia or suicidality decrease the chance of a better
outcome.
Other variables that were selected but did not survive

FWE (family-wise error rate) correction included: dys-
thymia diagnosis (1-month recency) and conscientious-
ness for the prediction of the presence of a unipolar
depression diagnosis at follow-up, and a dysthymia diag-
nosis in the past 1 and 6 months, as well as extraversion
for discriminating between the three LCGA course tra-
jectory groups.

Predictive performance of individual predictor domains
We compared performance of individual predictors

domains, including (i) IDS items, (ii) 55 clinical measures,
(iii) 5 psychological measures, and (iv) 18 biological
measures. Across all outcomes, the model using all vari-
ables performed better than predictors within individual
domains. Best performance was observed for prediction of
the REM group. With regard to individual predictor
domains: prediction based on IDS item scores showed the
best prediction. The prediction using only biological
variables showed the lowest performance for three out of
four outcomes, and they could only significantly dis-
criminate the CHR group. The performance of the IDS
item model was within 0.01 AUROC of the performance
of the full model (including all predictor variables) for
REM and IMP outcomes and the presence versus absence
of an unipolar depression diagnosis after 2 years (Fig. 3).
The only exception was a decrease of model performance
using only the IDS items for discriminating the CHR
group from the other two LCGA groups; performance
dropped from 0.66 (full model) to 0.61 (IDS items only)
AUROC. The models trained on all clinical, psychological,
and biological variables separately, showed lower AUROC
values compared with the IDS item model and the full
model for discriminating REM and IMP groups. In case of
CHR group, clinical variables were more predictive than
IDS items alone (Fig. 3b). Psychological measures dis-
criminated significantly better than chance the REM
group and presence of a unipolar depression diagnosis at
follow-up. Clinical measures discriminated significantly
between all groups except the IMP group.

Predictive performance of individual IDS items
As only the IDS total score was statistically significant,

we examined which items of the IDS contributed most to
this prediction. We performed post-hoc stability selection
analyses including only individual IDS item scores. From
30 items, only the item “Feeling sad” was selected as a
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statistically significant predictor (with pfwer < 0.05) for
discriminating between the three LCGA groups (Fig. 2c).
For predicting the presence of a unipolar depression
diagnosis at follow-up, the item “Feeling sad” was also
selected, but did not survive the FWER correction.
Instead, mood reactivity was statistically significant (Fig.
2d).

Discussion
Our findings indicate that from a wide range of clinical,

biological, and psychological predictors, only severity of
baseline depressive symptoms (measured by the IDS self-
report questionnaire) was a significant predictor of dif-
ferent course trajectories of depression. We were able to
predict the presence or absence of a unipolar depression
diagnosis after 2 years with an AUROC of 0.66, and to
discriminate between three course trajectory groups with

an AUROC of 0.69 for rapid REM, 0.63 for gradual IMP,
and 0.66 for a CHR course of depression.
Prediction of outcome in psychiatry is notoriously hard,

due to heterogeneity of disorders, broad comorbidities
across disorders, and due to clinical categories defined
without a priori biological validity28. The performance of
our models will need to improve in order to be transla-
table to clinical practice, but is comparable to previous
ML studies predicting the naturalistic course of depres-
sion. For example, a study by Kessler and colleagues9

observed an AUROC of 0.63 for predicting high chroni-
city, defined as an episode lasting most days throughout
the year, and AUROC’s between 0.71 and 0.76 for pre-
dicting other measures indicative of a 10- to 12-year ill-
ness course of depression, such as high persistence of
MDD, hospitalization, and disability caused by MDD, and
suicide attempts. Kessler et al.9 based their prediction

Fig. 1 Model predictions. Confusion matrices for classifiers are depicted in panel a for binary prediction, i.e., presence or absence of a unipolar
depression diagnosis at follow-up (major depressive disorder or dysthymia), and b for prediction of the three LCGA course trajectory groups. Number
and color in each cell describe the proportion of predictions. For example, chance level would be 0.5 in each cell in the confusion matrix in a, and
0.333 in the confusion matrix in b. Violin plots of the spread of predicted values are depicted in panel c for binary prediction, i.e., presence or absence
of a unipolar depression diagnosis at follow-up, and d for predicting the three course trajectory groups
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models on baseline clinical measures alone, including
symptoms of MDD and parental history of MDD,
mania–hypomania, anxiety disorders, and externalizing
disorders. The contribution of each individual clinical
measure to the overall prediction was not assessed, so we
cannot infer whether the prediction of their outcomes was
also driven by severity of symptoms as observed in the
present study.
Our most accurate models achieved a slightly lower

AUROC of 0.69 for predicting an illness course char-
acterized by rapid remission compared with the AUROCs
found in Kessler et al.9, which is arguably less extreme
(and therefore likely harder to predict) and a more

prevalent outcome than outcomes considered by Kessler
and colleagues9. Highest AUROC’s were found by Kessler
et al.9 for models predicting hospitalization, disability, and
attempted suicide, which was reported in only 3.2–5.8% of
the total sample. However in our study, the prevalence of
a remitted course of depression was 44%. Therefore,
despite the smaller AUROCs, the positive predictive value
(PPV) of our models is higher (between 33 and 68% PPV
for a given outcome definition in the present study
(Supplemental Figure S2), compared with PPV between
12.5% and 18.3% in the Kessler et al. study9 for 20% of
subjects with highest predicted probability of a given
clinical outcome), which means that our models have a

Fig. 2 Stability paths. Stability paths of elastic-net logistic regression showing selection probabilities of each variable with respect to amount of
applied regularization. The less regularization is applied, the more variables will be included in the model and the higher the chance for a false-
positive selection. The stability selection approach allows us to statistically control for false-positive discovery. Variables crossing the marked regions
are statistically significantly related to the outcome variable with the error correction pfwer < 0.05 according to the stability selection theory. Other
variables that crossed the probability threshold (they have been selected at least 75% of times under resampling) might also be important, but they
did not survive the multiple comparison correction. a, b Logistic regression trained on all variables. c, d Logistic regression trained only on the
individual items from the inventory of depressive symptomatology (IDS) questionnaire
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smaller probability of false-positive classifications. Pre-
vious studies aimed at predicting first onset and new onset
of an MDD episode during follow-up in people with no
current MDD diagnosis using prediction algorithms based
on demographic and clinical characteristics have found
slightly higher AUROC of 0.75–0.79 in the training
sample, which dropped to 0.70–0.73 AUC in independent
replication samples12,13,29.
In addition to evaluating the predictive value of a model

including all clinical, biological, and psychological vari-
ables, we aimed to identify (a minimum set of) individual
predictors that reliably predict the naturalistic course of
depression. For this purpose, we used a novel approach by

combining penalized logistic regression and a stability
selection method that selects predictive variables from a
multivariate model while controlling for family-wise error.
Of all included measures, we only identified the IDS as a
statistically significant predictor. The total IDS score was
positively associated with IMP and CHR course group
membership, and with the presence of a depression
diagnosis after 2 years, and negatively associated with a
REM course and the absence of a depression diagnosis at
follow-up. Although our method provides excellent con-
trol over type I errors, it is conservative and can miss
predictive variables26. However, other variables only
improved prediction of CHR course by 0.05 AUROC and

Table 2 Coefficients of selected variables

A: Presence of a unipolar depression diagnosis at follow-up

Ranka βb rpb
c

(Intercept) −0.03 —

1 IDS scored 0.39 0.25

2 Conscientiousness −0.33 −0.19

3 Extraversion −0.04 −0.16

4 Neuroticism −0.06 0.16

5 MDD criteriae 0.1 0.14

6 Dysthymia lifetime −0.13 0.15

7 Dysthymia 1mf 0.19 0.16

8 Dysthymia 0.2 0.15

9 Mild recurrent MDD −0.11 −0.13

B: Course trajectories Remitted Improved Chronic

Ranka βb rpb
c βb rpb

c βb rpb
c

(Intercept) 0.31 — 0.09 — -0.4 —

1 IDS scored −0.31 −0.29 0.12 0.16 0.19 0.16

2 Conscientiousness 0.13 0.16 −0.08 −0.11 −0.04 −0.07

3 Extraversion 0.09 0.2 −0.05 −0.12 −0.04 −0.11

4 Suicidality −0.1 −0.15 0.1 0.11 0 0.05

5 Dysthymia lifetimef 0.14 −0.16 −0.04 0.02 −0.1 0.16

6 Dysthymia 12mf −0.04 −0.18 −0.04 0.04 0.09 0.17

7 Dysthymia 6mf 0.24 −0.18 −0.04 0.04 −0.2 0.17

8 Dysthymia 1mf −0.41 −0.2 0.15 0.06 0.26 0.18

9 Dysthymia −0.16 −0.16 −0.05 0.02 0.22 0.16

aFeatures are ranked based on order of selection by the stability selection approach
bCoefficients of the logistic regression models. In the case of a multi-class problem (table B), coefficients of each of the binary regressions are shown. However, the
direction and a magnitude of coefficients are hard to interpret due to a collinearity problem
cUnivariate (point biserial) correlation coefficients showing the relationship of individual variable with different course groups
dIDS, inventory of depressive symptomatology
eNumber of DSM-IV diagnostic criteria met for a diagnosis of major depressive disorder (MDD)
fRecency of dysthymia in months
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all other outcome groups (presence of an MDD diagnosis,
REM, IMP) by 0.01 AUROC. This is roughly equivalent to
a difference of 0.04 Cohen’s d30, indicating a low added
value of additional variables over and above the IDS.
Interestingly, a subsequent exploratory analysis that we
performed to identify which individual items of the IDS
contributed most to the prediction showed that only the
items “Feeling sad” (for predicting the presence of an
MDD diagnosis at follow-up) and “Response of your
mood to good or desired events” (for predicting the three
different course trajectories) were identified as significant

predictors. Performance of models using only these two
items was similar to a model using all IDS items.
Similar results were found by Chekroud and collea-

gues10 in a recent study examining the predictive value of
clinical measures for remission of MDD symptoms fol-
lowing a randomized 12-week citalopram treatment.
Their model selected 25 best predictors from 164 socio-
demographic and clinical features, and was able to predict
remission with AUC of 0.70. Total severity of depressive
symptoms, measured with the QIDS (shortened version of
the IDS) was the most important predictor of treatment
response. In line with the current study, treatment
response could also be predicted with models using fewer
variables, e.g., with only 15 and 10 variables with AUC of
0.69 and 0.68, respectively.
These findings suggest that other clinical measures

possess very little or no prognostic value for course of
depression—or remission following treatment in the
Chekroud et al. study10—above and beyond severity of
depressive symptoms. Biological variables, including
inflammatory markers, cortisone, metabolic measures,
BDNF, and vitamin D were able to predict only a chronic
course of depression, although performance was worse
than for clinical variables. This finding is in contrast to
our previous studies within the same sample that showed
group-level associations between lower cortisol awaken-
ing response7 and vitamin D deficiency6 and chronicity of
unipolar depression. These findings show clearly that a
group-level association does not imply the ability to make
predictions for new cases at the level of individual sub-
jects. This implies that although these baseline biological
parameters can be associated with outcome based on
group-level approaches, the effect sizes are probably too
small to possess sufficient prognostic ability for long-term
outcome in individual patients. In line with the current
findings, in previous studies we found no group-level
associations between a chronic course of depression and
BDNF31, CRP, IL6 and metabolic syndrome32, despite
clear group differences between healthy controls and
unipolar depression patients. This may suggest that bio-
logical markers implicated in the etiology of unipolar
depression are not necessarily good prognostic markers.
Nonetheless, although we found no evidence for biologi-
cal variables being informative for predicting naturalistic
course of depression at the level of individual patients,
they may still be useful for discriminating unipolar
depression patients from other patient groups, e.g.,
bipolar disorder33, or for predicting response to, e.g.,
antidepressant treatment. Moreover, our course outcome
definitions were based on DSM diagnosis and severity of
symptoms. Symptom-based classifications are agnostic
about underlying biological mechanisms and patients
whose trajectory of symptoms is caused by different bio-
logical processes may be subsumed under the same

Fig. 3 Performance of different data modalities. Mean area under
the curve for predictive models of naturalistic course of depression. a
Predicting the presence or absence of a unipolar depression diagnosis
2 years after the baseline measurement. b Predicting the three
depression course trajectory groups
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category. As a consequence, our different course trajec-
tory groups may have consisted of a heterogeneous set of
patients with a similar course in terms of symptoms but
distinct underlying pathophysiological mechanisms,
and, hence, the full predictive power of biological vari-
ables may become only visible when patients are first
stratified according to clinically relevant biological
characteristics.
We previously showed promising results using task-

based functional brain imaging34. This study was con-
ducted in a smaller subsample (n= 118) of the dataset
used here, with identical LCGA course trajectory defi-
nitions. In this study, models based on neural patterns of
activation in response to emotional facial expressions
could discriminate chronic patients from patients with
more favorable trajectories with up to 73% accuracy and
outperformed models based on other neuroimaging
modalities (structural magnetic resonance imaging,
task-based functional magnetic resonance imaging
related to executive functioning with a chance level
accuracy) or clinical data (accuracy of 69%). However,
since the sample in our previous study was smaller,
resulting in less stable results, and more homogeneous
due to additional selection criteria, no strong conclu-
sions can be drawn regarding the added value of neu-
roimaging data.

Limitations
The main limitation of the current study is a lack of

replication of our findings in an independent dataset.
Although within-sample cross-validation is known to be
an approximately unbiased estimator of population gen-
eralizability35, it may not completely account for the dif-
ferent characteristics of data from different samples. An
important next step is to validate our findings in inde-
pendent data. An additional limitation is that due to the
naturalistic setting of our study treatment was not con-
trolled and limited information was available on treat-
ment received during the follow-up period. The advantage
of our naturalistic design is that the sample is more
representative of depression in the general population.
However, the prediction accuracy may have been higher
in a more homogeneous and controlled sample. A final
limitation of the study is that we tested only a one ML
algorithm without the extensive tuning of all hyper-
parameters. It is possible that a different analytic pipeline
or an algorithm would yield slightly different predictions.
We have done this mainly for the sake of simplicity so that
stability selection is performed on the same algorithm that
was also used to make predictions, and to avoid overly
optimistic results due to model selection bias and over-
fitting36. Our results can, therefore, be considered as a
conservative estimate of out of sample predictive
accuracy.

Conclusion
The current study showed that for prediction of the

naturalistic course of depression on the level of individual
patients, only severity of depressive symptoms was iden-
tified as a stable and significant predictor with low to
moderate prediction accuracy. Among a wide set of psy-
chological, biological, and clinical variables no other
measure improved the prediction accuracy that was
obtained based on self-reported depressive symptoms
(IDS scores) alone. However, our best model only showed
moderate predictive performance at best, hence, the
prediction model requires further improvements to be
clinically useful.
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