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Abstract
Traumatic spinal cord injury (SCI) leads to immediate neuronal and axonal damage at the focal injury site and triggers secondary
pathologic series of events resulting in sensorimotor and autonomic dysfunction below the level of injury. Although there is no
cure for SCI, neuroprotective and regenerative therapies show promising results at the preclinical stage. There is a pressing need
to develop non-invasive outcome measures that can indicate whether a candidate therapeutic agent or a cocktail of therapeutic
agents are positively altering the underlying disease processes. Recent conventional MRI studies have quantified spinal cord
lesion characteristics and elucidated their relationship between severity of injury to clinical impairment and recovery. Next to the
quantification of the primary cord damage, quantitative MRI measures of spinal cord (rostrocaudally to the lesion site) and brain
integrity have demonstrated progressive and specific neurodegeneration of afferent and efferent neuronal pathways. MRI could
therefore play a key role to ultimately uncover the relationship between clinical impairment/recovery and injury-induced
neurodegenerative changes in the spinal cord and brain. Moreover, neuroimaging biomarkers hold promises to improve clinical
trial design and efficiency through better patient stratification. The purpose of this narrative review is therefore to propose a
guideline of clinically available MRI sequences and their derived neuroimaging biomarkers that have the potential to assess
tissue damage at the macro- and microstructural level after SCI. In this piece, we make a recommendation for the use of key MRI
sequences—both conventional and advanced—for clinical work-up and clinical trials.

Introduction

Spinal cord injury (SCI) leads to immediate and permanent
neurological deficit below the level of injury as afferent and
efferent neural traffic is disrupted [1, 2]. Rehabilitation can
partially improve clinical outcome following SCI. Crucially,
promising neuroprotective and regenerative therapies are
imminent for neurological improvement [3, 4]. A combination
of interventions (e.g. neuroprotective and neuroregenerative
strategies) rather than one single treatment are needed to
recover patient’s sensorimotor function both in the acute phase
and in later stages [5]. At present, a number of active clinical
trials are being conducted in SCI. The gold standard primary
endpoint for SCI trials is based upon clinical assessment such
as International Standards for Neurological Classification of
Spinal Cord Injury (ISNCSCI) [6], which results in a large
sample size and lengthy trial due to suboptimal patient strati-
fication. Despite recent attempts to improve statistical approa-
ches for predicting clinical endpoints and patient stratification
[7], a large sample size is still required in clinical trials for
demonstrating the efficacy of a therapeutic intervention using
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current clinical assessments. Moreover, these clinical assess-
ments are insensitive to the underlying disease mechanisms in
SCI and heterogeneous SCI subgroups [8]. An alternative
strategy to track the therapeutic effects within short intervals
(<24 months) and with practical sample size, is to use a stan-
dard outcome measure sensitive to underlying neurodegenera-
tive processes that can track changes in the intended target of
new interventions in clinical trials [5]. One way to establish a
standard outcome measure is to supplement the current clinical
assessments with non-invasive conventional and quantitative
magnetic resonance imaging (qMRI) techniques [9].
Recent conventional MRI studies in spinal cord injury have
shown great improvements in the detection and quantification
of trauma-induced macrostructural changes at the focal injury
site [10–13].

At the level of the injury, conventional MRI has been useful
in determining the precise location and extent of intramedullary
injury of an acute SCI outlining haemorrhages and oedema
after human spinal injury. As oedema and haemorrhage sub-
side, a post-traumatic cyst often appears alongside preserved
tissue bridges detectable on MR images, and the magnitude of
these changes predicts clinical outcome [14–16].

Although sensitive to pathology, conventional MRI lags to
detect the quantification of trauma-induced disruption to the
microstructure of the spinal cord because the signal intensity
changes are poorly specific [17]. Quantitative neuroimaging
techniques can overcome this limitation [18] by providing
reproducible maps of “quantitative” values proportional to tis-
sue microstructure such as myelin, axonal density, iron
deposition, and metabolic profiling [19]. Recent qMRI studies
in SCI showed secondary neurodegenerative changes occurring
remotely in the cervical cord [2], in the lumbar cord [20] and in
the brain [21–23]. qMRI measures of the spinal cord [17, 24]
and brain integrity [25]—including atrophy, demyelination,
and iron deposition—have demonstrated evolving and distinct
markers of neurodegeneration that affect the entire spinal cord
and brain [2, 22, 26, 27].

Advanced neuroimaging enables greater elucidation of
the relationship between clinical impairment and abnorm-
alities of the spinal cord and brain function [5]. Thus, qMRI
measures can make a major contribution to the diagnostic
work-up of SCI for recovery prediction and as a valuable
outcome measure in clinical trials [27–29].

However, advanced neuroimaging methods have yet to
be introduced into clinical practice and ultimately in
clinical trials in SCI [24, 30]. The efforts need to be made
to bridge this gap through proposing a consensus MRI
protocol based on the standard and tested MRI sequences
next to the specific post-processing software packages for
all clinicians.

The aim of this narrative review is therefore to propose a
guideline of clinically available MRI measures and the
corresponding post-processing work-packages. We first lay

out a summary of the main results obtained from established
and advanced MRI methods in SCI which is followed by a
discussion on the steps needed for their widespread adop-
tion in SCI research and clinical trials.

Conventional MRI of the spinal cord

MRI assessment of the lesion site

Conventional MRI (T1- and T2-weighted scan) is routinely
applied at the injury site in SCI to characterise the lesion in
the acute phase, sub-acute and chronic SCI. This allows
characterising the residual lesion structure (haemorrhage
and oedema) and its extent early after trauma as well as
elucidating the changes at the focal injury site over time
[29] (Fig. 1). The length of the oedema and the size of
haemorrhage at the lesion level is often associated with the
initial neurologic deficit and recovery after injury [31]. The
intramedullary lesion dynamically lengthens in the acute
period, longitudinally enlarging nearly the height of one
vertebral body without alteration in neurologic status [32].
In subacute SCI (1-month post-injury), the intramedullary
lesion is remodelled [10], and a post-traumatic cyst devel-
ops [14–16]. The preserved tissue bridges can be identified
in subacute phase dorsally and ventrally adjacent to the cyst
on a T2-weighted MRI. Interestingly, the tissue bridges
remain permissive for electrophysiological information flow
and clinical recovery [14, 16]. Thus, when oedema and
haemorrhage evolve in the subacute phase, the intrame-
dullary lesion size is a good predictor of recovery. Con-
ventional MRI scans at the lesion site show great potential
to serve as neuroimaging biomarkers in clinical routine and
in SCI trials as they are sensitive in detecting dynamic
intramedullary signal alterations and preserved midsagittal
tissue bridges in acute, sub-acute and chronic phases of SCI
[14–16].

Recommended conventional MRI protocol for
scanning the lesion site

It is recommended to apply conventional MRI based on
available standard sequences at the lesion site for characterising
the intramedullary changes over time after injury. These pro-
duct MRI sequences are sagittal and axial T1- and T2-weighted
scans, which can be complemented with a short-T1 inversion
recovery (STIR) sequence to assess the lesion site early after
injury and following injury within clinical work-up and clinical
trials. Gradient-echo T2* imaging (GRE) is useful for detecting
microhemorrhages within the intramedullary lesion. T1- and
T2-weighted MRI can also provide information on the extent
and dynamics of midsagittal tissue bridges at the epicentre of
the spinal cord lesion over time.
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The field of view (FoV) of the cervical cord MRI pro-
tocol normally covers a portion of the posterior fossa until
the upper thoracic spinal cord in the sagittal plane (Fig. 2a)
while the FoV of thoracic MRI covers the entire length of
the thoracic spinal cord. Axial T2-weighted-turbo spin echo
sequence is normally placed on the lesion site perpendicular
to the cord to assess the lesion and its axial extension
(Fig. 2b). We suggest performing follow-up scans in clinical
routine to track the lesion evolution after injury over time.
The recommended MRI protocol is as follows:

● Sagittal T1- and T2-weighted-turbo spin echo sequence
covering posterior fossa and the upper thoracic cord for
tetraplegia or covering the entire thoracic spinal cord or
lumbar spinal cord for paraplegia.

● Axial T2-weighted-turbo spin echo sequence placed on
the lesion site perpendicular to the spinal cord.

● Sagittal and axial GRE T2*-weighted scan placed on the
lesion site.

The sagittal T2-weighted scan is used for offline seg-
mentation of the lesion area and axial T2-weighted MRI,
helps users with navigating and positioning of the regions of
interest. The total nominal acquisition time for the suggested
clinical protocol (T1-w, T2-w, T2*-w scans) is ~12min,
although it may vary based on the MRI parameters of the
sequence (e.g. image resolution, number of measurements,
etc.) or the hardware design (e.g. the scanner vendor).

Interestingly the National Institute of Neurological Dis-
order and Stroke (NINDS) has the common mission of
developing data standards and imaging protocols for the
clinical research. The first set of Common Data Elements
(CDE) features represents anatomic findings for the SCI that
are routinely discernible on the conventional MRI.

Data processing

To characterise the size of the cyst and the width of tissue
bridges, the MRI data acquired from the lesion site can be
segmented and then analysed using available software such
as Jim software (Xinapse Systems, Aldwincle, UK) [14] or
the Spinal Cord Toolbox (SCT) [33].

MRI assessment above and below the lesion level

The majority of SCI patients undergo decompression surgery
after injury and receive spinal metallic implants to manage
spinal instability. Such devices cause significant MRI artifacts
such as signal‐loss, geometric distortion, and failure of fat
suppression, which worsen with increasing magnetic field
strength. To reduce the severe artefacts due to surgical implants
and to overcome issues linked to patient’s safety in the pre-
sence of such implants when using qMRI, trauma-induced
structural changes are mainly assessed above and below the
level of injury [34, 35]. Conventional MRI like T1-weighted
and multi-gradient echo T2*-weighted scans provides images

Fig. 1 Overview of the lesion evolution with persisting midsagittal
tissue bridges over time in a patient with traumatic cervical spinal cord
injury. Sagittal and axial T2-weighted scans show the evolution of a

cervical cord lesion from a 63-year-old SCI patient (incomplete,
female, AIS D) in a acute (1 day post-SCI), b subacute (1 month post-
SCI), and c chronic phase (~24 months post-SCI)
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that can be used for the assessment of spinal cord atrophy by
calculating the cross-sectional area of the cord above and below
the injury level. Cord atrophy has already been postulated as a
potential outcome measure in multiple sclerosis (MS) clinical
trials of putative neuroprotective therapies [18]. Similarly,

recent studies applying T1-weighted scans at the cervical spi-
nal cord level in SCI showed, up to 7% (5mm2) of atrophy-
within the first year following injury [21, 22]. Over time,
cervical spinal cord atrophy continuously progresses to reach
14% at 2-year post injury [27] and up to 30% at 14 years after

Fig. 2 Spinal cord MRI protocol
set-up: a, b Sagittal and axial
T1-, T2- and T2*- weighted
scans on the cervical spinal cord
lesion. c, d Axial T2*-weighted
scan set-up at the cervical and
lumbar level above and below
the lesion, respectively.
e, f Diffusion MRI protocol set-
up on the cervical spinal cord
(C2/C3 level) and
lumbar enlargement
(T12/L1 level)
with corresponding
saturation bands
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injury [36]. Thus, ongoing but slower cord atrophy is to be
expected in chronic SCI over time. The magnitude of this
atrophy was significantly associated with preserved electro-
physiological and sensorimotor impairments in SCI
[2, 20, 22, 27].

Recent studies have shown that the T2*-weighted scan
allows a tissue-specific MRI assessment of the spinal cord
(gray and white matter) above and below the lesion level
(cervical and lumbar spinal cord, respectively) [2, 20]. For
instance, a cervical SCI cohort showed signs of tissue-specific
spinal cord atrophy in both the gray matter (GM) and white
matter (WM) within the cervical spinal cord [2] and lumbar
enlargement area in chronic phase [20]. These results indicate
that the focal damage to the cord initiates neurodegenerative
changes remote from the lesion affecting both WM and GM.
Spinal cord atrophy measures should be considered in SCI
clinical trials for tracking the potential effect of the treatments
on the rate of atrophy (e.g. GM and WM cross-sectional area)
as an outcome measure. To do that, it is necessary to apply a
standard MRI protocol resulting in reproducible spinal cord
volume metrics.

Recommended MRI protocol for measuring spinal
cord cross-sectional area

To assess spinal cord atrophy, a multi-gradient echo T2*-
weighted scan (known as MEDIC on Siemens, mFFE on
Philips, MERGE on GE scanner and ADAGE on Hitachi) can
be used. These scans also provide excellent gray and white
matter contrast. The FoV should be centred on the C2/C3 level
in the cervical spinal cord (to assess above the lesion level), and
on the T12/L1 level in the lumbar cord enlargement, perpen-
dicular to the spinal cord to minimise partial volume effects and
increase consistency between subjects (Fig. 2c, d).

Alternatively, isotropic resolution T1-weighted or T2-
weighted scans, which are less prone to partial volume in the
rostro-caudal direction, should also be used to compute spinal
cord cross-sectional area (cord atrophy).

The conventional MRI protocol to asses cord atrophy
therefore follows

● 3D sagittal T1-weighted MPRAGE sequence at 1 mm
isotropic (minimum acquisition time: ~4 min) covering
both head and cervical spinal cord. The T2*-weighted
scan covering only the spinal cord (see below) is
preferred.

● 3D sagittal T2-weighted at 0.8 mm isotropic (SPACE on
Siemens, CUBE on GE, VISTA on Philips) (minimum
acquisition time: ~5 min) placed on the C2/C3 level, or
the T12/L1 level (lumbar enlargement) of the spinal cord.

● Axial T2*-weighted sequence (minimum acquisition
time: 3.5 min) placed on the C2/C3 level or the T12/L1
level (lumbar enlargement) of the spinal cord.

Of note, for computing cord atrophy either the T1-weighted
scan or T2*-weighted scan could be applied. However, we
recommend T2*-weighted scans because they enable us to
localize the WM and GM area and to calculate the tissue-
specific cord atrophy. Recommended acquisition parameters
for three main MR vendors, including standard operating
procedure (SOP), are available on : http://www.spinalcordmri.
org/protocols.

Data processing

Offline calculation of the cross-sectional area metrics of the
spinal cord can provide the rate of volumetric changes and
tissue atrophy. Software packages to compute spinal cord
and GM/WM area include: Jim software (Xinapse systems,
Aldwincle, UK) for semi-automatic segmentation and SCT
for automatic segmentation [33].

Quantitative MRI and its benefits in spinal
cord

Diffusion magnetic resonance imaging of the spinal
cord

Diffusion magnetic resonance imaging (dMRI) or diffusion
weighted imaging (DWI) is a common qMRI method sen-
sitive to the random movement of water molecules in tis-
sues, applied in the brain and spinal cord. dMRI can reveal
important microstructural properties of tissue like axonal
structure and myelination [37]. The diffusion tensor (DT)
model [38] is one of the computational diffusion models
that can provide indices sensitive to tissue integrity. For
instance, fractional anisotropy (FA) is mainly related to
axonal count and myelin content [39], axial diffusivity (AD)
and radial diffusivity (RD) reflect the integrity of axons and
myelin, respectively [40]. Experimental evidence proved
the association between DTI metrics and histological
markers in-vivo, such as AD indicating axonal loss in
a Wallerian degeneration model and RD indicating
demyelination [41], although caution in this interpretation is
needed [40]. Trauma-induced tissue changes at the micro-
structural level alter free water diffusion and can be quan-
tified by the DT imaging (DTI) [42]. Thus, DTI has been
applied to both cervical and lumbar cord to assess the
severity of SCI and tract-specific microstructural changes in
the spinal cord [2, 20]. DTI matrices have been reported to
indicate anterograde and retrograde degeneration of sen-
sorimotor tracts (decreased AD and FA), supporting the
possibility of axonal loss both in rostral and caudal direc-
tions. These DTI outcomes were associated with clinical
impairment and functional recovery in SCI [2, 20]. Such
improved understanding of tissue-specific cord pathology
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offers potential biomarkers with more efficient targeting and
monitoring of neuroregeneration (i.e., WM) in SCI. DTI
therefore quantifies the degree of WM integrity, to predict
recovery and to potentially monitor the effects of ther-
apeutic interventions at the microstructural level.

Recommended spinal cord dMRI protocol

Single-shot spin echo sequence with echo-planar imaging
(EPI) readouts should be applied in the cervical cord with
reduced FoV and the use of cardiac-gating to limit pulsation
artefacts with about a 10-min acquisition time. The axial
slices are orthogonally placed on the cervical cord (C2/C3
level) or the lumbar cord enlargement, (T12/L1 level)
(Fig. 2e, f). There are typically 30 diffusion-encoded direc-
tions at b= 800 s/mm2 and 5 images with b= 0 (acquired at
the beginning or interspersed of the measurement). To
maximise signal to noise ratio (SNR), echo time (TE) should
be minimised by using a monopolar gradient mode. A head-
neck RF coil is preferable for the cervical spinal cord, while
spine coils are used for the lumbar segments. Details of the

recommended sequence parameters and SOP are available
on: http://www.spinalcordmri.org/protocols.

DWI data processing

qMRI data processing normally includes motion correction,
registration to a spinal cord template, estimation of the qMRI
metrics, and extraction of these metrics within template ROIs.
SCT could be applied to process the spinal cord DWI data.
SCT includes a spinal cord template (“PAM50”) [43], which is
conveniently registered with the ICBM-152 MNI brain tem-
plate, allowing simultaneous brain-spine studies. The PAM50
also includes a WM probabilistic atlas [44], and methods to
extract metrics within specific WM tracts using Gaussian
mixture method, which minimise the partial volume effect.
Figure 3 illustrates an end-to-end processing of anatomical and
DWI data for computing cross-sectional area (CSA) of spinal
cord and DTI metrics in SCT. Alternatively, the combined
brain and cervical cord template based in SPM12 can be used
[45] to segment and spatially normalise brain and cervical cord
MRI data (https://www.fil.ion.ucl.ac.uk/spm/toolbox/TPM/).

Fig. 3 Overview of a template-based analysis pipeline using SCT: On
the far right the PAM50 spinal cord template (orange box) and the
MNI brain template (red box) are shown. First, anatomical data (e.g.,
T1-weighted or T2-weighted scans at 1 mm isotropic resolution or
similar) is registered to the template (blue arrows). Additional quan-
titative MRI data acquired during the same scan session (e.g., DTI,
magnetisation transfer, and fMRI) are registered to the anatomical
data, and then template objects are warped to the multi-parametric data

(green arrows). To improve accuracy of template registration, it is
possible to add a step where the gray matter is segmented [66] and then
warped to the gray matter template in order to update the warping
fields (purple arrows). Subsequently, those MRI metrics can be
quantified within specific WM tracts (red arrows). Cross-sectional area
(CSA) of the spinal cord and gray matter can also be computed across
vertebral levels. Adapted with permission [33]
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Artefact correction could be performed with ACID toolbox
(available on http://www.diffusiontools.com/) based in SPM12,
which is an academic software toolkit for pre-processing dif-
fusion MRI data, estimating DTI indices and perform spatial
normalisation of DTI index maps (http://www.diffusiontools.
com/).

Myelin imaging of the spinal cord

Magnetic transfer imaging (MTI) is a qMRI method sensitive
to myelin content [19] and to a lesser extent to axonal count
[46] which has shown utility to study myelin integrity in SCI
[26]. MTI typically uses an off-resonance pulse to excite
protons bound to macromolecules, which have a wider
resonance spectrum. These bound protons then transfer
magnetisation to close-by “free” protons, effectively satur-
ating the MR signal if imaging is performed shortly after MT.
By acquiring one image without (MT0) and one image with a
saturation pulse (MT1), one can compute the MT ratio
(MTR) which, correlates with myelin concentration in tissue
because of the macromolecular structure of lipids in myelin
sheath [17]. However, MTR is not an absolute measure of
myelin content and is notably affected by T1 and B1 field
variations. To mitigate this limitation, MT saturation (MTsat)
is suggested in which a third image is acquired with a shorter
repetition time (TR) and/or higher flip angle, to fit the T1
component [46]. MTsat is notably implemented in the so-
called multi-parameter mapping (MPM) method [47]. The
MPM method is composed of three different multi-echo
3D fast low-angle shot (FLASH) gradient-echo sequences,
designed to provide MR parameter measures of longitudinal
relaxation rate (R1= 1/T1), effective proton density (PD*),
magnetisation transfer saturation (MTsat) and effective
transverse relaxation rate (R2*= 1/T2*) to assess micro-
structural changes associated with myelin and iron content in
the brain and cervical spinal cord. Previous studies reported
that MTI readouts are strongly correlated with the histolo-
gically measured myelin content [17, 48] making MTI an
attractive tool to assess myelin integrity in different pathol-
ogies including MS [49], Alzheimer’s disease [50] and SCI
[22, 26]. The MPM protocol has been used to assess
microstructural changes induced by injury in the spinal cord
[22, 26]. The MPM maps revealed that in areas undergoing
progressive atrophy, myelin content decreased and iron
content increased [21, 22, 26, 27]. These bidirectional
changes are suggestive of demyelination and iron accumu-
lation, both processes known to occur during neurodegen-
eration after SCI [27]. Currently, the MPM approach (based
on vendor’s sequences) is employed in a multi-centre study
(INSPIRED) to understand mechanisms of myelopathy and
in a European multi-centre clinical trial (NISCI) [51] as an
exploratory outcome to investigate treatment effects of an
anti Nogo-A antibody drug which facilitates regenerative

sprouting after injury [52]. MTI holds the potential in SCI for
an outcome measure in clinical research as MT maps can be
predictors of recovery.

Recommended spinal cord myelin imaging protocol

To calculate MTR, a protocol consisting of two 3D spoiled
gradient-echo sequences, one with MT pre-pulse (MT1) and
one without MT pre-pulse (MT0) is required combined with a
T1-weighted sequence as a reference image. The MT
protocol covers the cervical cord (above the lesion) using the
head-neck RF coil available with most clinical scanners. To
calculate MTsat, a third gradient-echo sequence can be added,
more sensitive to T1-weighted effect, hence with shorter TR
and/or higher flip angle. Recommended sequence parameters
and SOP are available at: http://www.spinalcordmri.org/
protocols.

The MPM protocol consists of three multi-echo 3D
FLASH sequences, run with different TR and flip angle to
obtain T1-, MT-, and PD-weighted images with 1 mm iso-
tropic resolution. The FoV (240 × 256 mm2) can be applied
to full brain and cervical cord down to the C5 level, or only
the cord level with reduced overall coverage using the head-
neck RF coil. The MPM protocol and corresponding SOP
are available on http://hmri.info.

MTI data processing

Analogously to the processing of DWI data, the method
here consists of computing myelin-sensitive metrics (e.g.,
MTR, MTsat, T1, MPM), registering those metrics to a
template, and extracting those metrics using an atlas-based
approach. Like mentioned above, SCT or the combined
brain and cervical cord template [53] available in hMRI
toolbox should be used.

Potential neuroimaging biomarkers in brain

Brain atrophy measures

Brain volume changes measured by MRI are well-
established end points of clinical trials in MS [54, 55].
Volumetric MRI measures have also been suggested as
outcome measures in clinical trials assessing disease-
modifying therapies in Alzheimer’s disease [56, 57]. In
acute and chronic SCI, cross-sectional and longitudinal
measures of the brain volume, as per voxel-based mor-
phometry analysis [58], have shown correlation with neu-
rological deficits after SCI [22, 26, 27, 59].

A recent longitudinal study [27] that acquired T1-
weighted images over two years in six time-points repor-
ted significant WM volume reduction within the
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corticospinal tract (CST) of SCI compared to healthy con-
trols. Outside the CST, WM volume decreased in the
medulla oblongata and cerebellar vermis. GM volume
decreased in the left insula, left ACC, and right thalamus.
Most of these atrophic changes have shown significant
associations with clinical outcomes in SCI patients. These
measurable changes are sufficiently large, and predictive to
consider them as sensitive outcome measures for clinical
trials and assess the effect of experimental agents on atro-
phy rate in brain specific regions.

Brain microstructural measures using qMRI

Brain DTI applied in SCI cohorts showed a reduced FA,
reflecting microstructural tissue changes within the CST
[60, 61], and centrum semiovale [62] compared to healthy
controls, which may be a complementary predictor of fine
motor damage and recovery. DTI therefore promises to
quantify the degree of WM integrity, to predict recovery,
and to potentially monitor the effects of therapeutic inter-
ventions in SCI.

Previously, SCI-induced microstructural changes have been
investigated in the cervical cord and brain using MPM tech-
nique [22, 26, 27]. These studies reported myelin decrease and
progressive structural changes along the neuroaxis following
trauma in acute [21] and chronic SCI patients [26, 27]. Cru-
cially, myelin-sensitive MRI parameters (R1 and MT) at
12 months were reduced within, but also beyond, atrophic
areas [22]. These findings may be the results of retrograde
degeneration of myelinated axons following SCI. Assessment
of the underlying pathophysiology, with a myelin-sensitive
MPM approach, supports the assumption that the volume
changes in the brain relate to atrophy of myelinated axons and
their cell bodies within the gray matter of sensorimotor cortices
[63]. Based on the qMRI longitudinal studies in SCI and from
a clinical perspective, a notable association exists
between neurodegeneration changes in the brain and the mag-
nitude of the recovery in patients. The finding of a systematic
degenerative pattern with time suggests that non-invasive MRI
measures could be used for prediction of outcome, identifica-
tion of patients most likely to benefit from different interven-
tions, and as potential markers of treatment effects of
interventions (physical, drug, or cell-based therapies) [22].

Recommended brain MRI protocol

T1-weighted brain scan

3D T1-weighted scans covering the full brain, including
brainstem and cerebellum, and extending down to the cer-
vical cord are required to assess local volume changes in the
brain and spinal cord (i.e. applying voxel-based morpho-
metry (VBM) processing method). Different acronyms exist

with different sequence implementations aimed at obtaining
3D T1-weighting: FSPGR (GE), 3D TFE (Philips),
MPRAGE (Siemens and Hitachi), 3D FFE (Toshiba).

Data processing

To calculate local volume changes, T1-weighted scans
could be processed with the VBM toolbox (Ashburner and
Friston 2000) implemented in SPM12 (https://www.fil.ion.
ucl.ac.uk/spm/).

Diffusion weighted scan

Whole-brain dMRI can be acquired using a single or
double spin echo sequence with 60 diffusion weighted
images (b-value= 1200 s/mm2) and 7 T2-weighted images
(b= 0 s/mm2) with voxel size= 2.5 × 2.5 × 2.5 or less if
time and signal to noise ratio allow it. The acquisition time
for dMRI is ~8 min, depending on subject’s heart rate if
cardiac gated.

Data processing

There are several software packages for DTI analysis of dMRI
data, including FDT (FMRIB’s Diffusion Toolbox) in FSL
[64] and TRActs Constrained by UnderLying Anatomy
(TRACULA) toolbox [65] based on FreeSurfer software, and
ACID toolbox based on SPM12. A reference structural image
(e.g. the 3D T1-weighted scan suggested above for atrophy)
should be acquired for DWI brain registration to other mod-
alities like MPM or to a brain template.

Myelin imaging

As explained earlier, the MPM protocol consists of 3 multi-
echo 3D FLASH sequences with different weightings, which
are applied to the brain and spinal cord to obtain MT, PD and
T1-weighted images. The FLASH sequence is available on all
vendors. However, on Philips scanners an extra research
software package is needed to set up more than 5 echoes for
the multi-echo sequences. The currently established MPM
protocol is not available on GE scanners due to a sequence
limitation on the number of possible echoes. However, work
in progress aims to provide full compatible protocols on all
types of vendors. Of note, the MPM protocol could be
potentially set up with a lower number of echoes at the price
of lower maps resolution and SNR.

Data processing

The hMRI toolbox [45] is available to calculate the MPMmaps
with a detailed manual of how to process the MPM data (http://
hmri.info).
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Sample size calculations based on qMRI measures

There is an imperative to improve clinical trial design by
optimising patient stratification in the context of disease
heterogeneity in SCI. In previous studies employing qMRI
[23] concomitant longitudinal effect sizes have been esti-
mated based on the sub-acute qMRI for clinical trials by
means of power calculations. Figure 4 shows estimates of
sample sizes for trials expected to enrol patients receiving
treatment over 6 months, assuming two groups of rando-
mised clinical trial arms with MRI outcomes of (a) spinal
cord cross-sectional area, (b) CST volume, to detect
treatment effects with 80% power at 5% significance. The
calculations cover a range of plausible baseline versus 6-
month correlations around the empirical patient values of
0.98 for the spinal cord area and 0.99 for CST volume. The
correlation refers to the correlation coefficient between
baseline clinical measures and follow-up clinical measures:
the higher this correlation the more random error explained
by the baseline value and so the greater the power and
smaller the sample size. For example, the required sample
size for a 30% treatment effect (i.e. slowing of the rate of
change on MRI readouts) assuming a correlation coefficient
of 0.98 for the cord area and 0.99 for the CST volume, is 26
and 25 subjects per arm, respectively. Thus, if the estimated
longitudinal effect sizes, as a function of post-trauma time,
are substantial as indicated by the calculations, the possi-
bility of quantifying responses to therapeutic interventions
within 6 months after injury is exciting. In short, qMRI
biomarkers of neurodegeneration represent promising
instruments for the stratification of patient cohorts and the
improvement of trial efficiency. However, it is imperative
that we await results from ongoing clinical trials that have
already included such qMRI measures as exploratory
outcomes.

Conclusion

This narrative review proposes a guideline of clinically
available MRI measures that have the potential to assess tis-
sue damage and repair at the macro- and microstructural level
after SCI which may be applicable to clinical trials and
diagnostic work-up. The combination of serial conventional
MRI and qMRI with clinical outcomes represents a feasible
mean for a better evaluation of complex changes following
SCI and for uncovering the intricate relationship between
clinical impairment and primary and secondary remote neural
changes in the uninjured spinal cord and brain. Furthermore,
these quantifiable changes appear to have notable predictive
validity to render them viable outcomes for interventional
trials [23, 27].
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