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Peptides encoded by noncoding genes: challenges
and perspectives
Shuo Wang 1, Chuanbin Mao 2 and Shanrong Liu1

In recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel
findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological
and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while
indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and
intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life
that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in
understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as
cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The
challenges and future trends in searching for and studying NCG peptides are also critically discussed.
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INTRODUCTION
The central dogma of molecular biology describes the basic
principles of the transfer of genetic information between
biological macromolecules in cells. Genetic information flows
from genes to proteins, which comprise the material basis of life
and are the main participants in life activities.1,2 Protein-coding
genes make up <3% of the human genome, and only a small
fraction in the remaining 97% of the genome (composed of
noncoding genes, NCGs) is characterized.3 Many NCGs were
previously defined as junk DNA, but they are truly functional
elements.4 The emergent discovery of noncoding RNA returned
NCGs into the focus of life scientists, encouraging them to view
NCGs from a new perspective. Noncoding RNA plays a broad and
important role in regulating gene expression and various life
activities through the formation of RNA–protein complexes5,6 or
through base complementation.7,8 Noncoding RNA is classified
into many categories. Small nuclear RNA has been a recognized
noncoding RNA for a relatively long time. Its main function is to
participate in the processing of mRNA precursors. The RNA
components in splicing bodies such as U1, U2, U4, and U6 are
small nuclear RNAs.9 MiRNAs constitute a class of single-stranded
RNA molecules encoded by endogenous genes, and are ~22
nucleotides in length. They are involved in the regulation of
posttranscriptional gene expression. They can bind to the
untranslated region (UTR) of target gene mRNA from which it
guides either an RNA-induced silencing complex (RISC) to prevent
mRNA translation or AGO proteins to cleave mRNA, to achieve
endogenous gene expression.10,11 CircRNA was first discovered in
viroids, in which the genome is a single-stranded circular RNA
molecule.12 CircRNAs can act as molecular sponges to counteract
the role of miRNAs. CircRNAs can also act as scaffolds for different
molecular interactions.13 Long noncoding RNAs (lncRNAs) are

considered noncoding because they lack obvious long protein-
coding open-reading frames (ORFs), although new evidence
shows that some lncRNAs are truly coded into proteins. LncRNAs
have been proposed to have diverse functions, including
transcriptional regulation, organization of nuclear domains, and
regulation of gene expression.14 Currently, the NCG revolution has
been leveraged to study all living organisms.15,16

Moreover, with the development of technologies such as
ribosome profiling and high-throughput sequencing in addition to
protein database searches for large-scale proteomic analysis, some
novel peptide annotations have been found that do not match
currently annotated protein-coding genes; in contrast, they
correspond to the genes of noncoding RNAs, pseudogenes, UTRs,
etc., which were previously considered to be NCGs.17,18 Recently,
an increasing number of experiments have indicated that NCGs
can indeed be translated,19,20 and that the translation products are
mainly polypeptides or micropeptides.21,22 NCG peptides can be
directly verified by western blotting (WB) using specific antibodies.
In addition, NCG peptides can be combined with epitope tags
such as FLAG, human influenza hemagglutinin (HA), or green
fluorescent protein (GFP) to form fusion proteins. The resultant
fusion proteins can be detected through WB or fluorescence
imaging technology. Mass spectrometry techniques, such as liquid
chromatography with a tandem mass spectrometer, can also
confirm the presence of NCG peptides by analyzing the signals of
the NCG peptides (Fig. 1). These peptides have a wide range of
biological functions. Interestingly, some NCG peptides have
significant tissue-specific distribution patterns and can undertake
finely tuned local regulation in a tissue-specific manner.
In this review, we summarize the structure, action modes, and

biological roles of peptides derived from NCGs (Fig. 2). The NCG-
derived peptides (termed NCG peptides) discovered thus far are
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summarized in Table 1, and are critically discussed in this review.
The appearance of these peptides suggests that a portion of the
genome that encodes proteins or peptides is much larger than
that previously recognized. Finally, we address the biological and
medical significance of NCG peptides and propose future
directions for studying NCG peptides to advance the field. We
believe that a deeper exploration into this subject will explain
some mysteries of life more precisely and in greater detail, and
thus lead to new biomarkers for disease diagnosis and
therapeutics.

Action modes of NCG-derived peptides
NCG peptides are different from traditional proteins in hierarchical
structures. The correct spatial folding of protein structures is the
basis of formal biological function.23 The spatial conformation of
the protein is described with four hierarchical structures. The
primary structure, i.e., the order of the amino acid residues from
the N-terminus to the C-terminus, is determined by the order of
nucleic acid in the corresponding genes. On the basis of the
primary structure, atoms on the peptide chain backbone form
local substructures, known as the secondary structure. Several
consecutive secondary structures can be combined into a
“supersecondary unit”, and a plurality of such units further form
a “structural domain”, which constitutes the tertiary structure.24,25

The structural domain is self-stabilizing and prominent such that
the host proteins can maintain proper biological function.26,27 The
tertiary structure is the spatial arrangement of all the atoms in one
peptide chain. In the traditional sense, a protein is determined by
the formation of a tertiary structure. The spatial arrangement and
functional cooperation of the subunits result in the quaternary
structure.28 The length of most NCG peptides contains fewer than
100 amino acid residues (aa), with the shortest being only 9 aa
long.29 The number of amino acids is the basis for the formation of
complex protein structures. To form even the simplest

transmembrane α-helix (TMH) structure, 30 amino acids are
needed, and unstructured spacer regions between different
structures in the protein are also required.30 Hence, in contrast
to conventional proteins, NCG peptides usually do not form a
complicated structure, but have different modes of action, as
described below. Although some circRNA-derived NCG peptides
are composed of >100 aa, they are much smaller than most
traditional proteins (for example, FBXW7 has 185 aa and β-catenin
has 370 aa). Considering that most circRNAs are derived from
exons, more evidence is needed to determine whether some
circRNAs can be classified as other types of messenger RNA. The
recently discovered circRNA-derived NCG peptides with clear
mechanisms of action tend to function through interactions with
other proteins and their mechanisms that are also discussed below.

NCG peptides function in a sequence-independent or sequence-
dependent manner. Scanning by the 40S–Met-tRNAi complex
(43S complex) is the major process before translation initiation
and involves binding to mRNA.31,32 A part of a polypeptide is
translated from an upstream open-reading frame (uORF) in the
5′UTR and is conserved among species according to phylogenetic
analysis.33 A class of regulatory peptides translated from uORFs
creates a peptide-sequence-independent ambuscade for the 43S
complex, as it seeks a downstream start codon (Fig. 3). Through
this ambuscade, the scanning process is blocked. However, a
sequence-dependent approach is more common. Some NCG
peptides can act as competitive inhibitors through the same
sequence as the proteins with which they are homologous. Many
of the circRNAs are derived from the back-spliced exon of their
maternal genes.34,35 Therefore, different RNA forms of the same
gene share partially repeated sequences that encode polypep-
tides. For example, the SNF2 histone linker PHD RING helicase
(SHPRH)-146aa (Table 1) is a peptide translated from a cirRNA.
Full-length SHPRH, encoded by the maternal gene of Circ-SHPRH,

Fig. 1 Many laboratory techniques support the idea that peptides derived from noncoding genes exist. a Design of antibodies against
NCG peptides and verification by western blot analysis.38 b Mass spectrometry is used to identify specific signals of noncoding gene
peptides.39 c Immunofluorescence images of peptide-FLAG fusion protein (red, NCG-peptide NoBody; DIC, differential interference contrast).75

d Immunofluorescence images showing expression of the FLAG-tagged NCG peptide (green, NCG-peptide CASIMO1; red, actin filaments;
blue, nucleus).98 e Images of the immunolocalization of the NCG peptides (red, NCG-peptide miPEP171b; green, autofluorescence).113
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is an E3 ligase. It promotes ubiquitinated proteasome-mediated
degradation of proliferating cell nuclear antigen (PCNA), which
leads to inhibited cell proliferation.36,37 Another E3 ligase,
denticleless E3 ubiquitin protein ligase (DTL), induces the
ubiquitination of SHPRH. Two sites (K1562 and K1572) of DTL-
initiated ubiquitination in SHPRH are also found in SHPRH-146aa.
Therefore, SHPRH-146aa acts as a competitive inhibitor to
suppress the ubiquitination of SHPRH, which results in the
accumulation of SHPRH and the subsequent degradation of
PCNA.38 The peptide translated from the circRNA of FBXW7 was
named FBXW7-185aa (Table 1). FBXW7-185aa induces the
accumulation of FBXW7α and the degradation of C-myc through
the same mechanism as that used by SHPRH-146aa.39 Circ-
0004194 originates from the β-catenin gene locus and is also
known as circβ-catenin. Circ-0004194 can produce a a β-catenin
isoform comprising 370 aa, termed β-catenin-370aa. β-catenin-
370aa serves as an effective competitor by binding GSK3β to
protect full-length β-catenin from being phosphorylated and
subsequently degraded (Fig. 4).40

NCG peptides function by binding other proteins to change their
conformation. Myoregulin (MLN) (Table 1) is translated from
LINC00948, and the small open-reading frame (sORF) encoding
MLN is located on exon 3 in the parent gene of LINC00948. The
secondary structure of MLN contains a C-terminal transmembrane
alpha helix. The output of computational molecular modeling
demonstrates that the α-helix interacts directly with the groove
jointly shaped by the M2, M6, and M9 spirals in sarco-endoplasmic
reticulum Ca2+-ATPase (SERCA) to modulate intracellular calcium

metabolism.41 In addition to the biochemical data, cryo-electron
microscopy has revealed the action mode of fungal arginine
attenuator peptide (AAP) (Table 1) directly from a structural
perspective. AAP is encoded by an uORF and can lead to stalled
translation.42 Cryo-electron microscopy has shown that AAP
interacts directly with ribosome tunnel components, including
RNAs and proteins, which are sandwiched between residues L4
and L17 in the large subunit.43,44 Mutations in AAP residues that
interact directly with the ribosome can abolish the stalling effect.
In addition, the C-terminus of the AAP forms a helix, which may
contribute to the conformational change that accommodates the
peptidyl transferase center (PTC). Through the direct interaction of
secondary structures, AAP changes the conformation of the PTC,
causing translational stalling. NCG peptides can act as domain-
specific adapters in addition to inducers of conformation changes
of other proteins. The Drosophila MRE29 gene is considered a NCG
and is also known as pri (polished rice).45 In fact, pri encodes a
11–32 aa polypeptide (Table 1).46 At the 13–16-day stage of
embryonic development, pri peptides are expressed and act as a
specific adapter that mediates the specific binding of E3 ligase
Ubr3 to the N-terminus of Shavenbaby (Svb). Consequently, the N-
terminus of the ubiquitinated Svb is truncated by a proteasome. In
addition, two folded regions in the C-terminus prevent Svb from
complete degradation.47 Pri peptides contribute to proper Svb
processing and convert the suppressed Svb into an active form.

NCG peptides act as signaling pathway molecules. In humans, the
mitochondrial genome is a circular and closed genetic system that
includes encoding genes of 13 proteins and NCGs of rRNAs and

Fig. 2 The biological functions of NCG peptides. The expression of noncoding genes is achieved through central rules. After transcription,
alternative splicing results in a variety of transcripts, some of which are translated into peptides. These peptides play important roles in
modulating muscle formation and performance, suppressing metabolic reprogramming, controlling epidermal morphogenesis, promoting
pre-miRNA transcription, regulating mRNA translation, integrating aspects of the stress response, facilitating gastrulation formation,
enhancing metabolic homeostasis, and inducing or suppressing tumorigenesis and/or tumor progression.
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tRNAs.48,49 However, previously unknown transcripts of nuclear
and small RNAs were recently discovered in the mitochondria.20,50

Furthermore, there is a sORF in mitochondrial 12S rRNA that can
be translated into a peptide of 16 aa, named MOTS-c (Table 1).
MOTS-c inhibits the folate cycle, leading to accumulating AICAR
(5-aminoimidazole-4-carboxamide ribonucleotide), which can
activate the AMPK pathway. Through this signaling pathway,
MOTS-c has an extensive impact on cellular and organismal
metabolic homeostasis.51 Toddler RNA, also known as Apela/
Elabela/Ende, which was initially considered a noncoding RNA,
encodes a peptide (Table 1). Toddler peptide activates APJ/Apelin
signaling by driving the internalization of G protein-coupled
Apelin receptors and promotes cell movement during zebrafish
gastrulation.52

In contrast to being the primary inducers of biological activity,
these structurally simple peptides encoded by NCGs have more of
a fine-tuning effect through many different mechanisms. Because
of the particularities of the NCG-peptide origins, some action
modes can be said to be unique, such as those of competitive
inhibitors. The finely tuned regulation of these peptides enables
the living body to perform various functions more accurately and
stably.

Regulation of NCG-peptide expression
Peptides derived from NCGs are also regulated at all levels from
translation to protein modification. Since many NCGs are noncoding
RNAs, the regulation of their transcription is not discussed. At the
translational level, abundant methylation modifications in circRNAs
can enhance the level of their translation activitiy. Under some
conditions, the m6A marks abundant near the start codon indicate
circRNA methylation. YTHDF3 recognizes the methylated modifica-
tion and promotes translation in an eIF4G2-associated cap-indepen-
dent manner. In addition, circRNA translation is increased under heat-
shock conditions.53 Similar mechanisms in the regulation of mRNA
translation have been discovered, providing a model for selective
mRNA translation during stress.54,55 Poly(A) or poly(T) sequences after
a stop codon can inhibit circRNA translation, suggesting that NCG
peptides are different from traditional proteins at the translational
level.56

At the level of protein modification, PLN and SLN, which have
very similars to that of MLN and distinct tissue-specific distribution
patterns, were originally discovered as micropeptides.57,58 PLN
functions through the physical formation of combinations, and its
function is regulated by phosphorylation and dephosphorylation
in vivo. Dephosphorylated PLN mainly exists in the form of a

Table 1. NCG peptides summary

NCG-peptide name Corresponding NCG or
transcript

Functions References

SHPRH-146aa Circ-SHPRH Down-regulation of the ubiquitination of SHPRH, and suppression
of glioma tumorigenesis

38

FBXW7-185aa circRNA-FBXW7 Down-regulation of the ubiquitination of FBXW7α, and suppression
of glioma tumorigenesis

39

β-catenin-370aa circβ-catenin Protecting full-length β-catenin from being phosphorylated and
consequently degraded, and promoting liver cancer growth and
metastasis

40

Myoregulin (MLN) LINC00948 Modulation of the intracellular calcium handling and muscle
performance

41

Fungal arginine attenuator
peptide (AAP)

5′ uORF in the mRNA of CPS-A
small subunit

Stalling translation 42

pri peptide Drosophila's MRE29 gene Temporal control over epidermal morphogenesis 46

MOTS-c Mitochondrial 12 S rRNA Cellular and organismal metabolic homeostasis 51

Toddler peptide Toddler RNA Activation of APJ/Apelin signaling and promotion of cell movement
during zebrafish gastrulation

52

Minion/myomixer transcript of Gm7325 Promotion of the fusion of mononuclear myoblasts 65,66

MPM/Mtln/MOXI 1500011K16Rik/ LINC00116 Enhancing mitochondrial respiratory activity and fatty acid
β-Oxidation, as well as promoting myogenic differentiation.

69,77,78

DWORF LOC100507537 Enhancement of SERCA activity in muscle 74

NoBody LINC01420/LOC550643 Inhibition of nonsense-mediated decay 75

Nameless peptide 1 uORF in the 5'UTR of mRNA
of CHOP

Inhibition of the translation of CHOP protein in calm 83

Nameless peptide 2 uORF in IFRD1 mRNA Cause of IFRD1 mRNA instability in resting cells 86

Nameless peptide 3 uORF in mRNA of BiP Assistance of the translation of Bip during stress 29

SPAR peptide LINC00961 Suppression of mTORC1 activation in response to amino acid
stimulation

89

HOXB-AS3 peptide lncRNA HOXB-AS3 Inhibition of the formation of PKM2 and suppressing tumor
formation

96

circPPP1R12A-73aa circPPP1R12A Activating the Hippo-YAP signaling pathway and enhancing the
tumorigenesis and metastasis of colon cancer

97

CASIMO1 peptide noncoding RNA (NR_029453) Promotion of the cell proliferation and migration in breast cancer 98

PINT87aa circPINTexon2 Inhibiting several oncogenes and suppressing glioblastoma 106

miPEP165a pri-miR165a Promotion of the transcription of pre-miR165a 115

miPEP171b pri-miR171b Promotion of the transcription of pre-miR171b 115

STORM linc00689 Competition for 7SL RNA 126
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monomer, inhibiting cardiac function by inhibiting SERCA, which
is located in the sarcoplasmic reticulum (SR) membrane, and
pumps Ca2+ from the cytoplasm back through the SR during
muscle relaxation. After phosphorylation, PLN forms pentamers,
which reduce the inhibitory effect on SERCA.59 This dynamic
balance plays a key role in the enhancement of myocardial
function by β-adrenergic agonists (Fig. 5). In addition, a specific
PLN mutant (R9C), in which residue 9 is a mutated, inhibits
phosphorylation of wild-type PLN and therefore chronically
inhibits SERCA. Consequently, chronic inhibition causes dilated
cardiomyopathy and premature death.60 In another case, that of
the R14del mutant, the mutant PLN appears in the sarcolemma by
mistake, where it interacts with Na/K-ATPase, resulting in cardiac
remodeling, despite enhanced contractility.61 Orderly regulation
indicates that the polypeptides derived from NCGs are inherent
participants in life activities.

Biological functions of NCG peptides
Although the number of coding genes in a eukaryotic organism is
not significantly larger than that in a prokaryotic organism, the
physiological and pathological activities in the eukaryotic organ-
ism are more complex than those in the prokaryotic organism.
NCGs are thought to play a pivotal part in establishing this
difference between eukaryotes and prokaryotes. In recent years,
continuous research has demonstrated that NCG-derived peptides
have considerable biological functions covering various fields. The
manner in which NCG peptides establish the differences between
eukaryotes and prokaryotes is discussed in greater detail below.

NCG peptides facilitate embryonic development. Embryonic devel-
opment requires that genes are expressed in an orderly manner.62

This process is called genetic programming and involves multi-
faceted regulation.63 Peptides derived from NCGs can regulate this
process temporally. For example, the above-mentioned pri
peptide shows tissue- and time-specific expression during
embryogenesis, and its knockout is lethal to embryonic develop-
ment.46 Expressed Svb remains in a state of inhibition until pri

peptide expression is initiated.64 Therefore, the pri peptide
provides accurate temporal control over epidermal morphogen-
esis. Similarly, the transcript of Gm7325 in human beings is
annotated as a long noncoding RNA (lncRNA), and in fact, it can be
translated into an 84-amino acid polypeptide Minion,65 also
named Myomixer (Table 1).66 The expression of Myomixer/Minion
is upregulated during the differentiation of C2C12 myoblasts, and
downregulated following myoblast fusion. In terms of a mechan-
ism of action, Minion together with Myomaker promotes the
fusion of mononuclear myoblasts, which is essential for skeletal
muscle formation during embryogenesis. Although Myomixer/
Minion does not affect the expression levels of the Myomaker,
Myomaker cannot induce myocyte fusion in the absence of
Myomixer. Combined with the time specificity of expression,
Myomixer/Minion functions as a Myomaker switch that acts
synergistically at a specific time point.67,68 Another micropeptide,
MPM (micropeptide in mitochondria), is also produced by lncRNA
1500011K16Rik (in mice) or LINC00116 (in humans). MPM, also
known as mitoregulin (Mtln), promotes myogenic differentiation
and has an inducive effect on muscle growth and regeneration. In
terms of mechanisms, the ectopic expression of genes that
enhance mitochondrial respiration can rescue the phenotype
induced by MPM interference, thus providing evidence that the
effect of MPM in muscle tissue development and postinjury
regeneration is related to the role of MPM in mitochondrial
respiration.69 In addition, functioning as a signaling pathway
molecule, Toddler peptide (also known as Apela) (Table 1)
activates APJ/Apelin signaling to promote gastrulation move-
ments,52 and regulates mesodermal cell migration downstream of
Nodal signaling in zebrafish.70 Loss-of-function assays using
CRISPR/Cas9 suggest that Apela also has an extenive impact on
mouse embryo development.71

NCG peptides regulate physiological activities. A group of poly-
peptides derived from NCGs is reported to finely adjust the normal
activities of muscle. The transcript of the peptide DWORF (Table 1)
is annotated as a lncRNA in both mice and humans. DWORF is

Fig. 3 Scanning PICs that participate in the translation of uORFs can be reinitiated at the ORF in the coding region.
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mainly distributed in the heart and interacts with SERCA, similarly
to the SLN, PLN, MLN, and SCL peptides. It should be noted that
the MLN peptide is expressed in all skeletal muscles,72 and the SCL
peptide is expressed in somatic muscles and the postembryonic
heart.73 DWORF can alleviate the inhibitory effects of these four
peptides on SERCA in vitro. In vivo, DWORF, and PLN together
maintain the dynamic regulation of cardiomyocyte contractility by
competing with each other, thereby enhancing the heart
pumping function during changes in the external environment.74

This function exemplifies a typical case of the finely tuned
regulation by small molecules, namely, NGC peptides. NGC
peptides are also important at the level of cell biology.
LINC01420/LOC550643 RNA is thought of a noncoding RNA, but
in fact, it encodes a nonannotated polypeptide referred to as P-
body dissociating polypeptide (NoBody) (Table 1). This peptide is
negatively correlated with the number of P-bodies. In addition,
NoBody can directly contact the enhancer of decapping 4 protein
(EDC4) to induce the degradation of the substrate during
nonsense-mediated decay (NMD).75 NCG peptides can also affect
cellular metabolism. As described above, MOTS-c has a significant
impact on the expression of metabolism- and inflammation-
associated genes. MOTS-c treatment prevents diet-induced
obesity and age- or high-fat diet-associated insulin resistance in
mice. MPM/Mtln extensively fine-tunes the mitochondrial mem-
brane potential, Ca2+ metabolism capacity, and ROS levels, and it
enhances the stability and assembly of functional complexes as a
molecular chaperone on the mitochondrial membrane, thereby
strengthening respiratory efficiency.76 Mtln also cooperates with
Cyb5r3 to affect lipid metabolism. The weakening of complex I in

the respiratory supercomplex in Mtln-knockout mice may also
contribute to the changes in Cyb5r3-related lipid metabolism that
are caused by a lack of Mtln.77 MOXI, the homologous peptide of
MPM/Mtln in mice, regulates mitochondrial oxidation and energy
homeostasis by enhancing fatty acid β-oxidation, thereby
improving exercise tolerance.78 Two proteins that interact directly
with Mtln have been found through IP assays (in refs. 77,78);
however, the full scope of the phenotypic changes cannot be
explained solely by changes in the expression of Mtln led by two
proteins. Further exploration of the mechanism of MPM/Mtln/
MOXI action is likely to reveal other action mechanisms, which
further illustrates the importance of NCG-peptide studies.

NCG peptides participate in the stress response and promote tissue
repair. When cells are exposed to obvious environmental
changes or macromolecular damages, they can undergo a series
of adaptive changes, which have an impact on gene expression to
enhance the ability of damage resistance and viability under
adverse conditions.79,80 A set of regulatory systems contribute to
changes in gene expression,81,82 and now NCG peptides can be
added to this set. A sequence-conserved uORF in the 5′UTR of the
mRNA of C/EBP-homologous protein (CHOP) can be translated
into peptide of 31 aa or 34 aa (Table 1), which inhibits the
translation of the downstream ORF of the CHOP protein under
stress-free conditions.83 However, under stress conditions, phos-
phorylation of eIF2 reduces the level of uORF translation, thereby
relieving the inhibitory effect. Thus, the CHOP expression level is
relatively increased.84 Although two uORFs are involved in the
regulation of activating transcription factor 4 (ATF4), similar

Fig. 4 Action mode of circRNA-derived peptides. CircRNA-derived peptides downregulate the ubiquitination of the full-length protein
derived from the same maternal gene as a competitive inhibitor, which results in the accumulation of full-length proteins and the consequent
effects.
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mechanisms are also involved. The ribosome scanning from the 5′
UTR of the mRNA first encounters uORF1 and then uORF2. The two
uORFs are far from each other, therefore, both can be translated.
However, due to the close proximity of uORF2 to the main
downstream ATF4 ORF, the ribosome cannot restore the ability to
reinitiation in time, and as a consequence, the start codon of the
main downstream ATF4 ORF is skipped and AFTF4 is not
translated. Under stress conditions, ribosome reinitiation is even
less efficient: after the translation of uORF1, the ribosomes cannot
reassemble at the start codon of uORF2, and consequently, uORF2
is skipped. In contrast, some ribosomes reassemble before
encountering the main ATF4 ORF, resulting in ATF4 expression.85

To analyze the effect of uORFs, the starting site and distance to
the main ORF should be taken into consideration. In addition,
inhibition of uORF translation abolishes the UPF1-dependent
nonsense-mediated mRNA decay (NMD), improving the stability of
IFRD1 mRNA under stress conditions.86 In addition, an uORF in the
5′UTR of the mRNA of binding immunoglobulin protein (BiP) can
be translated into a peptide of 9 aa (Table 1) in a leucine-initiated
and eIF2A-dependent nontraditional manner of translation during
the stress response, promoting Bip translation during stress.29 In
fact, many translation initiation sites of uORFs in the 5′UTR are
noncanonical and may represent other action mechanisms of
uORFs in an integrated stress response (ISR) (Fig. 6).87,88

NCG-derived peptides participate in stress in a variety of ways
to protect against external damage. Once damage occurs, other
NCG peptides can promote tissue repair through different
mechanisms. SPAR, which is translated from LINC00961, stabilizes
the v-ATPase–Ragulator–Rags supercomplex to suppress mTORC1
activation in response to amino acid stimulation. When the muscle
is damaged by the external environmental stimuli, the expression
of SPAR peptide (Table 1) is suppressed, upregulating the
mTORC1 signaling pathway, which promotes damage repair and

tissue regeneration.89 The aforementioned Minion/Myomixer
protein is undetectable in an adult mouse without injury but
becomes significantly upregulated during tissue regeneration.
Mechanically, Minion/Myomixer and Myomaker together induce
cell fusion to promote muscle regeneration.65,66

NCG peptides modulate tumor development. Thus far, the
mechanism of tumorigenesis has not been fully elucidated.
However, an increasing number of mechanisms have been
explored,90,91 including those involved in the role of NGC
peptides. Reversion of pyruvate kinase M1 (PKM1) to PKM2 is
common in cancers that benefits aerobic glycolysis and creates an
advantage for tumorigenesis.92,93 HnRNP A1 is a kind of splicing
factor that inhibits the inclusion of exon 9 in pyruvate kinase M,
which promotes the formation of PKM2.94,95 LncRNA HOXB-AS3
can be translated into a peptide of 53 aa (Table 1) that can bind
directly to the RGG domain in hnRNP A1, promoting hnRNP A1 to
bind to exon 9 of PKM mRNA and thus inhibit the formation of
PKM2 to induce a tumor-suppression effect.96 Thus, HOXB-AS3
peptides, in lieu of lncRNA HOXB-AS3, play a competitive role to
inhibit tumor formation, providing another example of NCG-
peptide function through direct binding to another protein (Fig.
7). In addition, circPPP1R12A promotes the proliferation, migra-
tion, and invasion of cancer cells to enhance tumorigenesis and
the metastasis of colon cancer by activating the Hippo-YAP
signaling pathway.97 In addition, SHPRH-146aa and FBXW7-185aa
both act as tumor-suppressor genes and can be used as
independent prognostic markers.38,39 β-catenin-370aa acts as an
oncogene to contribute to the activation of the Wnt pathway and
consequently promotes liver cancer growth and metastasis by
protecting full-length β-catenin from GSK3β-mediated degrada-
tion.40 The transcript of cancer associated with small integral
membrane open-reading frame 1 (termed CASIMO1) is considered

Fig. 5 Regulation of NCG peptides. The β-adrenergic agonist phosphorylates PLN monomers to form a pentamer, thereby suppressing the
inhibition of PLN on SERCA and promoting myocardial contractility.
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to have no coding function, but actually encodes an 84 aa integral
membrane microprotein (Table 1). The CASIMO1 peptide can
promote cell proliferation through the downstream SQLE/MAPK/
ERK signaling pathway and induce an increase in the proportion of
cells in the proliferative phase. In addition, CASIMO1 also affects
the migration capacity of tumor cell lines by affecting the
cytoskeleton.98 Pseudogenes are protein-coding genes, and loss
of selection pressure causes them to undergo deleterious
mutations, resulting in tissue degeneration and their eventual
transition into genetic fossils.99,100 However, among the 11
pseudogenes of Nanog, NANOGP8 is expressed in multiple cancer
cell lines and tissues,101 where it plays an important role in tumor
development.102

Pathogenicity and the potential of NCG peptides in target therapy
The pathogenesis of a large number of diseases is still unclear, and
concurrently, their treatment is not satisfactory. NCG peptides may
support a new perspective from which to view the underlying
mechanism of diseases. Taking the above-mentioned CASIMO1
peptide, circPPP1R12A-73aa and β-catenin-370aa as examples,
aberrant expression of human endogenous NCG peptides could
cause diseases, including cancer. NCG peptides derived from
pathogenic microorganisms can also promote the development of
diseases. The E7 protein encoded by HPV virus-derived circE7 can
promote the growth and tumorigenic ability of CaSki cervical
carcinoma cells, while circE7 by itself cannot.103

In addition to providing a new perspective on pathogenicity,
NCG peptides are also promising targets for targeted therapy.
Some achievements have been made in this regard. MOTS-c
peptide treatment can inhibit osteolysis in a mouse model, which
has potential in the therapy of osteolysis and other inflammation
disorders.104 MOTS-c peptide treatment can also increase the
ability of cold adaptation upon acute cold exposure and provide a
potentially therapeutic drug for cold stress-related diseases.105 In

Fig. 6 uORF can participate in the ISR reaction in three ways to facilitate the expression of genes that alleviate stress damage or trigger
apoptosis. In the absence of stress, the uORF is translated to inhibit the expression of a coding-region protein by means of ribosome stalling
(1) and promoting UPF1-dependent mRNA decay (2). Upon stress, uORF expression is downregulated, and inhibition is reduced, resulting in
increased protein expression in the coding region. In addition, stress upregulates eIF2A levels,140 and leads to the constitutive translation of
uORF, which promotes translation of the coding-region proteins (3).

Fig. 7 HOXB-AS3 peptides, instead of HOXB-AS3 lncRNA, sup-
press tumor development. The HOXB-AS3 ORF, 5′UTR-ORF, and 5′
UTR-ORFmut constructs were generated to study the effect of the
HOXB-AS3 peptide and lncRNA on cancer progression. Both the
HOXB-AS3 ORF and 5′UTR-ORF constructs expressed the HOXB-AS3
peptide. The 5′UTR-ORFmut contains the mutated HOXB-AS3 start
codon and therefore did not encode the HOXB-AS3 peptide. All of
these constructs were transfected into CRC cells, which rarely
express HOXB-AS3 peptides. The NC group is a negative control,
which was not transfected by constructs. a Tumor cell xenograft
assay showing that the in vivo growth of tumor cells in the NC and
5′UTR-ORFmut groups was better than it was in the ORF and 5′UTR-
ORF groups. b Metastatic tumor model by tail vein injection
showing that tumor metastasis is also promoted in the HOXB-AS3
ORF and 5′UTR-ORF group. c Histological analysis of the pulmonary
metastasis lesion shown in b.
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addition, the role of MPM in mitochondrial respiration and muscle
formation makes MPM a potential target for muscular dystrophy
therapy.69 In terms of tumor-targeted therapy, NCG peptides, such
as the SHPRH-146aa, FBXW7-185aa, and HOXB-AS3 peptides, can
serve as tumor-targeting therapeutic drugs. The same is true for
PINT87aa. Linc-PINT simultaneously generates a circular-form
circPINTexon2, and circPINTexon2 produces an 87-amino acid
peptide, PINT87aa. PINT87aa directly binds to polymerase-
associated factor complex (PAF1c) and inhibits several oncogenes
downstream of PAF1c, including CEBP1, cyclin D1, C-myc, Sox2,
etc. In biological function, PINT87aa overexpression can suppress
glioblastoma in vitro and in vivo.106 An ideal targeted therapeutic
drug should effectively kill or inhibit tumor cells while not
damaging normal tissue cells. These antitumor NCG peptides are
naturally targeted therapeutic drugs with significantly reduced
cytotoxicity, compared with the cytotoxicity induced by traditional
drugs, as and substantially reduced immunogenicity. Furthermore,
a relatively smaller molecular weight makes them more likely than
traditional tumor suppressive proteins to be developed into drugs.
With the development of applicable materials, these peptides can
be packaged by suitable carriers and delivered into tumor cells,
where they can specifically inhibit tumor cells.107 NCG peptides
also have great potential in tumor immunotherapy. The ideal
tumor-specific antigens (TSAs) enable T lymphocytes to correctly
recognize tumor cells, and the ideal tumor-specific antigen is a key
factor in the field of immunotherapy. In a genome-wide search for
TSAs, NCG peptides were found to be main sources of targetable
TSAs. Tumor vaccines developed according to NCG peptides
enable mice to resist tumors, suggesting that NCG peptides can
be used as therapeutic targets in tumor immunotherapy,
particularly in tumor vaccines.108,109

Challenges and future trends
NCG peptides challenge the known features of coding genes. The
originally discovered NCGs were found to act in the form of
noncoding transcripts rather than through translation into
peptides or proteins.110–112 However, later, some NCGs were
found to have coding functions and thus should have been
defined as coding genes. For example, pri-miRNAs, the primary
transcripts of miRNAs and defined as NCGs, can encode peptide
products.113 Pri-miRNAs have structures similar to traditional
mRNAs, including a 5′-cap and a 3′-poly(A) tail.114 Taking pri-
miR165a and pri-miR171b as NCG examples, they can be
translated into peptides (Table 1) to promote the transcription
of themselves. Further analysis shows that both are “ancient
miRNAs”,115 which are conserved across many species, not “recent
miRNAs”, which are more species-specific.116 Together with
circRNA-derived SHPRH-146aa and FBWX7-185aa, the correspond-
ing genes for mitochondrial genome-derived MOTS-c, lncRNA-
derived MLN and DWORF, etc., were previously defined as NCGs
but are capable of coding peptides. The discovery of these
properties challenges previous opinions generated in NCG
research and the known features of coding genes.
In addition, some NCGs have dual roles. Under some conditions,

they function as a NCG, but in other conditions, they encode
peptides. For example, in Drosophila melanogaster, Oscar plays its
role through translation into proteins in an embryonic stage,117,118

and acts as a noncoding RNA during early oogenesis.119 In
mammals, the SRA gene, which is regarded as an NCG, plays an
important role in coactivating nuclear receptors120,121 and
enhancing transcriptional factors.122 A new isoform, SRA1, has
been found to act both as a NCG and a coding gene, and the two
gene states coexist in the same cells.123 For this type of NCG, many
questions remain unanswered. For example, under what circum-
stances do NCGs function as NCGs. and when are they translatable
into functional peptides? What factors regulate the balance of the
coding and noncoding forms? These questions are also applicable
to the gene of pri, which is only expressed at a specific stage

during embryonic development. For example, the Minion/
Myomixer peptide is absent in uninjured muscle, but present in
injured muscle.68 In another example, the CASIMO1 peptide is
upregulated in tumors and contributes to tumorigenesis, but is
downregulated in healthy tissues.98 Therefore, it is of paramount
importance to understand the mechanisms and factors by which
the NCGs switch between coding and noncoding forms and the
conditions under which NCG-peptide expression is promoted or
inhibited. Thus, gaining such an understanding is a great
challenge and should also be a future area of focus.

Both the exact number and regulation mechanism remain unclear.
The traditionally defined NCGs constitute >90% of the whole
genome. However, the exact number of potentially coding NCGs
remains unclear. Two approaches are mainly used in the search for
peptides encoded by NCGs. One is to predict the coding potential
of NCGs by bioinformatics analysis followed by experimental
confirmation,124 and another is to characterize the peptides by
mass spectrometry and then relate them back to genome DNA.125

In the first approach, bioinformatics analysis helps to target-
specific genes for further confirmation and is the basis for
consequent experiments. However, many puzzles confound the
success of this approach. For instance, what are the characteristics
of NCGs that can encode peptides? When the transcripts bind to a
ribosome, is it translated into a functional peptide or is translation
randomly undertaken because of probabilistic binding? In addition,
a unanimous standard is demanded to facilitate the research by
this approach. In the second approach, because the NCG-peptide
products are more tissue-specific or state-specific than are
traditional functional proteins, NCG peptides are more easily
affected by extracellular stimuli. Thus, exploring the expression of
NCGs only in an unstressed state or in specific cell lines may result
in many peptides being undiscovered. For example, the translation
of linc00689-derived micropeptide, STORM (stress- and TNF-α-
activated ORF micropeptide) (Table 1), depends on eIF4E phos-
phorylation after TNF-α activates mammalian Ste20-like kinase
(MST1).126 The discovery of this peptide is missed if only mass
spectrometry is used to map the protein profiles in a resting state.
At the same time, with an in-depth study of the coding mechanism,
it is very likely to discover new mechanisms and new models of
peptide translation, thus perfecting and enriching the central law,
such as the non-AUG-initiated translation mechanism.127,128

Furthermore, the non-AUG-initiated translation mechanism of
repeat polypeptides in some NCGs can directly cause dis-
eases.129,130 In addition, the loop structure of circRNAs enables
them to reverse the sequence of the start codon and stop codon in
the gene sequence, which greatly enrich the number of ORFs.34

Therefore, the development of bioinformatic analysis standards
and the establishment of experimental verification systems will also
be a future challenge in this field. We need to explore the peptides
in a boarder context to identify and characterize them.

Hidden functions and applications need to be uncovered. Gene
expression is regulated at multiple levels. Compared with the
regulation of mRNA levels, the regulation of protein levels does
not involve changes in protein quantity. NCG peptides interact
directly with functional proteins and thus adapt to short-term
extracellular effects, and the regulation of the mRNA level is more
biased to long-term adaption. Therefore, the regulation of NCG
peptides in gene expression needs to be further explored. NCG
peptides vary in length and are flexible in functional mechanisms.
The mRNA corresponds to functional proteins. It remains unknown
whether we can group peptides with the same action modes, such
as MLN, DWORF, and Nobody. These NCG peptides function by
affecting structural proteins, and thus, we believe that they can be
named nonstructural functional peptides. Moreover, whether this
mode of action is a universal mechanism for NCG peptides is
currently unknown. Hence, research on the action modes and
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mechanisms of these peptides will also be a challenge in the
future. There are significantly more NCGs than coding genes.131

With the continuous exploration of new mechanisms and new
models, an increasing number of peptides will be discovered. The
number of such peptides is possibly much larger than that of the
proteins or peptide molecules we have discovered thus far. On the
one hand, NCG peptides provide a new key to the door to open
the mystery of life. On the other hand, they may become
therapeutic targets for disease treatment. Because of their time- or
tissue-specificity, NCG-encoded peptides are also time-specific
and expressed in specific disease states. Hence, NCG peptides
provide potential targets for disease interventions. However, these
efforts have not yet begun. With the in-depth study of NCG
peptides, our understanding, in either organism development or
disease intervention, including tumor treatment, will surely enter a
new era.

Potential applications of NCG peptides in real-world studies
A real-word study (RWS) supplements the data obtained from
traditional clinical trials.132,133 NCG-peptide research is still in its
infancy, and medical products of NCG peptides have not yet been
used in RWS research. More efforts should be made to achieve
clinical translation of NCG peptides. Since nonintervention is a
feature of RWS, experimental intervention is indispensable in the
search for NCG peptides. How to explore the role of NCG peptides
in the natural state will continue to be a challenge.

CONCLUDING REMARKS
An increasing number of NCGs have been verified to have coding
functions,134,135 providing an in-depth understanding of life
activities and complementing the existing library of protein or
peptide molecules. Epigenetics and alternative splicing have
indicated that the complicated human genome is even more
intricate than originally thought.136,137 The emergence of non-
coding RNA opens up a new world for the regulation of protein
expression, greatly enriching the complexity of life activities.138,139

NCGs can also encode peptides, which undoubtedly adds a new
direction for a more in-depth interpretation of the inherent laws of
life. As more NCG peptides are discovered, new mechanisms and
key molecules are likely to be accordingly revealed. The success in
this effort with help us not only to explain the regulation process
of many physiological and pathological phenomena but also to
bring new ideas that promote the understanding and intervention
of diseases.
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