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Abstract
The ankyrin 3 gene (ANK3) is a well-established risk gene for psychiatric illness, but the mechanisms underlying its
pathophysiology remain elusive. We examined the molecular effects of disrupting brain-specific Ank3 isoforms in
mouse and neuronal model systems. RNA sequencing of hippocampus from Ank3+/− and Ank3+/+ mice identified
altered expression of 282 genes that were enriched for microtubule-related functions. Results were supported by
increased expression of microtubule end-binding protein 3 (EB3), an indicator of microtubule dynamics, in Ank3+/−
mouse hippocampus. Live-cell imaging of EB3 movement in primary neurons from Ank3+/− mice revealed impaired
elongation of microtubules. Using a CRISPR-dCas9-KRAB transcriptional repressor in mouse neuro-2a cells, we
determined that repression of brain-specific Ank3 increased EB3 expression, decreased tubulin acetylation, and
increased the soluble:polymerized tubulin ratio, indicating enhanced microtubule dynamics. These changes were
rescued by inhibition of glycogen synthase kinase 3 (GSK3) with lithium or CHIR99021, a highly selective GSK3
inhibitor. Brain-specific Ank3 repression in neuro-2a cells increased GSK3 activity (reduced inhibitory phosphorylation)
and elevated collapsin response mediator protein 2 (CRMP2) phosphorylation, a known GSK3 substrate and
microtubule-binding protein. Pharmacological inhibition of CRMP2 activity attenuated the rescue of EB3 expression
and tubulin polymerization in Ank3-repressed cells by lithium or CHIR99021, suggesting microtubule instability
induced by Ank3 repression is dependent on CRMP2 activity. Taken together, our data indicate that ANK3 functions in
neuronal microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings reveal cellular and
molecular mechanisms underlying brain-specific ANK3 disruption that may be related to its role in psychiatric illness.

Introduction
Large-scale genomic studies are providing a clearer

picture of the genetic architecture of psychiatric illness.
Genetic variation in ANK3 is associated with several
psychiatric disorders, including bipolar disorder (BD) and
autism spectrum disorders (ASD)1–11. Human post-
mortem brain studies demonstrate that carriers of ANK3

alleles associated with BD have lower ANK3 expression at
the transcript and protein levels12,13, suggesting that
decreased expression of ANK3 contributes to disease.
Despite strong genetic evidence that ANK3 contributes to
psychiatric illness14, the precise mechanism is unknown.
ANK3 encodes the ankyrin-G scaffolding protein that

anchors integral membrane proteins to the cytoskele-
ton15,16. There are several protein isoforms of ankyrin-G
due to alternative splicing and alternative starting
exons13,17. These isoforms have unique functions and
tissue distribution, including isoforms that are only
expressed in brain. Genomic regions associated with BD
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span exon 1b of ANK3 and the intron upstream of exon
37, exons that are only present in brain-specific isoforms.
Furthermore, rare mutations identified in ASD patients
are predominantly located within the brain-specific exon
371–8. The brain-specific isoforms are primarily known for
their function in formation of the neuron axon initial
segment (AIS) and clustering of ion channels at the nodes
of Ranvier along axons18,19. Interestingly, BD patients
carrying a BD-associated risk allele for ANK3 have a
decreased fractional anisotropy in the uncinate fasciculus,
which is an indication of impaired axon function or
axonal damage in these forebrain connections11.
Recent evidence implicates cytoskeleton dysfunction in

psychiatric illness20–22. Microtubules are components of
the cytoskeleton that contribute to the morphology of
axons and dendrites in neurons, and facilitate transport of
cellular cargo. They are composed of α and β tubulin
heterodimers that continuously polymerize and depoly-
merize at the microtubule plus end (i.e., microtubule
dynamics), leading to continuous growth and shrinkage of
microtubules23. ANK3 is reported to bind microtubules
directly or through binding of microtubule-associated
proteins at the plus end stabilizing cap24–26 that prevents
depolymerization. The interaction between ANK3 and
microtubules provides a biological basis for examining
brain-specific Ank3 in the regulation of microtubule
dynamics.
We have previously demonstrated that brain-specific

Ank3 isoforms regulate psychiatric-related behaviors in
mice, and alterations in these behaviors in Ank3+/− mice
are reversed by the mood stabilizer lithium27,28. An
important target of lithium is GSK3, which is implicated
in psychiatric illness by animal studies29,30. Among the
downstream substrates of GSK3, CRMP2 has emerged as
a prime target for regulation of microtubule dynamics and
stability31–33. In its unphosphorylated state, CRMP2 binds
tubulin heterodimers and stabilizes the plus end of
microtubules34; however, upon phosphorylation by GSK3,
CRMP2 activity is suppressed and binding to micro-
tubules is reduced. In Caenorhabditis elegans, the
homologs of ANK3 (UNC-44) and CRMP2 (UNC-33) are
required to organize microtubules in neurons35. There-
fore, it is possible that ANK3 modulates microtubule
dynamics through a mechanism involving
CRMP2 signaling.
In the current study, we investigated the molecular

impact of reducing expression of brain-specific Ank3
isoforms, based on the patient genetic and expression
studies noted above that implicate reduced expression of
these isoforms in disease. Using RNA sequencing, bio-
chemical, and live cell-imaging methods in mouse and
neuronal model systems, we determined that brain-
specific Ank3 deficiency is associated with enhanced
microtubule dynamics (i.e., increased tubulin

polymerization/depolymerization). Furthermore, we
demonstrate that microtubule changes induced by brain-
specific Ank3 repression are rescued by lithium or a
selective inhibitor of GSK3 through a CRMP2-dependent
mechanism. Our findings establish for the first time that
brain-specific Ank3 is important for maintaining proper
microtubule dynamics through GSK3/CRMP2 signaling.

Materials and Methods
See Supplementary Information for detailed methods.

Animals
Male Ank3+/− mice with heterozygous disruption of

Ank3 exon 1b18 were crossed to female C57BL/6J mice
(Jackson Laboratory, Bar Harbor, ME) to generate Ank3
+/− and Ank3+/+ progeny. Experiments were con-
ducted in accordance with the National Institutes of
Health guidelines and approval of the Institutional Ani-
mal Care and Use Committees of Massachusetts Institute
of Technology and Massachusetts General Hospital.

RNA sequencing and data analysis
Hippocampal RNA from 10 male 16-20wk old mice per

genotype was pooled for RNA sequencing. Trimmed
sequence reads were aligned onto the Mus musculus
GRCm38/mm10 genome and analyzed using the Tuxedo
package within the GenePattern platform (https://
genepattern.broadinstitute.org)36. Differentially expressed
genes were identified based on minimum 1.2-fold change
and uncorrected P ≤ 1 × 10−3. The Ingenuity Pathway
Analysis package was used to identify overrepresented
biological pathways, with a focus on ‘Canonical Pathways’
and ‘Diseases and Functions’.

Live cell imaging
Mouse primary forebrain neurons were generated from

P0 Ank3+/+ and Ank3+/− mice. Cells were transfected
with mPA-GFP-EB3-7 (Addgene, Cambridge, MA) at
DIV11-12 and imaged at DIV14. Axon segments
70–150 μm in length were imaged starting ~60 μm from
the soma at 2 s intervals for 300 s. EB3 comet trajectory
was manually traced from kymographs generated using
the ImageJ Kymolyzer macro37 to calculate comet length,
duration, and velocity.

Western blot
Protein lysates from neuro-2a cells or hippocampal

tissue from male mice were separated by SDS-PAGE and
blotted onto PVDF membranes, probed with specific
primary antibodies and HRP-linked secondary antibodies
(Supplementary Table 1), followed by electro-
chemiluminescent detection. Protein expression was
quantified by normalizing to GAPDH, and
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phosphorylated or acetylated protein expression by nor-
malizing to the corresponding total protein.

CRISPR-mediated Ank3 transcriptional repression
Single guide RNA (sgRNA) sequences were designed to

target mouse Ank3 exon 1b using the CRISPR Design
Tool (http://crispr.mit.edu) (Supplementary Table 2).
Ank3-targeting and non-targeting control sgRNAs were
cloned into the sgRNA(MS2)-EF1α plasmid (gift from Dr.
Feng Zhang)38.

Cell culture
Mouse neuro-2a cells (ATCC, Manassas, VA) were dual

transfected with the pHAGE-EF1α-dCas9-KRAB tran-
scriptional repressor plasmid39 (Addgene) and sgRNA
(MS2)-EF1α plasmid expressing Ank3-targeting or con-
trol sgRNA. For drug experiments, cells were treated for
1 h with the GSK3 inhibitors lithium (Sigma-Aldrich, St.
Louis, Mo) or CHIR99021 (LC Laboratories, Woburn,
Ma), or for 24 h with the CRMP2 inhibitor lacosamide
(Sigma-Aldrich, St. Louis, Mo).

RT-qPCR
SYBR Green qPCR was performed using 1 μg cDNA

using gene and Ank3 isoform-specific primers (Supple-
mentary Table 3)40. Expression was normalized to beta-2-
microglobulin.

Tubulin polymerization assay
Neuro-2a cells were lysed to obtain soluble and inso-

luble protein fractions for western blot detection of α-
tubulin41,42.

Statistical analysis
Statistical analyses were performed by unpaired Stu-

dent’s t test, or one- or two-way ANOVA followed by post
hoc tests, using StatView version 5 or SPSS version 16.
Sample sizes were determined based on previously pub-
lished literature and our preliminary data. Significance
threshold was set at P < 0.05.

Results
RNA sequencing identifies expression changes in
microtubule-related pathways in Ank3+/− mouse
hippocampus
RNA sequencing analysis was performed to identify genes

with altered expression in hippocampus from Ank3+/−
mice, which exhibit 50% reduced expression of brain-
specific Ank3 compared to wild-type Ank3+/+ mice
(Supplementary Figure 1). On the basis of our targeted read
depth of 25 million reads, we expected the RNA sequencing
analysis to detect predominantly abundant genes. A total of
282 genes were significantly differentially expressed (fold
change ≥1.2, uncorrected P ≤ 1 × 10−3) between Ank3+/−

and Ank3+/+ hippocampus (102 upregulated, 180 down-
regulated; Supplementary Table 4). Ingenuity Pathway
Analysis of the differentially expressed genes identified
significant overrepresentation of the Axonal Guidance
Signaling canonical pathway (17 genes; corrected P=
0.0088). Among the Disease & Function pathways, the
Microtubule Dynamics pathway was most significantly
enriched (34 genes; uncorrected P= 6.7 × 10−5). Ten of the
17 Axonal Guidance Signaling genes were also annotated as
Microtubule Dynamics genes. The Microtubule Dynamics
pathway is categorized within a higher-level function of
Cellular Assembly and Organization, which contains three
other pathways that were overrepresented among the 282
differentially expressed genes, although with weaker statis-
tical evidence: Fusion of Vesicles (6 genes, P= 2.0 × 10−4),
Organization of Cytoskeleton (36 genes, P= 3.1 × 10−4),
and Extension of Cellular Protrusions (10 genes, P= 3.3 ×
10−4). Many of the genes in the latter three pathways
overlap the Microtubule Dynamics and Axonal Guidance
Signaling pathways, resulting in a total of 47 genes across
the five pathways (Table 1). As the identified pathways
represent cellular functions requiring microtubules, we
focused subsequent experiments on the role of Ank3 in
microtubule dynamics.

Enhanced microtubule dynamics in Ank3+/− mouse
hippocampus
To obtain support for microtubule defects in Ank3+/−

mouse brain, we evaluated the expression of the EB3 end-
binding protein. EB3 modulates stability at the micro-
tubule plus end, serving as a marker of growing micro-
tubules43, and is reported to directly interact with
Ank324–26. Western blot analysis of EB3 in hippocampus
isolated from Ank3+/+ and Ank3+/− mice determined
that expression was increased 1.5-fold in Ank3+/− mice
compared to Ank3+/+ mice (P < 0.001, Fig. 1). The
substantial elevation in EB3 expression suggests that
reduction of brain-specific Ank3 is associated with
enhanced microtubule dynamics (i.e., increased poly-
merization/depolymerization of tubulin at the plus end).

Brain-specific Ank3 reduction impairs microtubule
elongation in axons
To directly monitor the effect of Ank3 reduction on the

dynamic properties of microtubules, we performed live-cell
imaging of GFP-tagged EB3 in mouse primary neurons. As
microtubules polymerize, EB3-GFP puncta at the plus end
cap appear as mobile comets, which dissipate when the
microtubules depolymerize44. We analyzed EB3 comet
length, duration, and velocity in axons of DIV14 primary
neurons from Ank3+/+ and Ank3+/− neonatal mice (Fig.
2a). The trajectory length of EB3 comets was ∼15% shorter
in axons of Ank3+/− neurons compared to Ank3+/+
neurons (Fig. 2b, P= 0.002), indicating decreased
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Table 1 Microtubule-related pathways enriched for genes that are differentially expressed between Ank3+/− and
Ank3+/+ mouse hippocampus

Gene Fold change

(Ank3+/− vs

Ank3+/+)

Axonal

guidance

signaling

Microtubule

dynamics

Fusion of

vesicles

Organization

of

cytoskeleton

Extension of

cellular

protrusions

AGT 1.30 X X X

ANKRD27 −1.30 X X X

ARHGAP33 −1.26 X X

BAG3 −1.48 X X

BCAR1 −1.26 X X X

BCR −1.25 X X

BSN −1.20 X X X

CACNA1A −1.21 X X X

CAV2 1.30 X

CDK18 −1.31 X X

DPYSL5 −1.25 X X X X

DSP 1.26 X X

DVL2 −1.40 X X

E2F4 −1.29 X X

EPHB6 −1.20 X X X

FLNB −1.24 X

FOXO6 −1.39 X X

GAS2L1 −1.25 X X

GPR116 1.23 X X

HDAC6 −1.26 X X X

HTR1A −1.32 X X

IDE −1.37 X X

LAMP2 1.21 X

LIMK1 −1.24 X X X X

LMTK3 −1.24 X X

MAOA 1.30 X X

MAP2K2 −1.22 X

MATK −1.29 X X

MYH9 −1.27 X X X

NTNG1 1.40 X X X X

PLCB4 1.81 X

PLC1 −1.23 X

PLCH2 −1.22 X

PLXNA1 −1.21 X

PLXND1 −1.32 X X X

PRKCD 2.86 X X X

RIMS4 −1.48 X X
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microtubule elongation. EB3 comets in Ank3+/− axons
were detected in ∼15% fewer frames of the 300 s time-lapse
imaging video compared to the comets in Ank3+/+ axons
(Fig. 2c, P= 0.003), suggesting decreased duration of EB3
bound to microtubule plus ends. The velocity of EB3 comets
did not differ between Ank3+/− axons and Ank3+/+
axons, indicating that the rate of microtubule polymeriza-
tion was unchanged (Fig. 2d, P > 0.05). These data suggest
an increase in the dynamics of microtubules with an overall

reduction of microtubule elongation in Ank3+/− axons
compared to Ank3+/+ axons.

Establishment of a neuronal model of brain-specific Ank3
repression
We established a cellular model to investigate the

mechanism underlying impaired microtubule elongation
associated with brain-specific Ank3 reduction. Mouse
neuro-2a cells were dual-transfected with a CRISPR/
dCas9 KRAB repressor and either a sgRNA targeting
Ank3 exon 1b or a control sgRNA (Fig. 3a). Fourteen
sgRNA sequences were screened for efficacy of Ank3
exon1b repression (Supplementary Figure 2). One sgRNA
(#7) was selected and selective repression of Ank3 exon
1b was verified (Fig. 3b; Supplementary Information).
Western blot analysis indicated that Ank3 repression
elevated EB3 expression by 40% compared to control cells
(Fig. 3c, P < 0.01). This aligns with our earlier observation
of increased EB3 expression in hippocampus from Ank3
+/− mice compared to Ank3+/+ mice (Fig. 1), thereby
validating our neuronal model system.

Repression of brain-specific Ank3 in cells reduces
polymerized tubulin
To assess the enhancement of microtubule dynamics

associated with brain-specific Ank3 repression, we
examined characteristics of tubulin (i.e., acetylation and
polymerization state) in our neuronal model system.
Tubulin acetylation is an indicator of the overall stability
of microtubules, such that microtubules that are more
stable and resistant to turnover have higher acetylation
levels, whereas more microtubules that are more dynamic
and susceptible to turnover have lower acetylation
levels45,46. Western blot analysis revealed a 45% reduction

Table 1 continued

RRAS2 1.48 X

SEMA5A 1.24 X

SLIT3 −1.21 X X X

SMURF1 −1.27 X X X

STX1A −1.29 X

STX8 1.49 X

TGFB3 −1.48 X X

ULK1 −1.29 X X X

UNC5B −1.24 X X X X

WNT7A −1.37 X X X

Fig. 1 Increased expression of EB3 in Ank3+/− mouse
hippocampus. Top: Representative western blot of EB3 and GAPDH
reference protein in hippocampal tissue from Ank3+/+ and Ank3+/−
mice. Bottom: Quantification of EB3 expression normalized to GAPDH
expression. The data were analyzed using two-tailed Student’s t test,
Ank3+/+ n= 12; Ank3+/− n= 13. The data are presented as mean ±
s.e.m. ***P < 0.001
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of acetylated tubulin normalized to total tubulin in Ank3-
repressed cells compared to control cells (Fig. 3d, P <
0.05), suggesting microtubules are more dynamic when
Ank3 is repressed. Further, western blot analysis of
tubulin in soluble and polymerized protein fractions41,47–
49 determined that brain-specific Ank3 repression led to
an increase in the amount of tubulin in the soluble protein
fraction and a concomitant decrease in the polymerized
fraction compared to control cells. This resulted in a 1.4-
fold increase in the ratio of soluble to polymerized tubulin
(Fig. 3e, P < 0.01), indicating a shift in equilibrium from
microtubule-associated tubulin towards free tubulin as a
result of brain-specific Ank3 repression. This shift was not
due to changes in total tubulin expression between Ank3-
repressed and control cells (Fig. 3e, P > 0.05). These
results are consistent with increased turnover at the
microtubule plus ends due to repression of brain-specific
Ank3.

GSK3 inhibition rescues microtubule changes associated
with Ank3 repression
To examine the molecular mechanisms underlying

enhanced microtubule dynamics in our neuronal model
system, we investigated the effects of lithium treatment,
which we previously demonstrated reverses behavioral
abnormalities of brain-specific Ank3+/− mice27,28. In
addition, to determine whether any effects of lithium are
mediated by its known target GSK3, we also investigated
CHIR99021, a highly selective inhibitor of both GSK3α
and GSK3β 50. Control and Ank3 exon 1b repressed
neuro-2a cells treated with vehicle, 1 mM lithium chlor-
ide, or 1 μM CHIR99021 for 1 h (Fig. 4a) were assessed for
EB3 expression and tubulin polymerization. While Ank3
repression increased EB3 expression by ~ 50% compared
to control in vehicle-treated cells (Fig. 4b, post hoc P <
0.01), as expected based on our previous experiment
(Fig. 3e), the increase was attenuated by lithium and

Fig. 2 Reduced brain-specific Ank3 expression is associated with enhanced microtubule dynamics in axons of mouse primary neurons.
a Representative kymographs from live-cell imaging of EB3 comets in DIV14 primary neurons from Ank3+/+ (left) and Ank3+/− (right) P0 neonatal
mice. Top: EB3-GFP puncta present in the axon. Scale bar= 10 µm. Bottom: Kymographs show the movement of EB3 comets. The x-axis represents
the position along the axon and the y-axis represents time (300 s). White arrows indicate representative comet traces. Quantification of EB3 comet
(b) length, (c) duration, and (d) velocity. The data were collected from three independent experiments. Ank3+/+, n= 245 comets from 27 axons of 6
mice; Ank3+/−, n= 220 comets from 14 axons of 7 mice. The data were analyzed using two-tailed Student’s t test. The data are presented as mean
± s.e.m. **P < 0.01

Garza et al. Translational Psychiatry  (2018) 8:135 Page 6 of 14



CHIR99021 treatment (Fig. 4b, both post hoc P > 0.05).
Similarly, while Ank3 exon 1b repression increased the
ratio of soluble:polymerized tubulin by 1.35-fold com-
pared to control in vehicle-treated cells (Fig. 4c, post hoc
P < 0.01), the ratio was normalized by treatment with
lithium or CHIR99021 (Fig. 4c, both post hoc P > 0.05).
To rule out the possibility that the rescue was due to
normalizing expression of Ank3, we confirmed that Ank3
expression did not differ after treatment with lithium or
CHIR99021 compared to vehicle (Supplementary Figure
3). These results indicate that GSK3 is involved in changes
to microtubule dynamics induced by repression of brain-
specific Ank3.
To investigate the relationship between brain-specific

Ank3 and GSK3 activity, we measured phosphorylation at
key regulatory sites of GSK3β and GSK3α, serine 9
(GSK3β-pS9) and serine 21 (GSK3α-pS21), which

suppress activity51,52, and tyrosine 216 (GSK3β-pY216)
and tyrosine 279 (GSK3α-pY279), which promote activity
in the absence of serine 9/21 phosphorylation53. While
repression of brain-specific Ank3 did not affect GSK3β-
pY216 or GSK3α-pY279 levels (Fig. 4d, both P > 0.05),
there were significant reductions in GSK3β-pS9 and
GSK3α-pS21 (Fig. 4d, both P < 0.01). These data suggest
that repression of brain-specific Ank3 upregulates GSK3
activity through reduced phosphorylation of GSK3β-pS9
and GSK3α-pS21 regulatory sites.

Brain-specific Ank3 repression enhances GSK3-mediated
inhibition of CRMP2 microtubule stabilization
The GSK3 substrate CRMP2 has a key regulatory role in

microtubule dynamics by promoting microtubule stability
through interactions with tubulin heterodimers and act-
ing as an adapter with motor proteins33,54. This

Fig. 3 CRISPR/dCas9 mediated repression of brain-specific Ank3 in mouse neuro-2a cells. a Top: Schematic representation of the plasmids
used for repression of brain-specific Ank3. pHAGE-EF1α_dCas9_KRAB expressed the deactivated Cas9 fused to the KRAB transcriptional repressor.
Lenti-sgRNA(MS2)_EF1α expressed the control sgRNA or an sgRNA targeting Ank3 exon 1b. See Supplementary Figure 2 for qPCR screening of sgRNA
sequences for efficiency of Ank3 exon 1b repression. Bottom: Schematic representation of the experimental design. Neuro-2a cells were transfected
with the two plasmids, followed by puromycin and zeocin selection, and cell harvest for protein extraction. b Expression of Ank3 exon 1b, exon 1e,
exon 1 f, and exon 1 s was measured by qPCR using isoform-specific primers in neuro-2a cells expressing the control sgRNA or the Ank3-targeting
sgRNA. Expression was normalized to beta-2-microglobulin and presented as percent of the control sgRNA for each starting exon. c Transcriptional
repression of brain-specific Ank3 in neuro-2a cells alters EB3 expression. Top: Representative western blots of EB3 and GAPDH. Bottom: Quantification
of EB3 expression normalized to GAPDH. d Transcriptional repression of brain-specific Ank3 in neuro-2a cells alters acetylation of α-tubulin. Top:
Representative western blots of acetylated α-tubulin (Acetyl) and total α-tubulin (Total). Bottom: Quantification of acetylated α-tubulin expression
normalized to total tubulin. e Transcriptional repression of brain-specific Ank3 in neuro-2a cells alters the ratio of soluble:polymerized tubulin. Top:
Representative western blots of α-tubulin in soluble (S) and polymerized (P) protein fractions, and in total cell lysate (Total). Bottom left: Quantification
of the ratio of soluble:polymerized tubulin. Bottom right: Quantification of total tubulin normalized to GAPDH. Western blot data were averaged from
three independent experiments with three biological replicates per group in each experiment. Control, non-targeting sgRNA; Ank3, sgRNA targeting
Ank3 exon 1b. Data were analyzed using two-tailed Student’s t test. Data are presented as mean ± s.e.m. *P < 0.05, **P < 0.01, n.s. indicates not
significant
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Fig. 4 Changes in EB3 expression and tubulin polymerization induced by brain-specific Ank3 repression are normalized by inhibition of
GSK3. a Schematic representation of the experimental design. Mouse neuro-2a cells were transfected with pHAGE-EF1α-dCas9-KRAB repressor
plasmid and sgRNA(MS2)_EF1α plasmid expressing either the non-targeting control sgRNA or the sgRNA targeting Ank3 exon 1b, followed by
puromycin and zeocin selection, and treatment with lithium (1 mM), CHIR99021 (1 µM), or DMSO vehicle for 1 h prior to cell harvest for protein
extraction. b Top: Representative western blot of EB3 and GAPDH. Bottom: Quantification of EB3 expression normalized to GAPDH. Two-way ANOVA,
drug effect F(2,30)= 4.217 P= 0.02, Ank3 repression effect F(1,30)= 4.137 P= 0.05, interaction F(2,30)= 4.217, P= 0.02. c Top: Representative western
blot of α-tubulin in soluble (S) and polymerized (P) protein fractions. Bottom: Quantification expressed as the ratio of α-tubulin in soluble and
polymerized fractions. Two-way ANOVA, drug effect F(2,28)= 2.460 P= 0.10, Ank3 repression effect F(1,28)= 3.281 P= 0.08, interaction F(2,28)= 5.463 P
= 0.01. d Top: Representative western blot of GSK3α/β phosphorylation at serine 21 (GSK3α-pS21), serine 9 (GSK3β-pS9), tyrosine 279 (GSK3α-pY279),
and tyrosine 216 (GSK3β-pY216), total GSK3α and GSK3β, and GAPDH. Bottom: Quantification of GSK3β-pS9 and GSK3β-pY216 normalized to total
GSK3β, and GSK3α-pS21 and GSK3α-pY279 normalized to total GSK3α. e Top: Representative western blot of CRMP2 phosphorylation at threonine
514 (CRMP2-pT514), total CRMP2, and GAPDH. Bottom: Quantification of CRMP2-pT514 normalized to total CRMP2. Two-way ANOVA, drug effect
F(2,12)= 4.137 P= 0.05, Ank3 repression effect F(1,12)= 3.281 P= 0.08, interaction F(2,12)= 4.217 P= 0.02. Western blot data were averaged from three
independent experiments with three biological replicates per group in each experiment. Control or C, non-targeting sgRNA; Ank3 or A, sgRNA
targeting Ank3 exon 1b. The data were analyzed using two-tailed Student’s t test or ANOVA and Bonferroni post hoc tests. Data are presented as
mean ± s.e.m. * P < 0.05, **P < 0.01. n.s. indicates not significant
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interaction is highly regulated by GSK3-dependent
phosphorylation, where phosphorylation of CRMP2
threonine 514 (CRMP2-pT514) inhibits the interaction of
CRMP2 with tubulin heterodimers33,55. We investigated
the effect of brain-specific Ank3 repression on CRMP2-
pT514 and whether it was modified by inhibition of GSK3
in our neuronal model system. While Ank3 exon 1b
repression in neuro-2a cells resulted in no change in total
CRMP2 levels compared to control cells (P > 0.05), inhi-
bitory CRMP2-pT514 was significantly increased nearly
3-fold (Fig. 4e; post hoc vehicle-control vs vehicle-
repressor P < 0.01). As expected, treatment with lithium
(1 mM) or CHIR99021 (1 μM) attenuated the increase in
CRMP2-pT514 induced by Ank3 exon 1b repression, such
that there was no significant difference between the Ank3-
repressed and control groups (Fig. 4e, post hoc lithium-
control vs lithium-repressor P > 0.05, post hoc
CHIR99021-control vs CHIR99021-repressor P > 0.05).
These results suggest that repression of brain-specific
Ank3 increases EB3 expression and soluble:polymerized
tubulin ratio through GSK3-mediated inhibition of
CRMP2.

Rescue of enhanced microtubule dynamics induced by
Ank3 repression requires CRMP2 activity
To address whether CRMP2 activity is required for

GSK3 inhibition to rescue microtubule changes induced
by Ank3 repression, we evaluated whether lacosamide
blocks the rescue by lithium or CHIR99021 in our neu-
ronal model system. Lacosamide affects slow activation of
sodium channels at doses of 100-500μM, but lower doses
of 3–5μM inhibit CRMP2 activity and tubulin binding
without affecting sodium channel activation56–59. Pre-
treatment with a low 5μM dose of lacosamide 24 h prior
to 1 mM lithium or 1μM CHIR99021 treatment (Fig. 5a)
blocked lithium and CHIR99021 from rescuing changes
in EB3 (Fig. 5b) and steady state tubulin polymerization
(Fig. 5c) induced by Ank3 exon 1b repression. Specifically,
when EB3 expression was evaluated by western blot,
ANOVA and post hoc analysis revealed that, in the vehicle
treated groups, Ank3 repression compared to control
increased EB3 expression (Fig. 5b, vehicle-vehicle control
vs vehicle-vehicle repressor P < 0.01), which was rescued
by treatment with lithium or CHIR99021 (Fig. 5b, vehicle-
lithium control vs vehicle-lithium repressor P > 0.05,
vehicle-CHIR99021 control vs vehicle-CHIR99021
repressor P > 0.05). In contrast, in the lacosamide pre-
treated groups, Ank3 repression increased EB3 compared
to control (Fig. 5b, lacosamide-vehicle control vs
lacosamide-vehicle repressor P < 0.05), but the increase
was not rescued by lithium or CHIR99021 (Fig. 5b,
lacosamide-lithium control vs lacosamide-lithium
repressor P < 0.05, lacosamide-CHIR99021 control vs
lacosamide-CHIR99021 repressor P < 0.01). Similarly,

when the ratio of soluble:polymerized tubulin was asses-
sed, ANOVA and post hoc analysis determined that, in the
vehicle treated groups, Ank3 repression increased the
ratio of soluble:polymerized tubulin (Fig. 5c, vehicle-
vehicle control vs vehicle-vehicle repressor P < 0.05),
which was rescued by lithium or CHIR99021 (Fig. 5c,
vehicle-lithium control vs vehicle-lithium repressor P >
0.05, vehicle-CHIR99021 control vs vehicle-CHIR99021
repressor P > 0.05). In contrast, in the lacosamide pre-
treated groups, Ank3 repression increased the ratio of
soluble:polymerized tubulin (Fig. 5c, lacosamide-vehicle
control vs lacosamide-vehicle repressor P < 0.05), but the
increase was not rescued by lithium or CHIR99021 (Fig.
5c, lacosamide-lithium control vs lacosamide-vehicle
repressor P < 0.01, lacosamide-CHIR99021 control vs
lacosamide-CHIR99021 repressor P < 0.01). Together,
these data indicate that CRMP2 activity is required for
GSK3 inhibition to rescue enhanced microtubule
dynamics associated with repression of brain-specific
Ank3.

Discussion
The current study used a multifaceted approach to

identify and characterize the molecular functions of brain-
specific Ank3. The key finding was that brain-specific
Ank3 is associated with microtubule dynamics via a
GSK3/CRMP2-dependent mechanism (Fig. 6). Our
transcriptome-wide RNAseq analysis of Ank3+/− mouse
hippocampus identified significantly altered expression of
genes involved in pathways related to microtubule reg-
ulation and function, specifically axonal guidance signal-
ing, microtubule dynamics, vesicle fusion, cytoskeletal
organization, and extension of cellular protrusions. Sub-
sequent live-cell imaging of primary neuron axons
determined that microtubule dynamics are altered (i.e.
decreased EB3 comet length and duration) in Ank3+/−
mice compared to Ank3+/+ mice. To examine the
underlying molecular and biochemical basis, we utilized a
CRISPR/dCas9-based neuronal model of brain-specific
Ank3 repression that exhibited changes in microtubule
characteristics (increased EB3, increased ratio of soluble:
polymerized tubulin, and decreased tubulin acetylation).
The microtubule changes were rescued by inhibition of
GSK3 and required active CRMP2, a GSK3 substrate that
functions in microtubule stabilization. Taken together,
this is the first study to demonstrate that brain-specific
Ank3 has a vital role in microtubule dynamics via a GSK3/
CRMP2-dependent mechanism. Although it is not known
whether ANK3 contributes to psychiatric illness by
altering microtubule function, it is intriguing that
microtubules and microtubule regulators have previously
been implicated in psychiatric disorders20. Notably,
microtubules are shortened and microtubule organization
is perturbed in neuronal precursor cells from BD and
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schizophrenic patients, respectively60. It will be important
to investigate the relationship between ANK3, micro-
tubules, and psychiatric illness in future studies.
Live-cell imaging analyses determined that EB3 comet

speed was unchanged in Ank3+/−mouse primary neuron
axons, indicating that the rate of tubulin polymerization is
normal. This suggests that tubulin heterodimers are able
to form at microtubule plus ends when brain-specific
Ank3 is reduced. However, the observed decrease in
length and duration of EB3 comets in Ank3+/− mouse
primary neurons suggests impaired stability of growing
microtubules. This is characteristic of increased micro-
tubule catastrophes61,62, i.e., switching from growth to
rapid shortening, whereby the plus end stabilizing cap,
where EB3 binds, is lost63. The shift in tubulin equilibrium
to a soluble state induced by Ank3 repression, as observed
in our neuronal model system, provides additional evi-
dence for increased catastrophes, since diminished

microtubule elongation would lead to accumulation of
tubulin in the soluble pool rather than incorporation into
growing microtubules. In support of this, treatment with
taxol to stabilize microtubules has been reported to
reduce the pool of soluble tubulin41,64. Conversely, taxol-
resistant cancer cells have a lower proportion of poly-
merized tubulin, as well as increased microtubule
dynamics as indicated by increased movement of EB3
comets64. Furthermore, additional data from our neuronal
model shows diminished tubulin acetylation after Ank3
repression, suggesting that microtubules are more sus-
ceptible to rapid turnover. These studies support our
findings that reduced expression of brain-specific Ank3
isoforms leads to increased activity at microtubule plus
ends and instability of growing microtubules.
Among the lines of evidence implicating brain-specific

Ank3 in regulation of microtubule dynamics, we found
that reduction of brain-specific Ank3 in mice and our

Fig. 5 Rescue of altered EB3 expression and tubulin polymerization induced by brain-specific Ank3 repression is blocked by inhibition of
CRMP2. a Schematic representation of the experimental design. Mouse neuro-2a cells were transfected with pHAGE-EF1α-dCas9-KRAB repressor
plasmid and sgRNA(MS2)_EF1α plasmid expressing either the non-targeting control sgRNA or the sgRNA targeting Ank3 exon 1b, followed by
puromycin and zeocin selection. Cells were subsequently treated with 5 µM lacosamide (LCM) for 24 h, followed by treatment with lithium (1 mM) or
CHIR99021 (1 µM) for 1 h, and cell harvest for protein extraction. b Top: Representative western blot of EB3 and GAPDH. Bottom: Quantification of EB3
expression normalized to GAPDH. Univariate ANOVA, LCM effect F(1,60)= 2.00 P= 0.163, lithium/CHIR99021 effect F(5,60)= 3.586 P= 0.03, Ank3
repression effect F(1,60)= 21.389 P < 0.001, LCM and lithium/CHIR99021 interaction F(2,60)= 7.505 P= 0.001. c Top: Representative western blot of α-
tubulin in soluble (S) and polymerized (P) protein fractions. Bottom: Quantification of the ratio of soluble:polymerized tubulin. Univariate ANOVA, LCM
effect F(1,60)= 17.561 P < 0.001, lithium/CHIR99021 effect F(5,60)= 0.203 P= 0.817, Ank3 repression effect F(1,60)= 68.479 P < 0.001, LCM and lithium/
CHIR99021 interaction F(2,60)= 6.113 P= 0.004. Western blot data were averaged from two independent experiments with three biological replicates
per group in each experiment. The data were analyzed using two-tailed Student’s t test or ANOVA and Bonferroni post hoc tests. Data are presented
as mean ± s.e.m. *P < 0.05, **P < 0.01. n.s indicates not significant, C control sgRNA, A Ank3-targeting sgRNA
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neuronal model system increased the overall expression of
the EB3 microtubule end-binding protein. This is con-
sistent with a recent report that Ank3 knockdown in
mouse primary hippocampal neurons increased EB3
puncta in axons65. However, that study reduced expres-
sion of all Ank3 isoforms by ~90%, whereas we targeted
brain-specific Ank3 isoforms that are specifically impli-
cated in psychiatric illness1–8, and we reduced expression
by only ~ 50%, which is more consistent with patient
brain expression changes12. While the precise mechanism

by which EB3 expression is increased following brain-
specific Ank3 repression is not known, several studies
have shown that EB3 is elevated in response to enhanced
microtubule dynamics66,67, providing support that brain-
specific Ank3 repression is related to enhanced dynamics.
Our data suggest that Ank3 reduction changes GSK3

and CRMP2 activity to modulate microtubule stability.
Specifically, we found that repression of brain-specific
Ank3 resulted in a reduction of GSK3β-pS9 and GSK3α-
pS21 (i.e. increased activity), and a concomitant increase

Fig. 6 Brain-specific Ank3 repression is associated with enhanced microtubule dynamics. Left: Under normal Ank3 expression, microtubules are
stabilized by binding of microtubule-associated proteins (MAPs), such as EB3 and CRMP2, to the microtubule plus end where α- and β-tubulin
heterodimers polymerize to facilitate elongation of the microtubule. As microtubules elongate, EB3 and CRMP2 move along the growing plus end tip
to stabilize newly generated microtubule segments. Acetylation (red diamond) accumulates on α-tubulin within the microtubule due to low
microtubule turnover. Motor proteins, such as kinesin, mediate transport of cellular cargo along the microtubule towards the plus end, which is
oriented towards the distal axon. Right: Repression of brain-specific Ank3 reduces phosphorylation of GSK3 (pS9/pS21) and increases GSK3 activity,
leading to an increase in CRMP2 phosphorylation (pT514) and impaired CRMP2 binding and stabilization of microtubules. Microtubules become
more susceptible to catastrophes, as demonstrated by increased EB3 expression, reduced EB3 comet length and duration, and increased ratio of
soluble:polymerized tubulin. The increased susceptibility to catastrophes increases microtubule turnover and decreases acetylation of α-tubulin.
Inhibition of GSK3 activity by lithium or CHIR99021 reduces CRMP2 phosphorylation (pT514), thereby allowing CRMP2 to bind and stabilize
microtubules. Pharmacological inhibition of CRMP2 by lacosamide reduces CRMP2 binding and stabilization of microtubules, which increases the
amount of free tubulin and decreases acetylation of α-tubulin. Enhanced microtubule dynamics induced by brain-specific Ank3 repression may have
a range of effects (e.g. axonal transport of synaptic vesicles, microtubule interaction with motor proteins) that alter neuronal function
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in CRMP2-pT514 (i.e. decreased activity). This is inter-
esting given our previous study demonstrating that
lithium, which inhibits GSK3 in part through increasing
pS9/pS21 levels through AKT activation50, reversed
psychiatric-like behaviors in Ank3+/− mice27. GSK3 has
been previously implicated in psychiatric illness68–70

however, further studies are warranted to elucidate how
GSK3 activity, Ank3, and microtubules interact to regulate
psychiatric-like behaviors.
The GSK3 substrate CRMP2 regulates microtubule

dynamics in at least two ways: by binding to tubulin
heterodimers to enhance growth at microtubule plus-
ends, and by serving as an adaptor between motor pro-
teins and microtubules to promote microtubule elonga-
tion33,54. In both cases, phosphorylation of CRMP2 T514
by GSK3 reduces the binding affinity of CRMP2 and
destabilizes microtubules. In line with the observed ele-
vation of GSK3 activity in Ank3-repressed neuro-2a cells,
CRMP2-pT514 level was increased, supporting our
hypothesis that changes in microtubule dynamics are
mediated through a GSK3/CRMP2 pathway. We were
able to substantiate this using a low dose of the CRMP2
antagonist lacosamide to inhibit tubulin polymeriza-
tion56–59, which prevented lithium and CHIR99021 from
rescuing the microtubule changes in Ank3-repressed cells.
Interestingly, CRMP2 activity has previously been impli-
cated in the lithium responsiveness of BD patients22. In
that study, cells derived from lithium-responsive patients
had an elevated ratio of CRMP2-pT514 to total CRMP2
(i.e., decreased activity), similar to the elevated ratio we
found in Ank3-repressed neuro-2a cells. This also falls in
line with our observation that CRMP2 activity is required
for lithium to rescue enhanced microtubule dynamics
associated with Ank3 repression.
Our findings that brain-specific Ank3 functions in

microtubule dynamics advances our understanding of the
role of ANK3 in supporting neuronal function, and
potentially its contribution to psychiatric illness. Indeed,
accumulating evidence suggests that abnormalities in the
cytoskeleton are a potential mechanism for psychiatric
illness via impaired microtubule-mediated axonal trans-
port and synaptic plasticity60,71–74. It will be important to
investigate how ANK3 influences microtubule-dependent
processes in neurons and whether these processes
underlie the association of ANK3 with psychiatric illness.
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