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Integrative analysis of DNA methylation and gene expression
identified cervical cancer-specific diagnostic biomarkers
Wanxue Xu1, Mengyao Xu1, Longlong Wang1,2, Wei Zhou1, Rong Xiang1, Yi Shi 1,2, Yunshan Zhang3 and Yongjun Piao 1,2

Cervical cancer is the leading cause of death among women with cancer worldwide. Here, we performed an integrative analysis of
Illumina HumanMethylation450K and RNA-seq data from TCGA to identify cervical cancer-specific DNA methylation markers. We
first identified differentially methylated and expressed genes and examined the correlation between DNA methylation and gene
expression. The DNA methylation profiles of 12 types of cancers, including cervical cancer, were used to generate a candidate set,
and machine-learning techniques were adopted to define the final cervical cancer-specific markers in the candidate set. Then, we
assessed the protein levels of marker genes by immunohistochemistry by using tissue arrays containing 93 human cervical
squamous cell carcinoma samples and cancer-adjacent normal tissues. Promoter methylation was negatively correlated with the
local regulation of gene expression. In the distant regulation of gene expression, the methylation of hypermethylated genes was
more likely to be negatively correlated with gene expression, while the methylation of hypomethylated genes was more likely to be
positively correlated with gene expression. Moreover, we identified four cervical cancer-specific methylation markers, cg07211381
(RAB3C), cg12205729 (GABRA2), cg20708961 (ZNF257), and cg26490054 (SLC5A8), with 96.2% sensitivity and 95.2% specificity by
using the tenfold cross-validation of TCGA data. The four markers could distinguish tumors from normal tissues with a 94.2, 100,
100, and 100% AUC in four independent validation sets from the GEO database. Overall, our study demonstrates the potential use
of methylation markers in cervical cancer diagnosis and may boost the development of new epigenetic therapies.
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INTRODUCTION
Cervical cancer is one of the most frequently diagnosed cancers
and the major leading cause of cancer death in women, with
>500,000 cases and 300,000 deaths each year worldwide.1

Although the death rate from cervical cancer has decreased over
the past few decades in several populations in North America,
Europe, Australia, and New Zealand, the mortality of cervical cancer
has increased rapidly in populations in Eastern Europe, Central
Asia, and Africa due to the lack of effective screening and low rates
of vaccination.2 Most cervical cancers are caused by human
papillomavirus (HPV), but immunosuppression, smoking, preg-
nancy history, and long-term use of oral contraceptives have also
been reported as risk factors for cervical cancer.3 New strategies,
such as next-generation sequencing, are providing unbiased
opportunities to uncover the genetic etiology of cervical carcino-
genesis. Genetic4–6 and epigenetic7–9 variations may alter the
expression of oncogenes or tumor-suppressor genes in cervical
cancer.10 The 5-year survival rate of cervical cancer patients
detected at an early stage is 92%.2 However, the survival rate
decreases dramatically if the cancer cells spread to surrounding
tissues or other parts of the body. Therefore, the early detection of
cervical cancer is an urgent need for physicians to improve both
treatment and outcomes and to enhance early intervention and
consultation for patients to improve their quality of life.
The Pap smear, also called the Pap test, is an exam that has

been widely used in the clinic for screening for the presence of

precancerous or cancerous cells on the cervix. However, a Pap
smear shows a low sensitivity and a high false-negative rate.11 The
HPV test is also a recommended screening tool for cervical cancer
that can not only detect the presence of HPV but also determine
the subtype. Although a number of studies12–15 have shown that
HPV screening is more sensitive than the Pap test in the detection
of high-grade cervical carcinoma, HPV testing is not capable of
distinguishing the true triggers and linked factors to provide an
accurate prediction, as not all subtypes of HPV infection could lead
to cervical cancer. Molecular markers have been identified to
improve the capability for risk prediction, early detection, and
prognosis prediction of cervical cancer. Squamous cell carcinoma
antigen (SCC-Ag),16 cancer antigen 125 (CA-125),17 cancer antigen
19-9 (CA19-9),18 and cytokeratin 19 fragment antigen 21-1 (CYFRA
21-1)19,20 are clinically available tumor markers for the diagnosis
and prognosis of cervical cancer. Although an increasing number
of markers, such as keratin 4 (KRT4), keratin 17 (KRT17), CD28,
PTEN, miR-29a, miR-21, and HPV E4, are being investigated
continuously,21–23 the actual usage rate of these markers in clinical
practice is very low. Thus, finding new tumor markers to improve
both the sensitivity and specificity of cervical cancer diagnosis is of
great importance.
DNA methylation is a major epigenetic mechanism that involves

the transfer of a methyl group to the C5 carbon residues (5mC) of
cytosines that is mediated by a family of DNA methyltrans-
ferases.24 DNA methylation plays important roles in various
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biological processes,25 including the regulation of gene
expression,26 genomic imprinting,27 cell differentiation,28

development,29 and inflammation.30 Aberrant methylation
has been reported to be associated with various diseases,
including cancers.31 Most of the CpGs in CpG islands are
generally unmethylated in normal cells. Hypermethylation of
those CpGs is one of the commonly observed alterations in
tumor cells, which may lead to the silencing of tumor-
suppressor genes.32 For example, p14ARF promoters have
been found to be hypermethylated in colon cancer.33 The
BRCA1 and TMS1 promoters were observed to be hypermethy-
lated in breast cancer cells,34 and DAPK and RASSF1A were
hypermethylated in lung cancer.35 Several studies36,37 have
reported that methylation markers are more sensitive than
protein markers, and thus, cancer-specific methylation markers
have great potential to be used to accurately diagnose cancers
in clinics.
In this study, we integrated Illumina HumanMethylation450K

methylation data and RNA-seq gene expression data from The
Cancer Genome Atlas (TCGA) to identify cervical cancer-specific
DNA methylation markers. By using a systemic screening method
and a machine-learning approach, we identified four cervical
cancer-specific methylation markers with a sensitivity of 96.2%
and a specificity of 95.2% with the tenfold cross-validation of
TCGA data. The four markers could distinguish tumor from normal
tissues with 94.2, 100, 100, and 100% area under the curve (AUC)

values in four independent validation sets from the Gene
Expression Omnibus (GEO) database.

RESULTS
Unsupervised clustering analysis of DNA methylation in cervical
cancer
Of 307 TCGA cervical tumor samples, 178 samples (Table S1) with
well-reported clinical information were used for the clustering
analysis. Consistent with previous studies,1—consensus clustering
of 591 of the most variable DNA methylation probes identified
three clusters that were designated as CIMP-high (CpG island
methylator phenotype), CIMP-intermediate, and CIMP-low (Fig. 1a).
Twenty (11%), 69 (39%), and 89 (50%) samples were clustered as
CIMP-high, CIMP-intermediate, and CIMP-low, respectively. The
average methylation levels among the most variable CpGs
differed significantly (p-value <0.0001) between clusters, with
the CIMP-high group showing the highest methylation level and
the CIMP-low group showing the lowest level of methylation (Fig. 1b).
Three clinical features, including histology (p-value= 3.794e–09),
HPV status (p-value= 0.007229), and HPV species (p-value=
7.954e–06), were found to be associated across the three clusters
(Fig. 1a). Among the tumor samples, there were 31 (17%)
adenocarcinomas, 144 (81%) squamous cell carcinomas, and 3
(2%) adenosquamous carcinomas. In terms of HPV infection, there
were 169 (95%) HPV-infected tumors, including 120 infected by
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Fig. 1 The DNA methylation landscape of cervical carcinoma. a Unsupervised clustering of methylation levels in cervical cancer. Samples are
presented in columns, and the 591 most variable CpG loci (mean methylation level β < 0.05 in normal samples and a standard deviation σ >
0.20 in tumor samples) are presented in rows. The three identified clusters were denoted as CIMP-high (n= 20, CpG island methylator
phenotype), CIMP-intermediate (n= 69), and CIMP-low (n= 89). Primary tumor features significantly associated across the three clusters
(Fisher’s exact test p-value <0.001) are indicated at the top of the heat map. b Differences (p-value < 0.0001) in the methylation levels of the
three consensus clusters. The CIMP-high group exhibited significant hypermethylation compared with the other groups. c–e The sample
distributions in terms of HPV status, histology, and HPV clade in the three clusters are presented in c–e, respectively
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A9 species, 45 infected by A7 species, and 9 (5%) tumors that were
not infected by HPV. Most of the adenocarcinomas were enriched
in the CIMP-high cluster, while the CIMP-low and CIMP-
intermediate groups had more squamous cell carcinomas
(Fig. 1c). Adenosquamous cancers were only found in the CIMP-
low group. All patients in the CIMP-high and CIMP-intermediate
clusters were infected by human papillomavirus (HPV), while
patients without HPV infection were distributed within the CIMP-
low group (Fig. 1d). HPV A7 types were enriched in the CIMP-low
cluster, and most samples in the CIMP-high group were infected
by HPV A9 (Fig. 1e).

Differential methylation and expression analysis
A total of 46,040 CpGs were differentially methylated between the
113 normal and 307 tumor samples. There were 29,730
hypermethylated and 16,235 hypomethylated CpGs in cervical
carcinoma. We then examined the distribution of the differentially
methylated CpGs (DMCs) in various functional genomic regions,
such as promoters, CpG islands (CGIs), and CGI promoters (Fig. 2a).
In assessing the whole genome, 65% of CpGs were hypermethy-
lated, and 35% of CpGs were hypomethylated. Increased
hypermethylation was observed in promoters, CGIs, and CGI
promoters (7851, 17,515, and 4539, respectively). By considering

the CpG content and the neighboring context (Fig. 2b), the
hypermethylation rate of CpG islands was shown to be the highest
(95%), followed by that of N-Shore (72%), S-Shore (70%), N-Shelf
(27%), and S-Shelf (23%). Examining the sites surrounding genes
revealed that the hypomethylation rate was high in the 3′ UTR,
while the hypermethylation rate was high in the regions near
transcription start sites (TSS), such as TSS200, TSS1500, 5′ UTRs,
first exons, and gene bodies. Then, we mapped the DMCs to
genes, identifying 3939 hypermethylated genes and 5197
hypomethylated genes. The number of hypomethylated genes
was higher than that of hypermethylated genes in the whole
genome, while an increased number of hypermethylated genes
was observed in the functional genomic area (Fig. 2d). Differential
expression analysis was performed between the 69 normal and
304 tumor samples. A total of 4949 differentially expressed genes
(DEGs) were detected, with 3096 upregulated genes and 1853
downregulated genes.

Impact of DNA methylation on gene regulation in cervical cancer
The integrative analysis of DNA methylation and gene expression
was conducted by determining the intersection between the
differentially methylated genes (DMGs) and DEGs. A number of
studies have shown that promoter methylation leads to the
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Fig. 2 The number of hypo- and hypermethylated CpGs and genes. a Distribution of DMCs in different genomic locations, including
promoters (1500 bp upstream of TSSs), CpG islands (CGI), promoters within CpG islands (CGI promoter), and the whole genomic region (all).
b Distribution of DMCs in different regions related to CGIs, including CpG islands, CpG shores, and CpG shelves. c Distribution of DMCs across
gene regions (TSS1500, TSS200, 5′ UTRs, first exons, gene bodies, and 3′ UTRs). d Distribution of DEGs in different genomic locations
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inactivation of tumor-suppressor genes, and thus is an important
mechanism in the development of cancer.33–35 We noted that the
DMGs were defined based on their promoter methylation status. A
gene was considered to be differentially methylated if there was
at least one DMC in its promoter region. The genes were classified
into four groups based on the intersection between the DMGs and
DEGs: hypermethylated–upregulated (hyper–up), hypermethy
lated–downregulated (hyper–down), hypomethylated–upregu
lated (hypo–up), and hypomethylated–downregulated (hypo–
down) genes (Fig. 3a). Of the 2096 hypermethylated genes, 123
genes were upregulated and 601 genes were downregulated.
Among the 1800 hypomethylated genes, 165 genes were
upregulated and 203 genes were downregulated (Fig. 3b). For
the downstream marker identification process, we focused on
hyper–down genes, since the transcriptional silencing of tumor-
suppressor genes by the aberrant hypermethylation of promoters
is one of the most frequently observed alterations in cancers. GO
analysis of the hyper–down genes revealed a significant enrich-
ment of genes involved in chemical synaptic transmission,
homophilic cell adhesion via plasma membrane adhesion
molecules, nervous system development, the glutamate receptor
signaling pathway, and potassium ion transmembrane transport
(Fig. 3c). KEGG analysis demonstrated that five pathways were
significantly enriched: neuroactive ligand–receptor interaction,
circadian entrainment, calcium signaling, cell adhesion molecule,
and retrograde endocannabinoid signaling (Fig. 3c, Table S2).
Similar pathways were enriched in gene expression studies of
various cancer types.38,39 Importantly, circadian rhythm disruption
has been reported to be associated with several pathological
conditions, including cancer progression.40,41 Both calcium
signaling and cell adhesion molecule pathways are cancer-
related pathways that may lead to cell proliferation or apoptosis.
Correlation analysis has been widely used to examine the

relationship between methylation and gene expression.42,43 We
examined the impact of DNA methylation on the local (the
expression of a gene regulated by the promoter methylation of
that gene) and distant regulation (the expression of a gene
regulated by the promoter methylation of other genes) of gene
expression by conducting Pearson correlation analysis. Of the
93,262 CpG-gene pairs analyzed in local regulation, 323 (10%)
genes exhibited a significant positive correlation, 2973 (88%)
genes showed a significant negative correlation, and 83 (2%)
genes revealed both positive and negative correlations (Fig. 3d).
We noted that a gene can be associated with CpGs both positively
and negatively, since one gene can contain multiple CpGs in the
promoter region. A high percentage of negative correlation was
also observed in the correlation analysis of DMGs, DEGs, and
differentially expressed and methylated genes (Fig. 3d). We then
investigated the effect of DNA methylation on the distant
regulation of gene expression. The Pearson correlation was
calculated between 1092 CpGs in differentially expressed and
methylated genes and 4949 DEGs. The promoter methylation of
hypermethylated genes was more likely to be negatively
correlated with gene expression, while the promoter methylation
of hypomethylated genes was more likely to be positively
correlated with gene expression (Fig. 3e).

Identification and validation of cervical cancer-specific
methylation markers
To determine reliable cervical cancer-specific methylation signa-
tures, we stringently screened the markers by using TCGA
methylation data from other cancers and machine-learning
techniques (Fig. 4a). Of the 2582 hypermethylated CpGs located
in the promoter regions of the 601 downregulated genes, we
excluded 2194 DMCs identified in 11 other types of cancers,
including bladder cancer (BLCA), endometrioid cancer (UCEC),
thyroid cancer (THCA), pancreatic cancer (PAAD), lung adenocar-
cinoma (LUAD), liver cancer (LIHC), clear-cell carcinoma (KIRC),

head and neck cancer (HNSC), esophageal cancer (ESCA), colon
cancer (COAD), and breast cancer (BRCA). We then performed
hierarchical clustering of the remaining 388 CpGs from samples
from TCGA, GSE38266, GSE46306, and GSE68339 (Fig. 4b). The
normal samples were clustered together and well distinguished
among the TCGA samples and other tumor samples in the
validation sets. A hybrid feature selection approach based on
information gain and sequential backward feature selection (SBFS)
was adopted for further filtering of the candidate markers. Finally,
we identified four cervical cancer-specific markers, cg07211381,
cg12205729, cg20708961, and cg26490054. These CpGs were
mapped to four different genes: RAB3C (cg07211381), GABRA2
(cg12205729), ZNF257 (cg20708961), and SLC5A8 (cg26490054).
The distribution of the methylation levels of the four markers in
cervical tumors, normal tissues, and other cancers clearly showed
that the four identified CpGs were cervical cancer-specific markers
and were not differentially methylated in other cancers (Fig. 4d).
We then built a logistic regression model by using the TCGA

samples as a training set, and tenfold cross-validation was
performed to achieve reliable predictive measurement. In the
tenfold cross-validation, the data were randomly divided into ten
different sets. Nine sets were used for training, and the remaining
set was used for validation. The area under the curve (AUC) was
0.989, indicating that the four markers could achieve excellent
performance in distinguishing TCGA cervical cancer and normal
samples (Fig. 4c). To validate the markers in the independent sets,
we tested the performance of the model on GSE38266, GSE46306,
GSE68339_121, and GSE68339_149. Note that we chose the
normal samples in GSE46306 as a control for GSE68339 and
GSE38266, since these data only have tumor samples. We
summarized the classification performance for the validation sets
in terms of the true-positive (TP) rate, the false-positive (FP) rate,
precision, the F-measure, and the AUC (Table 1a–d). The four
markers could perfectly classify tumors from controls for
GSE38266, GSE68339_121, and GSE68339_149. In contrast, the
true-positive rate for GSE46306 was relatively lower than that for
the other datasets due to the limited number (n= 6) of tumor
samples, which made it difficult to determine accurate decision
boundaries.
Next, we compared the four markers with known cervical

cancer-specific markers in terms of classification accuracy and AUC
(Table 2). We trained the logistic regression models by using 11
CpGs mapped to NOL4 and LHFPL4 according to Wang et al.44, 36
CpGs mapped to GHSR, SST, and ZIC1 according to Verlaat et al.8,
60 CpGs mapped to SOX1, PAX1, LMX1A, NKX6-1, WT1, and
ONECUT1 according to Lai et al.45, and 37 CpGs mapped to DCC,
EPB41L3, and SOX1 according to Clarke et al.46 (Table S3). The
classification performances for the different marker sets were
comparable, and the four markers identified in this study could
achieve better performance for most validation datasets.

GABRA2, ZNF257, and SLC5A8 are weakly expressed in human
CSCC
To further investigate the expression of the four newly identified
hypermethylated cervical cancer-specific markers in human CSCC
specimens, we assessed the protein levels of GABRA2, ZNF257,
SLC5A8, and RAB3C by immunohistochemistry (IHC) using tissue
arrays containing 93 human CSCC samples and paired cancer-
adjacent normal tissues. We quantified IHC staining in CSCC
specimens with a scoring scale (H-score) that combined the
staining intensity and the percentage of positive cells. We found
significantly lower levels of staining for GABRA2, ZNF257, and
SLC5A8 in CSCC cells when compared with that in adjacent
normal cells, whereas the level of RAB3C showed no difference
between CSCC and normal cells (Fig. 5). These results strongly
suggested that the hypermethylation of GABRA2, ZNF257, and
SLC5A8 was correlated with the decreased expression of these
genes in human CSCC cells, confirming that GABRA2, ZNF257, and
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Fig. 3 Integrative analysis of DNA methylation and gene expression. a Scatter plot of mean methylation difference versus log2 expression
change. Each point represents a CpG-gene pair. b Venn diagrams summarizing the intersection between hypermethylated genes and DEGs
(top) and between hypomethylated genes and DEGs (bottom). A gene was considered to be differentially methylated if there was at least one
DMC in its promoter region. c Representative gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enriched in hyper–down genes. The functional annotation analysis was conducted by using DAVID, and the top five biological processes and
pathways are reported with their p-values and Benjamini–Hochberg values. d Correlation between DNA methylation and gene expression
(local regulation). Pearson’s correlation coefficient was calculated for all genes, DEGs, DMGs, and differentially expressed and methylated
genes. The cutoffs for a significant correlation were jγ| >0.3 and an adjusted p-value < 0.05. e Correlation between DNA methylation and gene
expression (distant regulation). The Pearson correlation was calculated between 1092 CpGs in differentially expressed and methylated genes
and 4949 DEGs
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SLC5A8 could be new diagnostic markers for human CSCC. We
noted that the validation result for RAB3C was not consistent with
that of the TCGA dataset, and further examination of methylation
status and the mRNA expression levels of RAB3C is needed.

DISCUSSION
In this study, we analyzed DNA methylation and gene expression
profiles in cervical cancer samples from TCGA. Unsupervised
clustering analysis of DNA methylation profiles identified three

methylation subtypes of cervical cancer, including CIMP-high,
CIMP-intermediate, and CIMP-low. CIMP was initially identified in
colorectal cancer and has been reported to be associated with
poor prognosis in different types of cancer, such as gastric cancer
and hepatocellular carcinoma.47 However, our survival analysis
results (Fig. S1) indicated that CIMP was not associated with
cervical cancer prognosis (p-value= 0.75). This is reasonable
because most of the samples in the CIMP-high group were
adenocarcinoma, and there is no evidence that adenocarcinoma
results in poorer prognosis compared with other histological

Fig. 4 Identification of cervical cancer-specific biomarkers. a The workflow used to identify cervical cancer-specific methylation markers (GDC:
Genomic Data Commons; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma). b Hierarchical clustering of the 388
candidate CpGs in samples from TCGA, GSE38266, GSE46306, and GSE68339. c Receiver-operating characteristic (ROC) curve and AUC values
for TCGA data with tenfold cross-validation. d The distribution of the methylation levels for the four final selected markers in TCGA data of
cervical tumors, normal tissues, and other cancers
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subtypes. The correlation analysis results revealed that promoter
methylation was negatively correlated with the local regulation of
gene expression. This observation is consistent with previous
studies showing that promoter hypermethylation is associated
with transcriptional silencing of genes. Interestingly, a negative
correlation between promoter methylation and distant gene
expression was observed in hypermethylated genes, while a
positive correlation was found in hypomethylated genes. The
detailed mechanism of the distant regulation of gene expression
remains poorly understood, and further investigation is needed.
Feature selection is a data preprocessing technique that has

been widely used in many bioinformatics applications.48–50 Here,
we modeled marker discovery as a problem of selecting the best

feature subset for the classification of cervical tumors and normal
tissues. Choosing a reliable feature subset is not an easy task due
to the high dimensionality of Illumina HumanMethylation450K
data. It is impractical to use wrappers for marker discovery in DNA
methylation studies because the computational cost is too
expensive to test all possible combinations of 450-K CpGs.
Applying filters to select markers is another challenge, since filters
may lead to locally optimum sets but not the best discriminative
subset, which may make it impossible to find diagnostic markers
with high sensitivity and specificity. Therefore, we designed a
hybrid feature selection schema based on information gain and
SBFS to select reliable methylation markers. The results indicated
that the proposed hybrid method performed extremely well for
identifying methylation markers in cervical cancer.
We finally identified four methylation markers, cg07211381

(RAB3C), cg12205729 (GABRA2), cg20708961 (ZNF257), and
cg26490054 (SLC5A8). By using these four markers, we achieved
96.2% sensitivity and 95.2% specificity in the tenfold cross-
validation of TCGA data. Moreover, we obtained 94.2, 100, 100,
and 100% AUCs for four independent validation sets from the GEO
database. One of the marker genes, SLC5A8, a tumor-suppressor
gene, was previously found to be hypermethylated in colon
neoplasia,51 and the downregulation of SLC5A8 caused by
aberrant DNA methylation was observed in breast cancer cells.52

The remaining three genes, RAB3C, GABRA2, and ZNF257, have
not been reported to be associated with cancers, and further
investigation of their biological functions is needed.
In summary, DNA methylation is a major epigenetic mechanism

that plays a crucial role in carcinogenesis. We identified four
cervical cancer-specific methylation markers, including
cg07211381 (RAB3C), cg12205729 (GABRA2), cg20708961
(ZNF257), and cg26490054 (SLC5A8), and the significantly
decreased expression of GABRA2, ZNF257, and SLC5A8 in CSCC
was further confirmed in human CSCC tissues by IHC. The
experimental results indicated that these markers have extremely
high sensitivity and specificity in distinguishing cervical tumors
and normal tissues. Further biological validation and clinical trials
are needed to evaluate the clinical significance of these
methylation markers. Furthermore, we believe that our study
can shed light on the cellular and biological mechanisms of
cervical cancer development and oncogenesis and help to
improve early detection and early intervention for cancers in the
clinic, especially for slow-growing but easily metastasized cancers
such as cervical cancer.

Table 1. (a) TP rate, FP rate, precision, F-measure, and AUC of logistic
regression on GSE38266. (b) TP rate, FP rate, precision, F-measure, and
AUC of logistic regression on GSE46306. (c) TP rate, FP rate, precision,
F-measure, and AUC of logistic regression on GSE68339_121. (d) TP
rate, FP rate, precision, F-measure, and AUC of logistic regression on
GSE68339_149

TP rate FP rate Precision F-measure AUC

(a)

Tumor 1 0 1 1 1

Normal 1 0 1 1 1

Average 1 0 1 1 1

(b)

Tumor 0.500 0 1 0.667 0.942

Normal 1 0.500 0.870 0.930 0.942

Average 0.885 0.385 0.900 0.869 0.942

(c)

Tumor 1 0 1 1 1

Normal 1 0 1 1 1

Average 1 0 1 1 1

(d)

Tumor 1 0 1 1 1

Normal 1 0 1 1 1

Average 1 0 1 1 1

The last row shows the weighted average of the performance

Table 2. (a) Comparison of AUCs of previously published cervical cancer-specific methylation markers for predicting tumor and normal tissues. (b)
Comparison of classification accuracies of previously published cervical cancer-specific methylation markers for predicting tumor and normal tissues

TCGA GSE46306 GSE38266_42 GSE68339_121 GSE68339_149

(a)

Wang et al. 0.977 0.758 0.969 0.978 0.980

Verlaat et al. 0.982 1 0.901 1 0.995

Lai et al. 0.978 1 0.572 0.987 1

Clarke et al. 0.967 0.295 0.337 0.454 0.472

This study 0.989 0.942 1 1 1

(b)

Wang et al. 0.945 0.885 0.887 0.922 0.893

Verlaat et al. 0.948 0.962 0.839 0.986 0.982

Lai et al. 0.936 1 0.613 0.979 0.994

Clarke et al. 0.929 0.231 0.435 0.816 0.846

This study 0.962 0.885 1 1 1
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MATERIALS AND METHODS
Data preparation
Illumina HumanMethylation450K array data from 307 cervical
tumors and 3 associated normal tissues were obtained from TCGA,
and the methylation levels were quantified as beta values (β),
which are the ratio of the intensities of methylated and
unmethylated alleles. We extracted HumanMethylation450K array
data from 110 normal samples from 11 other cancer projects by

randomly selecting ten samples from each project, as described in
ref. 1 The 11 cancer types included BLCA, UCEC, THCA, PAAD,
LUAD, LIHC, KIRC, HNSC, ESCA, COAD, and BRCA. The methylation
profiles of 113 normal samples were finally used as controls for
differential methylation analysis. The probes were annotated by
using the Bioconductor package with the human genome
assembly GRCh37 (hg19). In addition, four Illumina 450K methyla-
tion datasets were obtained from the GEO database. GSE3826653

Fig. 5 GABRA2, SLC5A8, and ZNF257 are weakly expressed in human cervical squamous cell carcinoma (CSCC). IHC staining of the indicated
proteins in a human CSCC tissue array containing 93 intact cancer tissues and paired normal adjacent tissues. Representative images are
shown in the left panels. Magnified images are shown in red boxes. The H-score-based quantification results are shown in the right panels.
**p < 0.01, ***p < 0.001, Student’s t test
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includes the methylation data from 21 HPV-positive and 21 HPV-
negative tumors, GSE4630637 contains data from 20 normal
cervical samples (HPV-negative) and 6 cervical cancer tissues
(HPV-positive), and GSE6833954 contains methylation profiles from
a discovery cohort of 149 cervical cancer patients (GSE68339_149)
and a validation cohort of 121 cancer patients (GSE68339_121).
RNA-seq expression profiles from cervical cancers were also
obtained from TCGA. Raw read counts from 304 tumors and 69
normal tissues matching the methylation data were included in
the study.

Consensus clustering analysis
Unsupervised consensus clustering of the 591 most variable
probes in CpG island (CGI) promoter regions was performed
according to the K-means algorithm and Euclidean distance. To
determine the most variable CpGs, we selected the CpGs in 307
cervical cancer samples with a standard deviation for the β value
that was larger than 0.2 and removed the CpG if the average
methylation level in 113 normal tissues was larger than 0.05, as
described in previous studies.55,56 The Consensus Cluster Plus R
package57 was used for the clustering analysis. Fisher’s exact test
was used to test the significance of the clinical features across the
clusters, and one-way ANOVA was performed to compare the
methylation levels of CpGs among different clusters.

Differential methylation analysis
Differential methylation analysis was performed between 113
normal and 307 tumor samples. Probes containing SNPs, probes in
chromosome X, and probes with more than 10% missing values
were excluded from the analysis (Additional File 1). The missing
values of the selected CpGs were imputed by using the imputeTS
R package. The Wilcoxon rank-sum test was used to determine the
differentially methylated CpGs (DMCs), and the p-values were
adjusted by using the FDR method. DMCs were reported if the
mean methylation difference was >0.2 with an FDR of 5%.

Differential expression analysis and DAVID analysis
Among the 113 normal and 307 tumor samples used for the
methylation analysis, 69 normal and 304 tumor samples with RNA-
seq expression profiles were included in the differential expression
analysis. The trimmed mean of M values (TMM) method was used
to normalize the raw RNA-seq read counts, and the negative
binomial generalized log-linear model was used to fit the
normalized counts. Differentially expressed genes (DEGs) were
reported if the log-fold change was >1.5 and the adjusted p-value
was smaller than 0.05. Functional annotation clustering analysis
was performed by using the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID).58 The top five gene
ontology (GO) biological processes and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were reported with their p-
values and Benjamini–Hochberg59 values.

Correlation analysis between CpGs and genes
To examine the impact of DNA methylation on the local regulation
of gene expression, the Pearson correlation (r) was calculated
between the β values of CpGs located in promoter regions and the
normalized expression values of the corresponding genes. Note
that a gene can be linked via multiple CpGs in its promoter, and
thus, the correlation was calculated for each CpG-gene pair. jrj
>0.3 and an adjusted p-value <0.05 were set as the cutoffs for a
significant correlation.60 To investigate the distant regulation of
gene expression, r was calculated between the β values of CpGs of
differentially methylated and expressed genes and the normalized
expression values of differentially expressed genes.

Hybrid feature selection
Feature selection is a preprocessing technique in machine
learning used to reduce the dimensionality of data. The goal of

feature selection is to identify the most informative subset of
features that leads to better learning performance. Feature
selection approaches can be broadly divided into three categories:
filter, wrapper, and hybrid.61 In filter methods, the features are
ranked by a score calculated from the statistical measures, and a
cutoff value is provided to determine whether a feature should be
selected. Wrapper methods generate different combinations of
features and evaluate them by using a machine-learning
algorithm. Hybrid methods first eliminate some features by using
filters and then apply wrappers to determine the final subset. The
hybrid approach not only takes advantage of the computational
efficiency of filters but can also achieve comparable accuracy to
that of wrappers.
To identify reliable methylation markers of cervical cancer, we

viewed marker discovery as a problem of identifying a feature
(CpG) subset that can most precisely discriminate cervical tumors
and normal tissues. We designed a hybrid feature selection
schema based on information gain and sequential backward
feature selection (SBFS). First, the information gain of all candidate
CpGs was calculated as follows:

IG ¼ H Xð Þ þ HðXjYÞ

where H(X) denotes the entropy of the CpG X and H(X/Y) indicates
the entropy of the CpG X after observing class Y. All the CpGs were
then sorted in descending order according to their information
gain, and a threshold was established to remove irrelevant CpGs. If
the information gain of a CpG was >0.3, the CpG was selected for
further processing; if not, the CpG was eliminated. Next, different
combinations of CpGs were generated by using SBFS, and a
logistic regression model was used to evaluate the combinations.
The subset with the highest classification accuracy was selected as
the final subset.

Immunohistochemistry
Consecutive sections from three human cervical squamous cell
carcinoma tissue arrays containing 93 intact cervical carcinoma
tissues and paired normal adjacent cervical tissues were
purchased from Shanghai Outdo Biotech Co., Ltd. (OD-CT-
RpUtr03-004, OD-CT-RpUtr03-005, and OD-CT-RpUtr03-006). The
sections were stained with anti-GABRA2 antibody (Thermo-Fisher,
#PA5-26305) at a 1:100 dilution, anti-ZNF257 antibody (Thermo-
Fisher, #PA5-36012) at a 1:100 dilution, anti-SLC5A8 antibody
(Proteintech, #21433-1-AP) at a 1:100 dilution, and anti-RAB3C
antibody (Proteintech, #10788-1-AP) at a 1:200 dilution. After
washing, the sections were incubated with biotin-conjugated
secondary antibodies and subsequently with streptavidin–HRP.
The sections were finally visualized by incubation with 3,3′-
diaminobenzidine (DAB) substrate. Images were obtained with the
Mantra System (PerkinElmer, Massachusetts, USA) with identical
exposure times. The H-score was used for quantifying the protein
levels of GABRA2, ZNF257, SLC5A8, and RAB3C in normal and
tumor tissues, and this score was calculated by multiplying the
staining area (scored as the percentage of differentially stained
area) and the staining intensity (weak, moderate, and strong were
scored as 1, 2, and 3 based on color density). Student’s t test was
performed for the statistical analysis.
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