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Analysis of 182 cerebral palsy
transcriptomes points to dysregulation of
trophic signalling pathways and overlap
with autism
Clare L. van Eyk1,2, Mark A. Corbett1,2, Alison Gardner1,2, Bregje W. van Bon3, Jessica L. Broadbent2, Kelly Harper2,
Alastair H. MacLennan2 and Jozef Gecz 1,2,4

Abstract
Cerebral palsy (CP) is the most common motor disability of childhood. It is characterised by permanent, non-
progressive but not unchanging problems with movement, posture and motor function, with a highly heterogeneous
clinical spectrum and frequent neurodevelopmental comorbidities. The aetiology of CP is poorly understood, despite
recent reports of a genetic contribution in some cases. Here we demonstrate transcriptional dysregulation of trophic
signalling pathways in patient-derived cell lines from an unselected cohort of 182 CP-affected individuals using both
differential expression analysis and weighted gene co-expression network analysis (WGCNA). We also show that genes
differentially expressed in CP, as well as network modules significantly correlated with CP status, are enriched for genes
associated with ASD. Combining transcriptome and whole exome sequencing (WES) data for this CP cohort likely
resolves an additional 5% of cases separated to the 14% we have previously reported as resolved by WES. Collectively,
these results support a convergent molecular abnormality in CP and ASD.

Introduction
With a frequency of around 2 per 1000 live births,

cerebral palsy (CP) is the most common motor disability
of childhood1,2. It is the result of a non-progressive
interference, lesion or abnormality in the developing
brain, occurring in the antenatal, perinatal or early post-
natal period, and is often accompanied by additional
features including intellectual disability (ID), autism
spectrum disorder (ASD), epilepsy and visual and hearing
impairment. The overall clinical spectrum of CP is highly
heterogeneous, encompassing multiple clinical types,

multiple patterns of neuropathology on brain imaging and
multiple associated developmental pathologies.
A number of clinical risk factors have been described for

CP, including very pre-term delivery, placental pathology,
intrauterine exposure to infection, intrauterine growth
restriction (IUGR), breech presentation, bleeding during
pregnancy and multiple pregnancy3. These factors suggest
that CP is frequently the result of long-standing intrau-
terine pathology and not a single event during late labour
or birth. For most cases of CP, the aetiology of the brain
injury is not well understood, however recent reports
suggest a significant genetic contribution4–17. In this
study, we aimed to elucidate gene networks and pathways
contributing to CP, as well as to assist prioritisation of
genetic variants, by examining transcriptomes of a cohort
of 182 clinically heterogeneous CP cases, all of which have
previously been analysed by whole-exome sequencing5

(Supplementary Table S1).
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Materials and methods
Samples
Epstein-Barr virus immortalised B-cell lines (LCLs)

were established from peripheral blood lymphocytes of
patients and controls. Lymphoblastoid cell lines for 182
CP cases are from the Australian Collaborative Cerebral
Palsy Research Group Cerebral Palsy Biobank and were
derived at Genetic Repositories Australia (Sydney, Aus-
tralia), an Enabling Facility supported by NHMRC Grant
401184. Additionally, we utilised 20 unaffected controls
from the Neurogenetics Research Group collection
(University of Adelaide, Australia). Samples from the
gEUVADIS data set are originally from Coriell Cell
Repositories. Additional control cell lines for quantitative
real-time PCR were obtained from the Genetic Reposi-
tories Australia ‘Aussie Normals Collection’. Cell lines are
routinely tested for mycoplasma contamination. This
study was approved by the Women’s and Children’s
Health Network (WCHN) Human Research Ethics
Committee (reference number: HREC/15/WCH/148).
Written consent was given, either by the participant
or their guardian, for the use of their sample in CP
research.

Cell culture
Once established, LCLs were cultured in RPMI 1640

(Sigma) supplemented with 10% foetal calf sera, 2 mM L-
Glutamine, 0.017 mgml−1 benzylpenicillin and grown at
37 °C with 5% CO2.

RNA preparation
For RNA sequencing, RNA was extracted from CP cell

pellets and in-house controls using the RNeasy mini-kit
(Qiagen) according to manufacturer’s instructions. RNA
concentration was assessed by Nanodrop and RNA
quality was measured using an Agilent Bioanalyser. All
RNA samples used for RNA sequencing had RIN ≥8.9.
RNA from CP cell lines and GRA ‘Aussie Normals Col-
lection’ cell lines for quantitative reverse transcription
PCR (qRT-PCR) validation were extracted using Trizol
(Invitrogen) followed by RNeasy mini-kit (Qiagen)
according to manufacturers’ instructions.

RNA-seq
Libraries were prepared using the TruSeq v2 kit (Illu-

mina) to construct unstranded libraries with a mean
fragment size of 150 bp. Libraries underwent 50-bp
paired-end sequencing on an Illumina HiSeq 2500.
RNA-seq reads were aligned to the hg19 build of the
reference genome and a pre-built splice junction database
generated from known gene models (UCSC genes) using
Tophat18. Counts for each transcript were determined
using HT-Seq19 and statistical analysis performed using
the EdgeR package in R20.

Outlier analysis
For outlier-gene analysis, we calculated the Z statistic

for each gene by using the ‘scale’ function in R. Mean and
SD were calculated for each expressed gene in cases and
controls separately. We selected a cutoff to define whether
a gene was an outlier in cases or controls. In this analysis,
an outlier was defined as a gene with expression in a
sample at least 2 SD from the mean expression of all
samples where a likely dysregulating genetic variant was
detected in the gene, or 4 SD from the mean expression
where there was no genetic variation detected in the gene
by WES.

Validation sequencing
Additional genetic variants from WES5were prioritised

following outlier analysis. Variants were validated by
Sanger sequencing using BigDye terminator chemistry 3.1
(ABI) and analysed using a 3730xl genetic analyzer
(Applied Biosystems, Foster City, CA, USA). Sequencing
data was analysed using DNASTAR Lasergene 10 Seqman
Pro8 (DNASTAR, Inc. Madison, WI, USA). Validations
were performed using genomic DNA isolated from whole
blood where possible or alternatively, DNA extracted
from LCLs. Where possible, segregation in patient–parent
trios was performed to confirm the inheritance pattern of
the variants.

Differential expression analysis
Prior to differential expression (DE) analysis, data

were normalised using the ComBat function from the
SVA package in R21. Factors accounted for were batch
and gender. Following ComBat normalisation, data were
log2-transformed and DE was assessed by a linear
regression method using the limma package in R. For each
coefficient in the linear model, empirical Bayes-
moderated t-statistics and their associated p values were
used to assess the significance of the observed expression
changes. Since we were unable to account for age-specific
gene expression in samples from the gEUVADIS data set,
we also analysed our CP cohort and in-house controls
separately, applying linear regression of expression values
against age and gender as part of our model. We identified
387 differentially expressed genes which were significant
in both analyses when we applied a significance threshold
of log-fold change > ±0.5 and corrected p value <0.001 for
analysis including gEUVADIS controls and p value <0.05
for analysis with in-house controls regressed for age and
gender.

Gene ontology analysis
Gene ontology (GO) enrichment for differentially

expressed genes was performed using PANTHER statis-
tical over-representation test (http://www.pantherdb.org/)
with Bonferroni correction22.
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Ingenuity pathway analysis
Gene network analysis was performed using ingenuity

pathway analysis (IPA; Qiagen). Gene lists were imported
and analysed using the ‘core analysis’ option to perform
expression analysis. Standard settings were used with both
direct and indirect interactions between molecules con-
sidered and only experimentally observed interactions
included. For networks limited to central nervous system
(CNS), tissues and cell lines were limited to nervous
system tissues and primary cells, and CNS cell lines.

qRT-PCR
We pooled 0.5 μg of total RNA from each of the five

independent samples, giving a total of 2.5 μg of total RNA
in each validation pool. For each validation pool, we then
made complementary DNA using SuperScript III (Invi-
trogen) and random hexamers according to manu-
facturer’s instructions. We performed qRT-PCR on a
StepOnePlus real-time PCR system (Applied Biosystems,
Foster City, CA, USA) using pre-designed Taqman gene
expression assays and Taqman gene expression master
mix (Applied Biosystems). Assay numbers used were
Hs00998100_m1 (ACTN1), Hs00915142_m1 (FGFR1),
Hs00171191 (FBN1), Hs01102156_m1 (KLHL14),
Hs00183378_m1 (RASGRP2), Hs00249930_s1 (RBMS1),
Hs01398501_m1 (KDM7A), Hs00325999_m1 (TET2),
Hs00241801_m1 (ARHGAP6), Hs01026795_m1
(TUBA8), Hs00153462_m1 (LMNA), Hs00286908_m1
(KIF21A) and Hs00602051_mH (FSCN1). Relative
expression levels were determined using a standard curve
and values normalised to the quantity of Actin-B (cata-
logue #4326315E) in duplexed reactions.

Gene lists for other disorders
Lists of genes associated with other neurodevelopmental

and movement disorders are from Nijmegen genome
diagnostics (http://www.genomediagnosticsnijmegen.nl/
index.php/en/) for ID, epilepsy and movement disorders,
from the Simons Foundation Autism Research Initiative
(SFARI) database for Autism (https://gene.sfari.org/autdb/
HG_Home.do) and from the Schizophrenia database
(SZDB) for Schizophrenia (http://www.szdb.org/). Statis-
tical significance and representation factor (number of
overlapping genes over expected number of overlapping
genes) of the overlap between each neurodevelopmental/
movement disorder gene list and genes differentially
expressed in CP or genes within network modules of
interest was calculated using a hypergeometric probability
test (http://nemates.org/MA/progs/overlap_stats.html),
where the whole-gene population was defined as the 9884
genes robustly expressed in LCLs.

WGCNA
Unsigned co-expression networks were built using the

WGCNA package in R23. A total of 9881 genes were
included in the network following filtering with the
goodSamplesGenes function in WGCNA to remove genes
with too many missing values. Network construction for
the whole data set was performed using the blockwise-
Modules function. Using this function, a pairwise corre-
lation matrix was computed for each set of genes and an
adjacency matrix was calculated by raising the correlation
matrix to a power of 6, as recommended for unsigned co-
expression networks23. Using this approach, we built
networks using control samples only, all samples and CP
samples only. For each pair of genes, topological overlap
measure was then calculated based on the adjacency
matrix to give a robust measure of network inter-
connectedness. The topological overlap dissimilarity was
then used as input for average linkage hierarchical clus-
tering and modules were defined as branches of the
resulting clustering tree using the hybrid dynamic tree-
cutting function. We used a minimum module size of 40
genes with a minimum module merging height of 0.1. We
merged modules using the moduleMergeUsingKME
function with parameters threshPercent= 50, mergePer-
cent= 25, reassignScale= 0.6 to generate our final net-
work of 13 modules. We then summarised each module in
the network by a module eigengene value, which is the
principal component of the standardised module expres-
sion profile. Module membership (module eigengene
connectivity, kME) was defined as the correlation between
gene expression values and the module eigengene. Genes
were assigned to a module if they had a high-module
membership (kME >0.7), allowing them to belong to more
than one module. Genes that did not fulfil this criteria for
any module were assigned to the grey module. We then
assessed module preservation between the networks built
using all data, control data only and CP cases only using
the modulePreservation function. In all cases, good
module preservation was observed (Z-summary >10),
therefore we used the modules defined for the control
network for the remainder of our analysis. We calculated
module eigengene values for each of the control and CP
samples with modules as defined for this control network.
We then calculated module eigengene significance for
each module in the network for clinical factors: CP status,
age, sex, gestation, co-morbidity for other neurodevelop-
mental disorders, presence of known CP risk factor,
maternal smoking, and identified genetic variant of
interest. Module gene list enrichment analysis was per-
formed using the userListEnrichment function with
options useBrainLists and useBrainRegionMarkers24.
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Comparison to autism cortex network
To compare our network to the autism cortex net-

work24, we reconstructed the network with the 5208
genes common to data from both studies. Common genes
were found using the collapseRows function in
WGCNA25 and the autism network was reconstructed
using the parameters described in the original study. We
then used the userListEnrichment function to identify
modules in the autism cortex network enriched for genes
from modules in our LCL network.

Results
We analysed gene expression of patient-derived lym-

phoblastoid cell lines from the CP cohort, alongside 20
lymphoblastoid cell lines from individuals unaffected by
CP (Table S2) using Illumina paired-end RNA sequen-
cing. Analysis of gene expression changes was performed
together with data from an additional 100 lymphoblastoid
cell lines from the gEUVADIS RNA sequencing project
for 1000 Genomes samples26 (Table S3). While lympho-
blastoid cell lines are of peripheral blood origin and
therefore cannot recapitulate all gene expression sig-
natures of the affected tissue, they provide a valuable
source of patient-derived material for gene function and
biomarker analysis, with several studies demonstrating
appreciable neuronal relevance27–29.
We first performed outlier analysis on all 182 CP cases

to identify genes that are significantly downregulated or
upregulated compared to expression in other cases in the
CP cohort. We also examined the variation in expression
of genes of interest in our CP cohort compared to con-
trols (Fig. 1a) to determine whether the difference in gene
expression was likely to be contributing to or causing CP.
This approach provided support for a functional effect of
several genetic variants previously identified in our WES
study5, including a stop-gain mutation in CD99L2 [MIM
300846] and a compound heterozygous mutation in
HUWE1 [MIM 300697] (Fig. 1a). In addition, outlier
analysis provided support for a functional effect of a
number of additional genetic variants, which were not
prioritised in the WES study (Fig. 1a, b), partly since this
study focussed on the 98 CP cases where both parents
were available5. We also identified a number of outlier
genes of potential interest where no genetic variant was
identified by WES (Figure S1). For these genes, the
underlying genetic variant may have been missed by WES,
the variant may reside in a non-coding region, or the gene
expression change may be a downstream effect of other
genetic or environmental factors. Several such outlier
genes identified have been associated with other neuro-
developmental disorders, including CHD830 [MIM
610528], KIDINS22031,32 [MIM 615759], DIP2B33 [MIM
611379] and TBL1XR130,34,35 [MIM 608628]. Con-
servatively, considering only the expression outlier genes

where a deletion, stop-gain or frameshift variant was
detected (Fig. 1a, b), we may have resolved another nine
(5%) CP cases from the cohort (n= 182).
For DE analysis, we used a stringent filter for robust

expression (more than five counts per million in at least
120 samples), before removing batch effects in the data
and adjusting for gender as a covariate using the ComBat
function21 (Fig. 2). In-house controls and gEUVADIS
controls were grouped together in multidimensional
scaling (MDS), (Figure S2D), suggesting that the batch
effect had been successfully removed. We then performed
DE analysis on the ComBat-normalised data using the
EdgeR package in R20 (Table S4). To account for
expression changes resulting from differences in age of
our CP and control cohorts, we also performed differ-
ential expression analysis on data for all CP samples
compared to our 20 in-house control samples. Data were
normalised for library size and DE analysis was performed
using a linear model with age and gender as covariates.
We identified 387 genes that showed significantly altered
expression in both analyses (logFC >±0.5, Bonferroni-
corrected p value <0.001 for batch-corrected data
including gEUVADIS and in-house controls and p < 0.05
for data including only in-house controls), with 124 genes
upregulated and 263 genes downregulated (Table S5,
Figure S3). We validated a cross-section of the differen-
tially expressed genes by quantitative real-time PCR with
an independent set of 10 control cell lines (Table S6),
confirming RNA-seq differential expression in 83% (10/
12) of the genes tested (Figure S4).
Unsupervised hierarchical clustering based on the 387

genes differentially expressed between CP and control
cases showed distinct clustering of the majority of CP
samples (Fig. 2a) with no apparent clustering of samples
based on potential confounding factors including age,
gender, sex or gestational age. GO enrichment analysis
using PANTHER22 showed that the 263 genes down-
regulated in CP cases are enriched for GO categories
implicated in signal transduction and cell signalling, while
the 124 upregulated genes are enriched for GO categories
relating to immune response (Fig. 2b). We also used IPA
software (Qiagen) to visualise key networks of genes and
pathways over-represented in our list of differentially
expressed genes. We generated a list of the top dysregu-
lated genes (logFC >±1.2, Bonferroni-corrected p value
<0.001, 82 genes). The top network identified by IPA was
centred on the extracellular signal-regulated kinase 1/2
(ERK1/2) mitogen-activated protein kinase (MAPK) sig-
nalling pathway (right-tailed Fisher’s exact test, p= 1 ×
10−42). Limiting connections to those derived from CNS
cells revealed two top networks, the first centred on the
amyloid precursor protein A (APP), with FGFR1 being a
central downstream component of the pathway, and the
second on brain-derived neurotrophic factor (BDNF)
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(right-tailed Fisher’s exact test, p= 1 × 10−18, repre-
sentative pathway showing key connections between
molecules in these gene networks shown in Fig. 2c).
This finding is consistent with the enrichment for
GO categories involving inflammation and signal trans-
duction and cell signalling in this gene list. Both the
BDNF receptor NRTK2 (tropomyosin-related kinase
receptor type B, trkB) [MIM 600456] and fibroblast
growth factor (FGF) receptor FGFR1 [MIM 136350] are
downregulated in CP compared to controls (log-fold
changes: NTRK2 −1.59328, Bonferroni-corrected p value
= 6.88E−26, FGFR1 −2.30493, Bonferroni-corrected p
value= 2.92E−29 in CP cases compared to all controls),
suggesting a broader dysregulation of trophic signalling

pathways in CP. We also observed a significant down-
regulation of tet methylcytosine dioxygenase 2 (TET2)
[MIM 612839], a factor known to regulate BDNF signal-
ling via de-methylation of the BDNF promoter36 and
upregulation of KDM7A, a histone demethylase that
regulates FGF signalling and is important for neural dif-
ferentiation37 (log-fold changes: TET2 -0.62, Bonferroni-
corrected p value= 1.97E−12, KDM7A 1.22, Bonferroni-
corrected p value= 1.65E−26), implicating epigenetic
changes in the molecular pathway leading to CP.
Using gene lists derived from public databases

(Materials and methods), we examined our list of differ-
entially expressed genes (logFC >±0.5, Bonferroni-
corrected p value <0.001) for enrichment with genes

Fig. 1 Outliers supported by genetic variants in select cerebral palsy cases. All cases have previously been analysed by WES. Samples had
expression >4 SD from the mean. a Outliers supported by a genetic variant from WES study5. Variants were selected on the basis of known function
and association with other human disorders, as well as predicted effect on gene function. See also Supplementary Table 1. b Additional genetic
variants of interest identified in this study due to support by RNA-seq data. CNV copy-number variation, f/shift frameshift, del deletion, ins insertion
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associated with other neurodevelopmental or movement
disorders. We found a modest but significant enrichment
for genes associated with autism (fold difference= 2.0, p
< 0.024) (Fig. 2d), but no significant enrichment for genes
associated with schizophrenia, epilepsy or movement

disorders, and a statistically significant under-
representation of genes associated with ID (fold differ-
ence= 0.5, p < 0.008). Enrichment for autism genes was
not significant for genes associated with syndromic forms
of autism, or for those categorised as either high-

Fig. 2 Differential expression analysis of CP cases compared to controls. a Unsupervised hierarchical clustering of CP cases and controls based
on differentially expressed transcripts (n= 387, logFC >±0.5, Bonferroni-corrected p value <0.001). b Gene Ontology term enrichment for differentially
expressed genes in CP cases compared to control cases. Bonferroni-corrected p values are shown. c Top two networks identified by ingenuity
pathway analysis (right-tailed Fisher’s exact test, p= 1 × 10−18 where p is the probability of finding f or more hub genes from the network in a set of
n randomly selected genes). Input was the top differentially expressed gene list (logFC >±1.2, Bonferroni-corrected p value <0.001) for CP cases
compared to controls, with connections limited to those with evidence from CNS cell lines. Highlighted genes are those differentially expressed in CP
cases compared to controls, with blue denoting downregulation and red denoting upregulation. Solid lines represent direct interactions, while
dashed lines represent indirect interactions. d Overlap between differentially expressed genes in this study and genes associated with
neurodevelopmental and movement disorders. Gene lists were compiled from publically available databases (see Materials and methods). Left axis is
bar plot of percentage overlap between each gene list and CP DE gene list, with numbers above each bar being the fold difference of the observed
to expected overlap between these gene lists. Right axis is a dot plot of p values derived from hypergeometric distribution analysis of overlap
between each gene list and the genes differentially expressed in CP. A significant over-representation of differentially expressed CP genes was seen
in the ASD gene list, and a significant under-representation of genes associated with ID
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confidence or strong candidate autism genes in the SFARI
database, but was significant for genes categorised as
having suggestive evidence for a role in autism (Fig. 2d,
fold difference= 2.4, p < 0.029). Genes in this category are
either supported by several lines of nominal evidence but
lack functional evidence, or are supported by nominal
evidence lacking genome-wide significance or consistent
replication but meet at least one of four accessory criteria
that include altered expression in autism samples,

involvement in a related disorder or association with
another autism risk gene via genetic epistasis. Therefore,
genes falling into these categories are less likely to be large
effect risk genes for autism and instead may be down-
stream markers of pathology or play broader roles in
neurodevelopmental processes.
We next applied weighted gene co-expression network

analysis (WGCNA), to examine differences in gene
expression in a systems-based context. We constructed an

Fig. 3 Gene co-expression modules in the control lymphoblastoid cell line network. a Modules in control network with cell type marker
enrichments and functional annotation enrichment. Module eigengene significance for each module denotes whether there is an association
between expression of the module and characteristics of the samples. b Heatmap of genes belonging to the white and yellow gene co-expression
modules, which have the most significant association with CP status. All genes in the white module are shown (376 genes), while the larger yellow
module consisting of 1450 genes was limited to the top 300 genes ranked by connectivity to all other genes in the module. Corresponding module
eigengene values (y-axis) across samples (x-axis) (top). c Enrichment analysis (hypergeometric probability) of white and yellow modules with ASD
gene sets and differentially expressed genes in CP. Left axis is bar plot of percentage overlap between each gene list and CP DE gene list, with
numbers above each bar being the fold difference of the observed to expected overlap between these gene lists. Right axis is a dot plot of p values
derived from hypergeometric distribution analysis of overlap between each gene list and the genes in the white and yellow modules
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unsigned co-expression network for all control samples
(as described in24, Materials and methods) and examined
preservation of the network structure in CP samples. All
13 control modules were highly conserved (z-summary
≥10) in the CP network, suggesting overall preservation of
gene expression at a network level. We performed module
eigengene analysis to summarise the expression levels of
genes within each module as a module eigengene value
(similar to a principal component score). In this analysis, a
module eigengene value was calculated for each cell line
for each module and standard parametric analyses (t tests
or student asymptotic p values for correlation) was per-
formed to determine which modules were correlated with
CP status or other factors (age, gender, gestation, pre-
sence of neurodevelopmental comorbidities, presence of
clinical risk factors associated with poor developmental
outcome including prematurity, IUGR, pre-eclampsia and
thyroid problems in pregnancy). No factor other than CP
status was correlated with any module, except age, which
was significantly correlated with two modules (grey60 and
pink). The most significant correlation with CP status was
seen for the white and yellow modules (Fig. 3a,
Bonferroni-corrected p values 1.59 × 10−9, 1.08 × 10−5,
respectively).
Cell type/cellular process enrichment analysis showed

that the white module is enriched for markers of BDNF
signalling (corrected p= 3.44 × 10−8) and also for
microglial markers (corrected p= 0.006634), while the
yellow module is enriched for genes involved in devel-
opmental processes (corrected p= 0.0056) and also for
genes expressed in cortex (corrected p= 4.46 × 10−7).
Both the white and yellow module eigengenes are under-
expressed in CP cases compared to controls, suggesting
that genes in these modules are downregulated in
CP. While the white module is enriched for genes
differentially expressed genes in CP (fold difference= 1.8,
p < 0.003), the yellow module has fewer than expected
genes differentially expressed in CP (fold difference 0.7, p
< 0.007), and instead is enriched for high-confidence
autism candidate genes (fold difference= 3.3, p < 1.28 ×
10−11) (Fig. 3c). This finding mirrors transcriptional
changes reported in ASD that show that differentially
expressed genes and high-confidence, large effect size,
autism risk genes lie in different co-expression
networks24,38.
We next compared our network modules to those from

the autism cortex network24. We reconstructed the aut-
ism unsigned co-expression network using the parameters
as reported and looked for enrichment of our network
modules with genes from the autism network modules
(Table S8). Of the two network modules of interest for
autism (M16 and M12), only the M16 module was pre-
served in our LCL network. We found marginal enrich-
ment (not significant after correction for multiple testing)

of the white module with genes from the M16 module
from the autism cortex network (Voineagu_M16). The
yellow module is significantly enriched for genes from the
Voineagu_M16 module (corrected p= 6.48 × 10−17),
however, it is more significantly enriched for two other
modules, Voineagu_M10 and Voineagu_M13, both of
which are enriched for astrocyte markers24. In a larger
subsequent study, the signal from the Voineagu_M16
module was further honed to a smaller module, Gup-
ta_M5, which was enriched for M2 microglial cell state
and type I interferon pathway genes38. The authors noted
that M2 microglial state is responsible for mediating anti-
inflammatory responses to damage caused by viral infec-
tion, but also that M2 microglial cells secrete BDNF,
assisting in stimulating neural progenitor cell production
and therefore promoting neurogenesis38. Modules Gup-
ta_M5 and Gupta_M7 were also significantly enriched for
genes from the white module, however the white module
was the most highly enriched module in the Gupta_M5
gene set, while two other modules not correlated with CP
status were more significantly enriched for genes from the
Gupta_M7 module (Table S9).

Discussion
Both differential expression analysis and system-level

analysis of transcriptomes of a cohort of individuals with
CP support perturbation of trophic signalling pathways as
a common molecular abnormality. Downregulation of
NTRK2 (trkB) and FGFR1 implicate both BDNF and FGF
signalling in CP, trophic factors which play broad roles in
development. FGF signalling is involved in angiogenesis,
cell migration, neural outgrowth and is required for
processes including normal mesoderm patterning, correct
axial organisation during embryonic development and
normal skeletogenesis (reviewed in ref.39). BDNF signal-
ling plays roles in neuronal survival, morphogenesis and
plasticity, and immune function (reviewed in refs.40,41).
Recent evidence also suggests a role for neurotrophin
signalling, including BDNF signalling, in determining
pregnancy outcome, likely partly due to the role of neu-
rotrophin signalling in placentation, with perturbed sig-
nalling observed in complicated pregnancies such as those
with IUGR, pre-eclampsia and pre-term delivery
(reviewed in ref.42). A large proportion of cases in our CP
cohort were born following reported pregnancy compli-
cations (Table S1), for example, 23.6% of cases had IUGR
(43 of 178 cases where data were available, defined as
weight <10th percentile for gestational age) and 49.7% of
cases were pre-term deliveries (89 of 179 cases where data
were available). Additionally, trophic signalling plays an
important role in neuroprotection, with the role of BDNF
and FGF signalling in recovery following hypoxic ischae-
mic brain injury extensively studied (reviewed in
refs.43,44).
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Several studies support a potential role for BDNF and
FGF signalling in mediating damage in CP. Low level of
thyroid hormone is a strong independent risk factor for
white matter injury, a major cause of CP in pre-term
infants. It has been shown that thyroxin treatment in
post-natal rats protects against white matter injury fol-
lowing hypoxic ischaemic injury via upregulation of brain-
derived neurotrophic factor-TrkB signalling in the
immature brain45, therefore supporting an important role
for BDNF signalling in mediating the degree of neuronal
damage following developmental stresses. In addition,
stress, including hypoxia, viral infection and other
environmental factors, has been shown to induce the
unfolded protein response/ER stress, leading to a sub-
sequent decrease in FGFR1 expression in heart progenitor
cells, which in turn has been shown to be a major
contributor to congenital heart defects (CHDs)46. This
finding is of particular interest since, similar to CP,
only around 20% of CHD have a known genetic cause,
with the remaining 80% suggested to result from interplay
between genetics and environmental stress in utero.
There is also a high rate of birth defects concurrent with
CP: >40% (n= 185) of children with CP in one study in
South Australia, compared with 4.3–5.5% for the Aus-
tralian population47.
This study is the first large-scale analysis of transcrip-

tional changes in CP and demonstrates the presence of
convergent molecular abnormalities in clinically diverse
CP, providing a basis for prioritising genes for further
investigation in future genomic and functional studies.
We have identified two modules of high interest for CP
aetiology, one enriched for high-confidence ASD genes
and the other for genes differentially expressed in CP,
supporting a common molecular origin for these diverse
neurodevelopmental disorders. The observed down-
regulation of expression of components of trophic sig-
nalling pathways and upregulation of inflammatory
markers in CP may indicate increased susceptibility to
neuronal damage resulting from environmental insults in
utero and in early post-natal life. The role of tertiary
damage following an early sensitising event, perhaps of
maternal origin, including persistent inflammation and
epigenetic changes, has been proposed previously as
underlying a proportion of CP cases48 and has been
suggested as a mechanism in ASD49. An alternative
explanation for our observations is that the down-
regulation of trophic signalling pathways may result
from chronic stress in utero or in early post-natal
life. Identifying the environmental and genetic triggers
of this molecular abnormality will be an important
step in understanding the aetiology of CP and other
neurodevelopmental disorders and predicting those at
greater risk.
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