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Targeting macrophages in cancer immunotherapy
Zhaojun Duan1,2 and Yunping Luo1,2

Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive
cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved
certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of
targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation
characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based
on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
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As a type of phagocytic cell that was initially identified as clearing
foreign pathogens by Elie Metchnikoff, macrophages have
gradually been considered for cancer immunotherapy in recent
years. In light of their positive roles in current therapeutic
strategies, they have become a promising target for improved
cancer treatments. To facilitate the use of macrophages in cancer
immunotherapy, we summarize their related characterization and
research progress in this review.

CATEGORIES AND CHARACTERIZATION OF MACROPHAGES
Development and differentiation of macrophages
It is now widely accepted that macrophages in tissues, as well as
monocytes in the peripheral blood, are classified as the mononuclear
phagocytic system (MPS). This concept has developed over a long
history, and its current version takes the origin, morphology, function,
and kinetics of the cells into consideration.1 In MPS, macrophages
originate from bone marrow stem cells, and their development goes
through sequential stages as granulocyte–monocyte progenitor cells,
pro-monocytes, and mature monocytes. After entering various
tissues, monocytes differentiate into macrophages.2 However, in
some lower multicellular organisms without circulating monocytes,
such as Porifera, macrophages still exist. For patients with
monocytopenia, their macrophages do not diminish correspond-
ingly.3 These phenomena indicate that macrophages could come
from other sources in addition to monocytes. This notion has been
supported by additional studies. As shown in Fig. 1, based on studies
from mouse models, macrophages possibly have at least four
origins:4,5 (1) F4/80hi macrophages from the yolk sac that mainly
reside in tissues such as the liver, spleen, lung, brain, pancreas, and
kidney; (2) F4/80lo macrophages derived from bone marrow and
developed through a mature stage as Ly6C+ monocytes; (3)
Langerhans cells from the fetal liver (regarding Langerhans cells as
macrophages but not DC cells6); (4) A few studies also have claimed
that a minority of tumor-associated macrophages may come from
extramedullary hematopoiesis, especially in the spleen.7,8 It has been

reported that Ly6C− patrolling monocytes are mainly responsible for
detecting pathogens intravascularly and maintaining vascular integ-
rity, while Ly6C+ inflammatory monocytes are recruited to infectious
sites and injuries, mediating extravascular inflammatory responses
and then differentiating into macrophages.4,9 Some studies have also
indicated that both Gr1+/Ly6Chigh10–12 and Gr1−/Ly6Clo monocytes
have the potential to enter tissues and turn into macrophages,13 but
the former are more likely to become M1 macrophages, while the
latter are M2 phenotypes.14 Above all, macrophages in tissues are
probably a mixture of embryo- and adult-derived cells.
Wherever the macrophages originated from, the macrophage

colony-stimulating factor 1 receptor (CSF1R) is a key receptor that
induces their differentiation. CSF1 and IL-34 are two ligands of
CSF1R. These two factors function in different ways. It has been
reported that macrophages in the liver, spleen, or bone marrow
are typically regulated by CSF1-mediated signals,15 while IL-34
dominates the development of macrophages in the brain.16 Given
the importance of CSF1R, its inhibitors are often used in scientific
studies to deplete macrophages. In addition, the lack of Sfpi1,
which is a pioneering transcriptional regulator in myeloid lineage
development, could result in a total depletion of CD11b+F4/80+

macrophages.17 An expression disparity of Sfpi1 determines the
differentiation of Ly6Chi monocytes into iNOS+ macrophages or
monocyte-derived dendritic cells.18 Id3 is indispensable for liver
macrophages.19 PPARγ maintains the anti-inflammatory function
of alveolar macrophages.20 Gata6 controls the proliferative
renewal of peritoneal macrophages.21 LXR deficiency could cause
a failure in the generation of splenic marginal zone macrophages
and metallophilic macrophages.22 Epigenetic changes drive the
differentiation of monocytes into macrophages.23 More factors
participating in the differentiation of macrophages have been
described in previous reviews.4,24,25

Categories
Macrophages are widely distributed in various tissues. According
to their histological locations, macrophages residing in specific
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tissues can be categorized into Kupffer cells in the liver, microglial
cells in the brain, osteoclasts in the osseous tissue, alveolar
macrophages in the lung, mesangial cells in the kidney,
subcapsular sinus macrophages in lymph, and so on.26,27 A
summary of the ontogeny, functions, and markers of macrophages
in different tissues is listed in Table 1. It has been shown that
macrophages from different tissues possess diverse expression
profiles for transcripts and proteins, which can have a profound
impact on their phenotypes and functions.28,29

Based on phenotypes and functions, macrophages can be
typically divided into M1 (proinflammatory, classically activated
macrophages) and M2 (anti-inflammatory, alternatively activated
macrophages) types (Fig. 2). In brief, M1 macrophages can be
induced by IFN-γ, lipopolysaccharide (LPS), TNF-α or
granulocyte–macrophage colony-stimulating factor (GM-CSF),
followed by activation of Toll-like receptor signaling pathways.
They play a positive role in the removal of pathogens and tumor
cells. On the one hand, M1 macrophages express high levels of
antigen-presenting MHC complexes, which accelerate the activa-
tion of adaptive immune responses. On the other hand, they act
directly on target cells by generating nitric oxide, reactive oxygen
species, and reactive nitrogen species. Moreover, M1 macro-
phages promote inflammatory responses by secreting cytokines
such as TNF-α, IL-1α, IL-1β, IL-6, IL-12, IL-18, and IL-23.30,31

Excessive M1 macrophage-mediated responses may lead to tissue
damage, which is the main cause of atherosclerosis and other
chronic inflammation.32–34 M2 macrophages can be induced by
cytokines, such as IL-4, IL-13, glucocorticoids, M-CSF/CSF1, IL-10,
IL-33, IL-21, and TGF-β.31,35–37 Accompanied by increased produc-
tion of polyamines and ornithine through the arginase pathway,
high secretion of IL-10, PGE2, TGF-β, but low IL-12, they are major
participants in the clearance of parasites and homeostasis, such as
tissue remodeling and regeneration, wound healing and anti-
inflammation.38,39 When M2 macrophages develop further, they
are refined into M2a, M2b, M2c, and M2d subgroups.40 Their
specific characterizations have been reviewed by Abbas Shapouri
Moghaddam et al.41 Macrophages have strong plasticity. It has
been shown that different phenotypes could possibly transform
mutually under certain conditions.
Tumor-associated macrophages (TAMs) generally represent a

major component of myeloid cells present in tumors. For some
solid tumors, TAMs can arise from several origins: as residual
macrophages derived from the yolk sac, infiltrating macrophages
as the major replenishment recruited from bone marrow/
Ly6C+-circulating monocytes, and a minority from the

spleen.8,42–47 It has been demonstrated that TAMs with different
origins may act differently than anti-macrophage oncotherapies.43

In most established tumors, TAMs tend to be considered M2-
skewed macrophages because they possess the majority of the
representative properties of M2 macrophages, usually including
but not limited to high expression levels of arginase-1, mannose
receptor, and a low MHC class II complex.48 Transcriptome profile
analysis revealed that TAMs are more similar to fetal macrophages
but not inflammatory macrophages.41 However, as macrophages
are plastic, there is also evidence suggesting that TAMs actually
have both M1 and M2 expression patterns or expression patterns
distinct from those of M1 and M2 macrophages.49 Since 90–95%
of neoplasms are closely associated with a chronic inflammatory
status, it has been suggested that M1 macrophages may induce
tumor initiation by creating a mutagenic microenvironment, while
M2 macrophages promote malignancy progression.36,50 It is also
believed that TAMs may exert both tumor-promoting and tumor-
inhibiting functions,51,52 which make TAMs a potential target for
cancer therapies.

Typical markers
To be distinguished from other immunocytes, macrophages can
be characterized by phagocytosis and the expression of CD11b,
F4/80, and CSF1R in mice or CD79, CD163, CD16, CD312, and
CD115 in humans.41 Specifically, to present antigens and activate
adaptive immune responses, M1 macrophages often express high
levels of MHC class II molecules and costimulatory molecules, such
as CD40, CD80, and CD86, while M2 macrophages contain
upregulated levels of endocytosis-related receptors, such as the
human scavenger receptors CD163 and Stabilin-1 and C-type
lectin receptors, including CD206, CD301, detin-1 and CD209.31 In
addition to the proinflammatory or anti-inflammatory cytokines
mentioned above, polarized macrophages generate different
types of chemokines. CXCL9, CXCL10, CXCL11, and CCL5 are
usually secreted by M1 macrophages to recruit Th1, Th17, and
cytotoxic T cells, while CCL2, CCL17, CCL18, CCL22, and CCL24 are
produced by M2 macrophages in most cases.31,38,40

Basic functions of macrophages
One of the basic functions of macrophages is phagocytosis.
Through phagocytosis, macrophages can clear erythrocytes,
apoptotic cells, and effete cells to maintain homeostasis.
Neutropenia and splenomegaly may occur when neutrophils
and erythrocytes in the spleen and liver cannot be phagocy-
tized.53 This type of clearance process is independent of immune
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Fig. 1 Development of macrophages
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Table 1. Ontogeny, functions and identifying markers of different macrophages

Tissue Macrophage Ontogeny Function Identifying markers Refs.

Liver Kupffer cells Yolk sac derived Clearance of bacteria, aged erythrocytes,
and cellular debris from the blood;
regulation of the immune response;
involvement in liver injury repair

F4/80hi

CD11blo

Siglec-1+

CD68+

Galectin-3+

CD80lo/−

PPARδ+
Ly6C−

CX3CR1−

Clec4F+

TIM-4+

27,62,223–225

Monocyte-derived
liver macrophage
(MoMFs)

Monocyte derived Rapid accumulation and involvement in
immune responses after organ damage

F4/80+

CD11bhi

MHC-II+

CCR2lo (transferring
from CCR2hi)
CD64+

CX3CR1hi

(transferring from
CX3CR1lo)

226–229

Liver capsular
macrophages

Monocyte derived Sensing bacteria reaching the hepatic
capsule; inhibition of the hepatic spread
of peritoneal pathogens; recruiting
neutrophils

F4/80+

MHC-II+

CD11b+

CD64+

CD103−

CX3CR1+

TIM-4−

CD207+

230

Lung Alveolar macrophages Yolk sac and fetal
liver progenitors

Immune surveillance; phagocytosis of
inhaled particles

F4/80lo

CD11blo

CD11chi

CD14lo

CD200Rhi

DEC205inter

MHC-IIlo

CD68+

Siglec F+

MARCO+

CD206+

Dectin-1+

Galectin-3+

Mertk+

CD64+

Siglec-1+

27,223,231–233

Interstitial
macrophages

Fetal liver and
bone marrow-
derived
monocytes

Immune surveillance F4/80+

CD11b+

CD11c+

CD68+

MHC-II+

CD24−

CD86+

Ly6C−

Siglec F-

CD64+

233–236

Central nervous system Microglial cells Yolk sac derived Functioning as immune surveillance;
promote neuronal survival and remove
dead neurons; synaptic remodeling

F4/80+

CD11b+

CD45lo

CX3CR1hi

Iba-1+

P2RY12+

26,27,236,237

Perivascular
macrophages

Yolk sac or fetal
liver progenitors

Blood–brain barrier integrity;
phagocytosis;
antigen presentation;
lymphatic clearance

CD45hi

CD11b+

F4/80hi

CX3CR1hi

Iba-1hi

P2RY12−

CD163+

CD206+

Lyve-1+

237–248
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Table 1. continued

Tissue Macrophage Ontogeny Function Identifying markers Refs.

Meningeal
macrophages

Yolk sac derived Immune surveillance F4/80+

CD11b+

CD45hi

CX3CR1hi

Iba-1+

CD209b+

Chnrb4+

27,237,249

Bone Osteoclast Monocyte derived Resorption of organic matter and
minerals from the bone matrix

Calcitonin receptor+

Calcr+

RANKL+

26,27,250–252

Bone marrow
macrophages

Yolk sac derived
or fetal liver-
derived
monocytes

Promoting erythropoiesis; maintenance
of the hematopoietic stem cells niche

Siglec-1+

ER-HR3+

F4/80+

Tartrate-resistant acid
phosphatase (TRAP)−

250,253

Spleen Marginal zone
macrophages

Bone marrow-
derived
monocytes

Clearance of pathogens present in the
circulation; retention of marginal zone
B cells

CD68+

Dectin-2+

F4/80lo

LXRα+
MARCO+

TIM-4+

SIGN-R1+

22,254–256

Marginal metallophilic
macrophages

Bone marrow-
derived
monocytes

Clearance of pathogens present in the
circulation

CD68 +

F4/80lo

LXRα+
Siglec-1+

257

White pulp (tingible
body) macrophages

Not clear Clearance of apoptotic B cells CD68 +

MFG-E8+

Mertk+

TIM-4+

CD36+

257–259

Red pulp
macrophages

Yolk sac-derived
or fetal liver-
derived
monocytes

Clearance of effete red blood cells;
immunosurveillance; detoxification; iron
recycling; antigen delivery to DCs

F4/80hi

CD11blo

Siglec-1lo

CD68+

MHC-IIlo

CSF1R+

SIRPα+
Siglec F−

CD163+

Dectin-2+

VCAM1+

Spi-C+

Heme Oxigenase+

Ferroportin+

223,255,259–261

Kidney Mesangial cell Monocyte derived Intraglomerular mesangial cells;
regulation of glomerular filtration;
mesangial matrix formation;
phagocytosis; monitoring of glucose
concentrations

F4/80+

CD11blo

CD103−

CX3CR1+

SIRPα+
Siglec F-

223

Lymph node Subcapsular sinus
macrophages

Yolk sac-derived
or bone marrow-
derived monocyte

Limiting the systemic dissemination of
pathogens and bacterial infections;
promote the presentation of antigens

F4/80lo

MARCO+

Siglec-1hi

CD11bhi

Ligands for the
cysteine-rich domain
of the mannose
receptor+

223,262,263

Medullary
macrophages

Bone marrow-
derived
monocytes

Highly phagocytic and rapidly clear
pathogens

CD11b+

Siglec-1+

F4/80+

MARCO+

SIGN-R1+

223,263,264

Serosal Tissues Pleural macrophages Immune surveillance CD11bhi

F4/80hi
265–267
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responses and is regarded as the fundamental function of
macrophages.54 When pathogens or aberrant cells, such as tumor
cells, are recognized by macrophages, they can be phagocytized
and processed into antigen peptides. Macrophages present these

peptides to MHC class II molecules on their surface and stimulate
T-cell proliferation and activation with the synergistic effect of
costimulatory molecules.55,56 It has been reported that adult
macrophages are primarily responsible for host defense, while

Table 1. continued

Tissue Macrophage Ontogeny Function Identifying markers Refs.

Bone marrow-
derived
monocytes

Siglec F−

RELMα+
TIM-4+

Large peritoneal
macrophages

Yolk sac-derived
or fetal liver-
derived
monocytes

Regulation of IgA production in the gut
by peritoneal B1 cells

CD11bhi

CD11clo

SIGN-R1−

F4/80hi

GATA-6+

MHC-IIlo/−

CD62L–

TIM-4+

268–270

Small peritoneal
macrophages

Bone marrow-
derived
monocytes

Immune surveillance CD11blo

CD11C−

SIGN-R1+

F4/80lo

MHC-IIhi

CD62L+

TIM-4-

265,269,270

Skin Langerhans cells Yolk sac-derived
or fetal liver-
derived
monocytes

Interaction with T lymphocytes; immune
surveillance

CD11b +

CD11c+

F4/80+

Id2+

Langerin+

RUNX3 +

27,271,272

Dermal macrophages Bone marrow-
derived
monocytes

Immune surveillance CD11b+

CD11clo

CD301+

Dectin-1+

Dectin-2+

F4/80+

CD64hi

Mertk+

MHC-IIlo

CD206+

Siglec-1hi

27,223,255,273

Adipose Tissue Adipose tissue-
associated
macrophages

Not clear Adipogenesis; adaptive thermogenesis;
regulation of insulin sensitivity and
glucose tolerance

CD45+

F4/80+

PPARγ+

274,275

Gastrointestinal Tract Intestinal lamina
propria macrophages

Bone marrow-
derived
monocytes

Maintenance of intestinal homeostasis;
recognition and removal of intestinal
pathogens; maintenance of gut
epithelial integrity

CD11b+

CD11c+

CX3CR1hi

F4/80+

CD64+

MHC-IIhi

27,276

Blood Ly6Clo monocytes Bone marrow-
derived
monocytes

Immune surveillance; maintenance of
vascular integrity

CD11bhi

CD43+

CX3CR1+

F4/80+

Ly6Clo

CSF1R+

NR4A1+

27,277,278

Tumor Tumor-associated
macrophage

Yolk sac derived
or monocyte
derived

Promote tumor growth; inhibit
tumoricidal immune response; initiate
angiogenesis; activate matrix
remodeling; aid invasion and
intravasation

Murine: Ly6C+

MHC-II+

CX3CR1+

CCR2+

CD62L+

TIE2+

Human:
CD14+

CD312+

CSF1R+

CD16+

42,279–281
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fetal macrophages are involved in tissue remodeling.40 Macro-
phages play an important role in the development and home-
ostasis. For example, microglia are required in almost every
precise developmental stage of the central nervous system.57

Cardiac macrophages help maintain homeostasis in the steady-
state heart by facilitating myocardial conduction.58 CCR2−

macrophages are instrumental in cardiac recovery, coronary
development, and postnatal coronary growth.59,60 Impaired
activation or depletion of Kupffer cells leads to hepatic steatosis
and insulin resistance.61–63 Defects in perivascular macrophages
can give rise to the unsuccessful establishment of the blood–brain
barrier.64 It is well known that macrophages are related to many
diseases. Here, we will focus on its role in tumors in the following
sections.

FUNCTIONS OF MACROPHAGES IN CANCERS
By secreting various factors and affecting other immune cells,
macrophages not only play a role in chronic inflammation but also
initiate, promote, or suppress the development of cancer.
Ornithine, VEGF, EGF, and TGF-β are examples of tumor-
promoting factors derived from macrophages, while nitric oxide
generated by inducible nitric oxide synthase in macrophages can
inhibit tumor growth.32,33,65,66 Macrophages have been demon-
strated to be involved directly or indirectly in several key features
of malignant tumors, including angiogenesis, invasiveness,
metastasis, regulation of the tumor microenvironment, and
therapeutic resistance (Fig. 3).

Angiogenesis
By expressing WNT7B, WNT5A, WNT11, VEGF-C, VEGF-D, and other
factors, macrophages are deeply involved in vasculogenesis and
lymphogenesis.67–70 In addition, TAMs can enhance tumor
hypoxia and glycolysis,71 two important causes of angiogen-
esis.72,73 HIF-1a is a protein induced in hypoxia conditions. It has
been demonstrated that HIF-1a is an important transcriptional
factor regulating the transcription of angiogenesis-associated
genes, such as VEGF, bFGF, PDGF, and PGE2 in TAMs.74,75 Through
the synthesis of WNT7B, macrophages also stimulate vascular
endothelial cells to produce VEGF.76 Other TAM-produced
proangiogenic molecules that recruit or activate endothelial cells
include CXCL12, TNF-α, IL-1β, IL-8, Sema4d, adrenomedullin, and
thymidine phosphorylase.41,77,78 Studies on liver diseases have
revealed that in addition to producing proangiogenic molecules,
macrophages can benefit the formation of complex vascular
networks by interacting with the sprouting vasculature.79 Live
imaging showed that macrophages drive sprouting angiogenesis
via VEGF signaling and coordinate blood vessel regression in

wound healing by clearing apoptotic endothelial cells.80 Prevent-
ing macrophages from entering avascular areas by blocking the
Sema3A/Nrp1 signaling pathway could inhibit angiogenesis.81 It
has been reported that angiogenic macrophages are similar to
fetal counterparts based on their characteristic expression of
TIE2.77,82 Targeting TIE2 or its ligand ANG2 inhibits angiogenesis in
certain tumor models, such as those for breast and pancreatic
cancers.82 Depletion of TAMs inhibits angiogenesis.74,83 A close
relationship between macrophages and angiogenesis has been
discussed in previous reviews.84,85

Invasiveness and metastasis
Macrophages can not only increase the density of blood vessels
but also promote the invasiveness and metastasis of tumor cells.
By expressing matrix metalloproteinases, cathepsin, urokinase
plasminogen activator, and matrix remodeling enzymes, such as
lysyl oxidase and osteonectin, macrophages dissolve the extra-
cellular matrix to pave the path for tumor cell escape.4 TAMs
upregulate cytokines, such as IL-1ra, to promote metastasis by
enhancing tumor cell stemness.86 Secretion of TGF-β and growth
factors, such as EGF analogs, promotes epithelial–mesenchymal
transition and invasiveness of tumor cells.87–90 Exosomes released
from M2 macrophages are responsible for cancer metastasis by
transferring certain miRNAs into cancer cells, such as colorectal
cancer and pancreatic ductal adenocarcinoma cells.91,92

In addition to macrophages in primary tumors, macrophages
can also assist in tumor survival and colonization at premetastatic
lesions. It has been demonstrated that macrophages are required
for the early dissemination of breast cancer, and early dissemi-
nated macrophages contribute to late metastasis.93 Tumor
exosomes are crucial in tumor organotropic metastasis. It has
been observed that pancreatic cancer cell-derived exosomes
preferentially colocalize with macrophages in liver metastasis
sites.94 Exosome-educated macrophages facilitate premetastatic
niche formation via secretion of TGF-β.95 In addition, the interplay
between integrin a4 on macrophages and VECAM1 on tumor cells
promotes cancer cell survival.96 Results from other studies support
the indispensable role of monocytes/macrophages recruited to
premetastatic niches in promoting circulating tumor cell survival
and colonization in metastatic lesions.97,98 At lung metastasis
nodules of breast cancer, CCL2 produced by tumor cells is an
important chemokine for the recruitment and retention of
inflammatory monocytes/macrophages.99 By recruiting Ly6C+

monocytes via CCL2, fibrocytes prepare a premetastatic niche in
the lung for melanoma cells.100 After differentiating of
CCR2+Ly6C+ inflammatory monocytes into Ly6C− macrophages,
these cells accelerate tumor cell extravasation by generating
VEGF.101

Macrophages

M1 macrophages                                                                        M2 macrophages
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GM-CSF

IL-4, IL-13, 
glucocorticoids, 
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Fig. 2 Categories of macrophages
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Tissue-resident macrophages have also been demonstrated to
promote or restrict metastasis. Alveolar macrophages promote
hepatocellular carcinoma lung metastasis by producing an
inflammatory mediator, leukotriene B4.102 By suppressing Th1
responses, alveolar macrophages facilitate breast tumor cells to
metastasize.103 Kupffer cells engulf cancer cells in a Dectin-2-
dependent manner to limit liver metastasis.104

Effects of macrophages on tumor microenvironment
Many factors, such as CSF1, VEGF-A, CXCL12, ANG2, CCL5, and CCL2,
in solid tumors, can recruit angiogenic macrophages.77,101,105–108

This enrichment allows macrophages to play a major role in the
construction of the tumor immune microenvironment. Granulin
generated by TAMs can induce fibrosis, which prevents T cells from
infiltrating.109,110 Attenuation of the TAM antigen presentation
ability results in a reduction in T-cell activation and proliferation.40

Exosomes consisting of various miRNAs derived from TAMs
orchestrate an immunosuppressive tumor microenvironment by
causing Treg/Th17 imbalance.111 It has been summarized that

tumor-associated macrophages support a suppressive tumor
microenvironment in three ways:112 (1) by consuming the
metabolites, (e.g., L-arginine, which is essential for T-cell activation,
can be metabolized by TAMs with high expression of ARG1.) (2) by
producing the cytokines and chemokines, IL-10, TGF-β, and PGE2,
which are primarily secreted by TAMs, to inhibit the activation and
function of various immune cells, including cytotoxic T cells, but
induce and maintain regulatory T cells, (3) by expressing inhibitory
molecules. TAMs elicit immune suppression through the expression
of inhibitory receptors or immune checkpoint ligands (e.g., MHC-I
molecules, PD-L1, PD-L2, CD80, CD86, B7-H4 and VISTA). These
molecules deliver an inhibitory signal to ligand- or receptor-
expressing immune cells.

Therapeutic resistance
Macrophages are also an important cell-extrinsic factor that
mediates the resistance of tumor cells to chemotherapy or
radiotherapy. By expressing IL-6, TNF-α, cathepsin B and S, or
inducing other cells to produce IL-6, macrophages activate STAT3
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in tumor cells, which enhances the proliferation and survival of
malignant cells under treatment with several chemotherapeu-
tics.113 The epithelial to mesenchymal transition, which can be
elicited by macrophages, has been demonstrated to be another
mechanism behind chemoresistance.114–116 Exosomal miR-223
from macrophages has been reported to cause a chemoresistant
phenotype after being delivered into epithelial ovarian cancer
cells.117 miR-21 derived from macrophages is responsible for
cisplatin resistance in gastric cancer cells.118 Macrophages
exacerbate fatty acid beta-oxidation of gastric cancer cells by
generating growth differentiation factor 15 so that the cancer cells
are more resistant to 5-fluorouracil treatment.119 Metabolites,
including deoxycytidine, from macrophages, weakened the
therapeutic effect of gemcitabine in pancreatic ductal adenocar-
cinoma.120 Murine pancreatic ductal adenocarcinoma models
showed an enhanced therapeutic response toward gemcitabine
after depleting macrophages with liposomal clodronate.121 As
summarized by Marek Nowak et al., TAMs contribute to
chemoresistance by inducing prosurvival and antiapoptotic
signals in cancer cells, as well as their protumoral polarization.122

It has been reported that irradiation promotes the accumulation
and M2 polarization of macrophages.123 Heparin-binding epider-
mal growth factor, which is primarily secreted by macrophages,
could reduce the radiosensitivity of head and neck cancer cells by
activating the nonhomologous end-joining pathway.124 TNF-α has
a radioprotective function in a TAM-produced VEGF-dependent
manner.125 Carcinoembryonic antigen has been identified as a
radioresistance marker in colorectal cancer because it induces M2
polarization of macrophages.126 Inhibition of differentiation of M2
macrophages showed enhanced responses to radiotherapy in
breast cancer.127 Of note, dying cancer cells after treatment with
chemotherapeutics or radiation might also initiate antitumor
immune responses. Whether the function of macrophages leads
to sensitization or resistance to traditional therapy is com-
plex.128,129 Better understanding of the mechanisms can improve
the efficacy of traditional oncotherapy.

INVOLVEMENT OF MACROPHAGES IN CURRENT
IMMUNOTHERAPY
Due to the limitations and shortages of traditional cancer
treatments, immunotherapy has become the most promising
cancer treatment. Various cancer immunotherapy strategies have
emerged. These include adoptive cellular immunotherapy, tumor
vaccines, antibodies, immune checkpoint inhibitors, and small-
molecule inhibitors. Although most of these strategies are not
meant to target macrophages directly or originally, macrophages
contribute significantly to the final outcomes.

Immune checkpoint inhibitors
To date, many immune checkpoint blockade therapies have been
reported, but the most commonly used therapies in the clinic are
anti-PD-1 and anti-PD-L1 therapies. Cancer immunotherapy based
on inhibiting the immune checkpoints CTLA-4 and PD-1 aim at
relieving immune suppression rather than simply reinforcing
immune responses. Blocking the PD-1/PD-L1 pathways with
inhibitors to enhance the cytotoxic function of T cells has made
certain achievements in the resolution of malignancies.130

However, even if the adaptive immune system is compromised131

or the function of T cells cannot be fully recovered by PD-1
inhibitors under specific circumstances,132 PD-1/PD-L1 antagon-
isms can still increase antitumor efficacy. Therefore, more immune
cell types should be involved in PD-1/PD-L1 inhibitor treatment.
Additional studies revealed that both PD-L1 and PD-1 are
expressed in TAMs,131,133,134 promoting immune suppression
and escape. PD-1+ TAM phagocytosis can be rescued by PD-1/
PD-L1 blockade, which leads to a direct decrease in tumor
burden.131 Furthermore, anti-PD-1 or PD-L1 immune checkpoint

blockade induced an M1 macrophage polarization.135,136 M1
macrophage polarization or repolarization has been linked to an
enhanced antineoplastic effect by numerous studies.137–140 Of
note, macrophages might play a negative role in anti-PD-1
treatment, such as by preventing cytotoxic T cells from reaching
tumor cells.141 In addition, in vivo imaging showed the transfer of
an anti-PD-1 antibody from CD8+ T cells to TAMs through the
binding of Fc-Fcγ receptors shortly after its administration.
Blocking such binding reduced the accumulation of anti-PD-1
antibody in TAMs and prolonged its retention time in CD8+ T cells,
leading to the regression of tumors.142

Along with the concept of immune checkpoints on T cells,
several checkpoints that are mainly associated with macrophages
have also been discovered. CD47 is a poor prognostic factor in
tumor cells, and its interaction with SIRPα on macrophages helps
tumor cells evade phagocytic clearance by macrophages.143,144

Blocking CD47 has resulted in macrophage-mediated tumor
inhibition.145 The inhibitory receptor LILRB1 expressed on macro-
phages prevents tumor cells from being phagocytosed by
interacting with the beta-2 microglobulin (β2M) subunit of the
MHC class I complex.146 The CD24-Siglec-10 axis promotes
immune evasion by downregulating macrophage phagocytosis.147

Inhibition of these immune checkpoints has significantly increased
cancer immunotherapy efficacy.

Tumor vaccines
Vaccines can be divided into two categories: preventive vaccines
and therapeutic vaccines. Preventive vaccines are often designed
to induce specific adaptive immunity, chiefly humoral immunity,
before the occurrence of disease, which is normally caused by
infection with a virus or bacteria. Thus, it can be used to reduce
the incidence of viral or bacterial infection-induced carcinoma.
Typical examples of preventive vaccines are those for HBV or HPV.
Although a proper adaptive immune response is believed to be
the primary reason for the effectiveness of these vaccines, it has
been reported that immediate innate immunity other than time-
consuming adaptive immunity is principally responsible for the
spontaneous regression of cancer.148,149

Therapeutic vaccines are usually designed to elicit protective
T cells. However, Maxime Thoreau et al. demonstrated that
cooperation between T cells and macrophages is required to
achieve the effects of a therapeutic vaccine. A denser presence of
macrophages along with tumor regression has shown to precede
the infiltration of CD8+ T cells.150 Numerous approaches choose
synthetic peptides, recombinant proteins, whole tumor cells, viral
vectors, bacteria or nucleic acids as vaccination candidates to
activate T cells via antigen-presenting cells, which are mostly
dendritic cells.151 Among these, some regimens that used GM-CSF
as an adjuvant generated obvious immune responses.151,152

Sipuleucel-T was the first therapeutic vaccine approved by the
FDA to be used in a particular group of prostate cancer patients. A
fusion protein combining a targeting tumor antigen prostate acid
phosphatase with GM-CSF was used to induce antigen-specific
T cells. It prolonged the survival of patients in a few clinical
trials.153 A STING agonist formulated with GM-CSF showed
remarkable antitumor efficacy in multiple established tumors.154

Some tumor cells used as whole-cell vaccines can secrete GM-
CSF.155,156 In addition, oncolytic virotherapy, which increases the
targeting of cancer cells through virus infection, could induce
antitumor immune responses, especially in cells that had been
engineered to express GM-CSF.157,158 GM-CSF is combined for the
purpose of enhancing DC functions and limiting Treg regulation.
However, GM-CSF could also induce M1 macrophage polarization
and activate macrophages to exert an antitumor function.40,159,160

In another virus-related tumor immunotherapy study, Danyang
Wang et al. used an NF-κB-activating gene expression adeno-
associated virus system to express an artificial neoantigen on the
tumor cell surface, which could be targeted by specific immune
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cells. When they chose calreticulin, a signal to promote phagocytic
uptake, the cancer cells could be engulfed by macrophages.161 In
addition, exosomes derived from M1- but not M2-polarized
macrophages boosted the antitumor vaccine by eliciting a release
of Th1 cytokines and a stronger antigen-specific cytotoxic T-cell
response.162 Xu et al. reported that a listeria-based tumor vaccine
benefited anti-PD-1 therapy against hepatocellular carcinoma by
skewing macrophage polarization.163

Antibodies
Checkpoint inhibitors, such as nivolumab (Opdivo) and pembro-
lizumab (Keytruda), are monoclonal antibodies. In addition, many
other monoclonal antibodies have been approved for clinical
cancer immunotherapy by the FDA. Rituximab and trastuzumab
are examples of these monoclonal antibodies. Rituximab is used in
B-cell lymphoma by targeting CD20. B lymphoma cells are more
sensitive to macrophages in the presence of rituximab.164 Its
combination with cyclophosphamide induced nearly complete
tumor elimination in resistant bone marrow by activating
macrophages.165 After blocking the CD47-SIRPα axis, rituximab-
induced macrophage phagocytosis was augmented in nongerm-
inal center B diffuse large B-cell lymphoma patients.166 Trastuzu-
mab is an HER2-targeting antibody that has shown promising
efficacy in breast cancer therapy. It has been reported that
antibody-dependent cell phagocytosis mediated by macrophages
is the main cause of the effectiveness of trastuzumab plus CD47
blockade.167 By binding with Fcγ receptors on macrophages,
trastuzumab triggered macrophage phagocytic killing, and this
function was augmented after increasing the expression of Fcγ
receptors on macrophages.168 In addition, trastuzumab resistance
was overcome by shifting macrophages from the M2 to M1
phenotype.169

Adoptive cell therapy
Adoptive cell therapy is also a very promising therapy that induces
tumor regression by transferring specific immune cells to the
tumor-bearing host. These cells may come from the host itself or
some other donors. They are commonly manipulated to possess
better effector functions and proliferate to a sufficient number
in vitro before administration.170 Typical examples include T cells
with engineered chimeric antigen receptors (CAR-Ts) or gene-
modified T-cell receptors (TCR-Ts). In 2006, the adoptive transfer of
TCR-engineered lymphocytes, which recognize an antigen named
MART-1, caused tumor regression in metastatic melanoma
patients.171 In 2010, administration of CAR-T cells against CD19
efficiently eliminated B cells in a patient with follicular
lymphoma.172 However, insufficient infiltration into solid tumors
is a major limitation for these T-cell-based immunotherapies. Local
low-dose irradiation increased T-cell recruitment by inducing M1-
phenotype macrophage differentiation.173 Cytokine release syn-
drome is considered to be closely related to the efficacy of
adoptive cell therapy, but serious cytokine release syndrome may
lead to death. It has been reported that cytokine release syndrome
induced by CAR-T-cell transfer is mediated by macrophages.174

Inhibiting or neutralizing GM-CSF abolished macrophage-derived
cytokines, which released syndrome-related cytokines and
enhanced CAR-T cell functions.175,176 Therefore, taking the response
of macrophages into account may benefit adoptive modified T-cell
therapy. Modified macrophages with the chimeric antigen receptor
(CARMA) have also been tested by Klichinsky et al. The first
generation of chimeric antigen receptors, which combine the scFv
of anti-CD19, anti-mesothelin, or anti-HER2 antibodies with a CD3
intracellular domain, has been constructed. This CARMA displayed a
strong tumoricidal function in preclinical models.177

Small-molecule inhibitors
Because of several advantages, such as oral bioavailability, the
relatively low cost, ease of crossing physiological barriers or access

to intracellular targets, small-molecule drugs are complementary
and synergistic with other immune-oncology therapies.178 Numer-
ous small-molecule inhibitors have been proven to suppress
tumors by targeting macrophage-associated molecules. For
example, IDO is a poor prognosis indicator that is often highly
expressed in macrophages, dendritic cells, and tumor cells. Small-
molecule inhibitors targeting IDO have been tested in clinical trials
to reestablish positive immune responses.179,180 ARG1 is a
cytosolic enzyme that plays a key role in the immunosuppressive
function of TAMs. Compounds inhibiting arginase have shown
potential in tumor suppression.181 RRX-001, a small-molecule
inhibitor, downregulated not only CD47 on cancer cells but also
SIRPα on macrophages and showed hypotoxicity but strong
antitumor activity in clinical trials.182 In addition, small-molecule
inhibitors have great potential in combination with other
oncotherapy strategies. Inhibition of Bcl-2 family members
improved the efficacy of CAR-T therapy in B-cell malignancy.183

PI3K-γ inhibitors, such as IPI-549, overcome immune checkpoint
resistance by reshaping the tumor microenvironment, including
switching macrophage polarization from the M2 to M1 pheno-
type.184 Small-molecule inhibitors targeting CXCR2 on neutrophils
and CCR2 on macrophages improve the chemotherapeutic effects
in pancreatic ductal adenocarcinoma models.185 PLX-3397, a
small-molecule inhibitor of CSF1R, cKIT, and FLT3 has been
demonstrated to decrease tumor burden by reducing M2
macrophages in combination with adoptive cell transfer immu-
notherapy or other small-molecule inhibitors.186,187 FAK is indis-
pensable for the migration and stable protrusion formation of
macrophages. Small-molecule inhibitors against FAK have shown
promising antitumor activity, especially when combined with
chemotherapy and immunotherapy strategies.188

PROSPECT: MACROPHAGES ARE A PROMISING TARGET IN
FUTURE CANCER IMMUNOTHERAPY
To date, great endeavors to boost T cell-directed anticancer
immune responses have been made. As reported, the incidence
of cancerogenesis is low in invertebrates with no T or B cells,
indicating that innate immune cells are of great importance for
preventing the initiation and development of cancer.189–191 In
addition to their supporting role in all kinds of immunotherapies,
macrophages may become a promising target in future cancer
immunotherapy.33,192 Many targets and pharmacological agents
related to macrophages in oncotherapy have been summarized
in recent reviews.128,193 We updated the typical macrophages-
targeting agents that have been registered for cancer-related
clinical trials (excluding projects those are in the status of
terminated, withdrawn, unknown, not yet recruiting) in Table 2.
The potential and promising strategies targeting macrophages
have been categorized into six types based on their objectives in
Fig. 4. There are several advantages to target macrophages in
cancer immunotherapy. Low infiltration is a major barrier for T-
cell-based anticancer therapy, and macrophages account for
~30–50% of infiltrating immune cells in the tumor microenvir-
onment. As mentioned above, circulating monocytes are a major
source of infiltrating macrophages in tumors, and the accessi-
bility of peripheral blood mononuclear cells makes it easy to
operate if a macrophage-based therapy strategy is adopted in
the clinic.
Currently, it is generally believed that cancer cells originate from

endogenous cells in humans. Even if numerous tumor-specific
antigens have been identified, most specific antigens still exist in a
few normal cells. In contrast, not all cancer cells express just one
specific antigen because of tumor heterogeneity. Clearance of
specific antigen-expressing cancer cells may only result in
temporary and limited antitumor efficacy. Nevertheless, as a type
of innate immune cell, macrophages can exert a tumor-suppressive
function without targeting one specific antigen.194,195
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Macrophages are a double-edged sword in the tumor micro-
environment. As a prominent component of tumor stromal cells,
macrophages can gather around blood vessels, induce angiogenesis,
and promote tumor invasion. On the other hand, they could also
phagocytose cancer cells and remodel the tumor microenvironment.

Fortunately, the polarization of macrophages can be repolarized. The
transformation from M2- to M1-phenotype macrophages is sufficient
to cause a tumor-suppressive effect.194–196 Of note, the polarization
of macrophages is independent of T cells, while M1 macrophages
are able to induce Th1 immune responses, and M2 macrophages can

Normal cell Tumor cell Erythrocyte Neutrophil granulocyte Monocyte Tumor-associated macrophage

ITGA4

PD-1/PD-L1、PD-L2 anti-CD47/anti-SIRPα

CAR

CSF-1R inhibitors/corosolic acid/omeprazole/Gpr132 inhibitors/MEK/STAT3 inhibitors/FMDs/antibodies of IL-4, IL-4Ra, IL-13

CTLA-4/B7-1、B7-2

M1 macrophage M2 macrophage

B7-H4 VISTA CD47-SIRPα

IFNγ/CD40 agonists/inhibitors of PI3Kγ, mTOR, DICER/MARCO antibody/TLR agonists/methionine sulfoximine

Anti-VEGF/anti-VEGFR tyrosine kinase inhibitor

CCL2/CCR2

CXCL12/CXCR4

immunotoxin of FRβ/FRβ Anti-scavenger receptor-A immunotoxin bisphosphonates

NK cellT cell B cell

Tim3/Tim-3 blocking antibody

CCL5/CCR5 CSF1/CSF1R 5a/C5a VEGF/VEGFR

Sema3A/Nrp1

IDO/arginase/TGFβ/IL-10/haeme oxygenase

ANG2/TIE2trabectedin/TRAIL-R

Suppressing 
recruitment

Apoptosis

Reducing survival Inhibiting tumor-promoting 
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Removing 
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Inducing repolarization

Modifying effector cells

CAR-M targeting
CD19, HER2, 
mesothelin et al

Inhibitors or antibodies against
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CCL5, CCR5, 
CSF1, CSF1R, 
VEGF, VEGFR, 
ITGA4, CXCR4, 
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ANG2 et al.
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Immunotoxins against scavenger receptor-A or FRβ.

Formation

Inducing M1 polarization: 
IFNγ, CD40 agonists,

inhibitors of PI3Kγ, mTOR, DICER,
TLR agonists of TLR4, 7, 8 or 9, 

methionine sulfoximine,
HDAC inhibitors,

MARCO antibody

Inhibiting M2 polarization: 
CSF1R inhibitors,
corosolic acid,
omeprazole, Gpr132 inhibitors,
MEK/STAT3 inhibitors,
fasting-mimicking diets,
antibodies of IL-4, IL-4Ra, IL-13

Inhibiting angiogenesis:
anti-VEGF/anti-VEGFR,
tyrosine kinase inhibitors

Targeting immunosuppression:
aspirin, inhibitors 

or antibodies of IDO, 
haeme oxygenase, 
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IL-10, PD-L1, 
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MUC1, EGFR et al
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trigger Th2 immune responses.197 This provides an opportunity to
target macrophages in cancer immunotherapy. More importantly,
the direction of macrophages to T or B cells does not rely on the
existence of tumor-specific antigens. While IFN-γ from M1 macro-
phages is an incentive for Th1 responses, TGF-β and IL-10-derived
M2 macrophages cause the generation of Treg cells.32,113,197

Trogocytosis is a process in which a tumor-derived antigen is
transferred to Fcγ receptor-expressing lymphocytes with the help
of certain antibodies. It has been demonstrated that tumor cells
decrease the expression of specific antigens by delivering them
to CAR-T cells or NK cells, leading to fratricide T cells or NK
cells.198,199 Trogocytosis has also been discovered between tumor
cells and macrophages and is partially responsible for tumor
immune escape.200,201 However, Velmurugan et al. reported that
persistent trogocytosis of macrophages eventually leads to the
killing of antibody-opsonized tumor cells. They explained that
these discrepancies might be caused by limited contact time
between two types of cells and the lack of competing
endogenous antibodies under physiological conditions.202 More-
over, macrophages are capable of presenting antigens. Proteins
that have been passed to the plasma membrane by trogocytosis
might be more likely to be processed and presented than
cytosolic proteins.
In addition, as mentioned above, macrophages from different

sources may exert different functions. This offers an opportunity
for more accurately targeted immunotherapy. For example,
CCR2+Ly6C+ inflammatory monocytes can be recruited to
pulmonary metastasis sites by CCL2 secreted by tumor cells and
then differentiate into Ly6C− macrophages that promote metas-
tasis.101 Selectively targeting this group of monocytes may reduce
metastasis without damaging the homeostasis maintaining
functions of residual macrophages.
Macrophages also have advantages in certain types of cancer.

Approximately 20% of nonparenchymal cells in the liver are
macrophages. Macrophages in different locations function differ-
ently. By stimulating adaptive immune responses, they exert
tumoricidal or protumoral and, in general, protumoral func-
tions.203 It has been summarized in a previous review that
targeting pathogenic macrophages is a promising option for
patients with liver disease.204 Moreover, ascites is a common
pathological phenomenon in liver cancer that is often accom-
panied by a poor prognosis. Integrated single-cell RNA sequencing
revealed that lymphocytes in ascites are similar to those in
peripheral blood, while myeloid cells in ascites are more likely to
originate from tumor-infiltrating myeloid cells. This notion was

further confirmed by RNA velocity and phylogenetic trees of
macrophages from various tissues. According to this study,
intratumoral macrophage-based immunotherapy for hepatocellu-
lar carcinoma can not only resolve tumor burden in situ but also
relieve ascites.
Thus, macrophages provide a force to be considered in tumor

immunotherapy. Research on macrophages might open a new
door for oncotherapy. To address various malignancies, more
strategies based on or combined with macrophages need to be
explored in the future.
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