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Targeted therapeutic options and future perspectives
for HER2-positive breast cancer
Jiani Wang1 and Binghe Xu1,2

Over the past 2 decades, there has been an extraordinary progress in the regimens developed for the treatment of human
epidermal growth factor receptor 2 (HER2)-positive breast cancer. Trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab
emtansine (T-DM1) are commonly recommended anti-HER2 target agents by the U.S. Food and Drug Administration. This review
summarizes the most significant and updated research on clinical scenarios related to HER2-positive breast cancer management in
order to revise the guidelines of everyday clinical practices. In this article, we present the data on anti-HER2 clinical research of
neoadjuvant, adjuvant, and metastatic studies from the past 2 decades. We also highlight some of the promising strategies that
should be critically considered. Lastly, this review lists some of the ongoing clinical trials, findings of which may soon be available.
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INTRODUCTION
Breast cancer is a heterogeneous disease, which can be divided
into several subtypes with diverse clinical characteristics, respec-
tive sensitivity to therapy, and different prognosis.1,2 Human
epidermal growth factor receptor 2 (HER2) is normally over-
expressed in 20–25% of breast cancers worldwide.3 Previous
studies have established HER2 as an effective therapeutic target
for the treatment of breast cancer.4 HER2 oncogene has been
shown to play an important role in the growth and progression of
breast cancer.5,6 Since regular updates on the clinical mechanisms
and management of HER2-positive breast cancer are essential,
renewed clinical practice strategies could give readers a deep
insight into the potential agents and establish the framework for
our daily clinical treatment.3,7 In this review, we summarize
relevant information and enormous amount of data gathered
from basic and clinical research over the past 20 years. We also
highlight current clinical development that should not be over-
looked. Finally, we also explore the evidence base derived from
the most relevant clinical trials, which may become a part of future
therapeutic options.

EXPRESSION OF HER2 AND BREAST CANCER BIOLOGY
Breast cancer is the most prevalent type of malignancy in females
and its risk is common, irrespective of the racial and ethnic origin
of patients.8 Recent reports reveal that, with increased incidence,
breast cancer attributes to 25% of malignancies diagnosed
annually and it is the leading cause of mortality among females,
worldwide.9 As per the routine immunohistochemical (IHC)
parameters for clinic pathologic management, breast cancers are
classified into four molecular subtypes10,11 as luminal A (ER- and/
or PR-positive/HER2-negative/low Ki-67), luminal B (ER- and/or PR-

positive/HER2-negative/high Ki-67), HER2-positive luminal B (ER-
and/or PR-positive/HER2 overexpression/any Ki-67), non-luminal
HER2-positive (ER and PR absent/HER2 overexpression), and triple
negative (ER and PR absent/HER2-negative).12

The HER2 oncogenes (HER2, HER2/neu, c-erbB-2) are located on
chromosome-1713 and were first discovered in 1984 by Weinberg
and colleagues.14 The main function of HER2 oncogene is to
encode transmembrane receptor tyrosine kinase.15,16 As com-
pared with HER2-negative tumors, HER2-positive breast cancer is
aggressive subtype that demonstrates unique epidemiological,
clinical, and prognostic differences with poor response to
standard chemotherapy regimens.17 The HER2 gene amplification
in the breast cancer is closely related to tumor-cell multiplication
and invasion, resulting in focal progression and distant metas-
tases.18,19 The amplification of HER2 genes is associated with the
proliferation and progression of certain aggressive breast cells,
which results from signal transduction mediated by the activation
of PI3K/AKT and Ras/Raf/MEK/MAPK pathways,19 causing adverse
biological characteristics and clinical outcomes. The human
epidermal growth factor (Erb) family consist of four different
receptors: EGFR (ErbB1/HER1), ErbB2 (HER2/Neu), ErbB3 (HER3),
and ERbB4 (HER4) (see Fig. 1).15,20 Heterodimers of HER2 are more
stable than other receptor non-HER2 combinations. In absence of
a ligand, the HER2 proteins are capable of dimerizing with other
family member, such as HER1, HER3, or HER4.21 HER2 acts as an
important invasive biomarker with prognostic significance in
advanced disease and positive-lymph node metastases.22,23

Overexpression of HER2 has been associated with adverse survival
outcome in breast cancer.14 HER2 receptor expression is also
related to high tumor grade mitotic count and positive-lymph
node metastases.24,25 The HER2 gene amplification and protein
overexpression is discussed in a review of 107 studies consisting
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of 39,730 patients, which elucidate an overall 22.2% of HER2-
positive rate and a mean relative risk (RR) of 2.74 for overall
survival (OS) in the anti-HER2-targeted therapy.24 HER2 gene
amplification has been confirmed as an independent adverse
prognostic factor with significance on all other prognostic
variables.26,27

HER2-positive breast cancer may result in resistance to non-
anthracycline and non-paclitaxel regimens.28 In addition, HER2-
positive patients have a lower response rate to endocrine
therapy.29 HER2-targeted therapies have extremely improved
survival outcomes for HER2-positive breast cancer patients.22

HER2 TESTING TECHNIQUES
In clinical practice, the diagnosis of HER2-positive breast cancer is
done as per “standard of practice” guidelines for the management
and evaluation of breast cancers.30,31 In this article, the protocol
for identification of HER2 in breast tumors and peripheral blood is
summarized.32 The best method to determine HER2/neu status in
breast cancer will continue to be discussed for years to come.33

Keeping in mind the strengths and limitations of the slide-based
assays, such as IHC, fluorescence in situ hybridization (FISH),34 and
chromogenic in situ hybridization (CISH) that are currently used, a
series of morphology-driven and molecular-based techniques
have been designed to detect HER2 overexpression and
amplification status in breast cancer (see summary Table 1).35–37

Immunohistochemistry
IHC staining is the most commonly used slide-based techniques
for initial testing of HER2 status in newly diagnosed breast cancer
patients. However unlike the conventional IHC assays, it is a
quantitative evaluation as HER2 protein is expressed in breast
epithelial cells.28 At present, U.S. Food and Drug Administration
(U.S. FDA) has authorized two kits, Dako Hercep Test™ (Dako
Corporation, Glostrup, Denmark) and Ventana Pathway™ (Ventana
Medical Systems, Tucson, AZ) for making a strategic decision in
determining whether the patients should undertake anti-HER2
therapy.37 IHC assays have been considered as the primary
determining test for HER2 status and nearly 80% of initially
diagnosed breast cancers patients in US had undertaken it.38,39 It
was essential to establish a standardized IHC procedure and
scoring system to provide a meaningful interpretation of a HER2
immunostaining.40

Standardized IHC assay has the following advantages41:
common pathologic routine, easy slide staining techniques, wide
availability, and relatively low cost; while the limitations are
variation of system-control standards for storage, duration,
fixation, and the difficulties of a semiquantitative and subjective
slide-scoring system-based application in clinical practice.42,43

Studies have proved that if microscopic process, embedding,
tissue process, and storage procedure are carefully performed,
appropriate correlation between protein expression status and
gene-copy levels can be achieved.44 Thus, in clinical settings,
errors in HER2 testing by IHC technique arises from both,
difference in correlation of antigen restoration and selection of
staining reagents, and variation in pathologic slide scoring. In the
United Kingdom, it has been recommended that these tests are
restricted to laboratory that performs annual minimum of 250 IHC
checks (and/or 100 FISH tests).37,45 National Surgical Adjuvant
Breast and Bowel Project (NSABP) confirmed that centers under-
taking high volume of HER2 testing resulted in a higher
concordance between IHC and FISH outcomes.30 Despite the
scoring system, several additional pitfalls in IHC interpretation
must be expected. In order to eliminate false-positive results,
pathologists must try to carefully avoid tissue injury in prepara-
tion, specimen edges scoring, cytoplasmic staining, fibrocystic
metaplasia status, and intraductal (ductal carcinoma in situ) foci
disease.46,47 Quantitative image analysis system can reduce the
laboratory variability of slide scores among pathologists, which is
important in routine microscopy.48

Fluorescence in situ hybridization
The FISH technique done by using fluorescent-labeled probes is a
morphology-driven slide-based DNA hybridization assay, to detect
the HER2 gene amplification.49 It can utilize a chromosome-17
probe (CEP17) as an internal control.50 Presently, three versions of
FDA-recommended FISH tests are as follows: Ventana Inform™ test
(Ventana Medical Systems, Tucson, AZ), a single-probe technique
that detects single HER2 gene, and the dual-probe (HER2 probe
plus chromosome-17 centromere probe) kits, PathVysion™ (Abbott
Laboratories, Abbott Park, IL) and PHarmDX (Dako, Glostrup,
Denmark).45 Previous studies proved that single-probe approach is
highly correlated with dual-probe test for detection results of
HER2 gene status in breast cancer, suggesting that the clinical
diagnostic value of the two techniques is similar,51,52 and the
simultaneous detection of HER2 and chromosome-17 could clarify
the HER2 gene status.40,53

Fig. 1 Schematic representation of human epidermal growth factor
(Erb) family and ligands. Formation of different homo- and
heterodimers were induced by specific ligand, triggering the
recruitment of various downstream adapters, resulting in the
activation of numerous signal transduction pathways. HER2/neu
has no known ligands and that HER3 has no intrinsic tyrosine kinase
activity

Table 1. Techniques of HER2/neu status detection in breast cancer

Method Samples Target Slide based Utility

IHC Tissue Protein Yes A

FISH Tissue Gene Yes A

CISH Tissue Gene Yes A

SISH Tissue Gene No

RT-PCR Tissue mRNA No A

Microarray

Tissue ELISA Tissue Protein No A

Serum ELISA Serum Protein No A

CTC Serum Gene No B

A: determining and predicting of response and eligibility to receive anti-
HER2 therapy. B: monitoring response of breast cancer to anti-HER2
treatment
IHC Immunohistochemical, FISH fluorescence in situ hybridization, CISH
chromogenic in situ hybridization, SISH silver in situ hybridization, RT-PCR,
reverse transcription polymerase chain reaction, ELISA, enzyme-linked
immunosorbent assay, CTC circulating tumor cells

Targeted therapeutic options and future perspectives for HER2-positive. . .
Wang and Xu

2

Signal Transduction and Targeted Therapy            (2019) 4:34 



From a societal perspective, FISH is an affordable objective
scoring method,54 with the advantages of two HER2 gene signals,
expressed both in benign and malignant cells.55 However, the
limitations of FISH technique include the higher quality for slide
scoring, use of fluorescent microscope, higher test cost, and more
time consuming than IHC.53 Although still debatable, several
experts strongly recommend FISH over IHC in defining the
HER2 status for breast cancer, as it is more common and
accurate.44 Generally, most of HER2 testing (80–85%) is done by
IHC, and results is defined as 0 and 1+: negative, 2+: uncertain
and require further FISH assay for confirmation, and 3+:
positive.45,47 False negative FISH results are unusual, but may
occur when the pathologist fails to identify the amplified areas of
HER2 gene with heterogeneity.51,52 Thus, diligence and caution
are required when scanning the case at low magnification
analysis. Since the guidelines of HER2 testing from American
Society of Clinical oncology (ASCO)-CAP were published,56 we
generally considered value of 2.0 ratio for a positive FISH cutoff
instead of 2.2, which resulted by the prior expert recommended.

CISH and silver in situ hybridization (SISH)
The CISH approach and SISH method capture the advantages of
both IHC and FISH.53 It detects HER2 gene-copy number by using
a single HER2 probe. The CISH was approved by the FDA to
evaluate feasibility for anti-HER2 agent.36 In addition, CISH has the
lowest correlation with IHC 2 staining and highest with IHC 0, 1,
and 3 results.35 Previous researches have shown about 97–99% of
concordance between CISH and FISH. Several clinical trials53 have
defined criteria as 3+ for IHC test or FISH-positive tumors; whereas
others, like the Finland Herceptin (FinHer) trial, have relied on the
CISH results.57 However, this method needs further investigations
in future.

mRNA evaluation by microarray and reverse transcription
polymerase chain reaction (RT-PCR)
In breast cancer management, microarray-based mRNA measure-
ments can assess relative levels of different mRNA molecules.58

Several multigene predictor assays, including Oncotype DX™,
Mammaprint™, and TargetPrint™, have been approved.59 These
assays utilize HER2 mRNA associated with other genes related to
HER2 amplification, in evaluating recurrence risk of breast
cancer.60

Relative levels of HER2 mRNA can also be detected by RT-PCR
technique, although large-scale trials have not yet been con-
ducted.61 This approach is relatively rapid, low cost, and has
tremendous potential.60 Enzyme-linked immunosorbent assay
(ELISA) can be used to detect the concentration of protein in
extracellular domain (ECD) of tissue and serum. This technique has
been approved by the FDA in the monitoring of disease, using
commercially available kit like Oncogene Science HER2/neu ELISA
(Oncogene Science, Cambridge, MA). Recently, a meta-analysis
purposed that assessment of HER2 ECD levels in breast cancer
may not be informative. Moreover, collective analysis of four trials
showed that the baseline ECD level was not reliably predictive of
response to the therapy.62 Contrarily, some studies have shown
supporting data of the relationship between ECD levels and
response to specific therapies.63 Thus, further investigation needs
to be done to arrive at conclusion about the utility of HER2 ECD
assessment.

Chromosome-17 polysomy
Previous studies on invasive breast cancer have demonstrated the
incidence of chromosome-17 polysomy in 4–30% of all cases.13

Most studies confirm the relationship between chromosome-17
polysomy and HER2 protein overexpression, which may have an
effective response to trastuzumab-based treatment with restric-
tion to IHC3+ staining cases.50,64 Another study proposes that
chromosome-17 polysomy could be the probable cause for clinical

phenomenon wherein the patients show no HER2 gene amplifica-
tion, as identified by ratio-based FISH approach, but respond to
trastuzumab-based treatment of metastatic breast cancer (MBC).51

Although not verified in large scale studies, it should be noted that
in breast cancer patients with chromosome-17 polysomy, positive
responses to anti-HER2-targeted therapy usually appear to be
restricted to tumors with an IHC score of 3+.40,42

HER2 testing of circulating tumor cells (CTC)
Tissue specimens are essential to assess HER2 status for breast
cancer by IHC or FISH technique.47 However, numerous studies are
being conducted to evaluate the HER2 status in breast cancer
patients without using tissue specimens, but testing CTC.65,66

More research is needed to investigate the utility of CTC approach,
especially in the prediction of response to therapy.67–69 In a
metastatic scenario, it has been approved that longitudinal serum
ctDNA sequencing can be done to detect drug resistance and
guide the precise clinical practice for anti-HER2-targeted treat-
ment.70 What is more, recent relevant researches have shown the
potential of comprehensive cell-free DNA (cfDNA) detection in
identifying beneficial patients from HER2-targeted therapies.71 A
comprehensive liquid biopsy analysis that combines matched
cfDNA mutations with CTC transcriptional analysis is possible to
enhance the identification of operable targets for individual
treatment strategies.72,73

ANTI-HER2-TARGETED AGENTS
Intracellular and extracellular studies on the HER2 gene have
provided insights into strategies to inhibit this pathway and have
helped develop pharmacological anti-HER2 agents.74 In this
review, we highlight some updated clinical concepts regarding
anti-HER2 agents, which should not be overlooked in clinical
practices while adhering to current conventional literature. In
addition, we provide an overview of new potential agents that are
currently being tested in clinical trials and may constitute an
optional strategy in the near future.

Trastuzumab therapy
Trastuzumab (Herceptin®, Genentech Corporation, United States/
Hoffman-Roche, Switzerland), a monoclonal IgG1 class humanized
murine antibody, binding the ECD of HER2 transmembrane
receptor.75 It was first approved for breast cancer treatment
directed against HER2.76

The mechanism of its antitumor action is by binding to the ECD
of the HER2 receptor, including antibody-dependent cell-
mediated cytotoxicity (ADCC), blockage of ligand-independent
HER2 receptor dimerization.77 Interestingly, the inhibition of
downstream signal transduction pathways and angiogenesis,
induction of cell-cycle arrest and apoptosis,78 and interference
with DNA repair, have also been confirmed as its mechanism in
anti-HER2 therapy.78–80

Since its launch in 1998, trastuzumab became a therapeutic for
breast cancer patients with HER2 overexpression and is widely
administrated as approved indications in both the adjuvant and
metastatic situations with the same recommended dosage.81

Trastuzumab is typically given by intravenous perfusion weekly or
every 3-week cycles, at a dose based on body weight.75

Trastuzumab improves survival endpoints and quality of life for
patients with advanced HER2-positive breast cancer undergoing
chemotherapy.75 Trastuzumab was the first target approved
specifically for early stage HER2-positive breast cancer in
combination with cytotoxic agents, such as taxane, after comple-
tion of doxorubicin therapy.82,83 In addition, trastuzumab is
recommended by both St. Gallen and National Comprehensive
Cancer Network (NCCN) guidelines for use as a single-agent
regimen monotherapy after adjuvant treatment.84,85 Trastuzumab,
in addition to chemotherapy (either anthracycline plus
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cyclophosphamide or taxane agents), has gained favor in clinical
practice.86,87 Combinations of trastuzumab with other agents have
been associated with a longer disease-free progression (median,
7.4 vs 4.6 months; p < 0.001), a longer survival duration (median
survival time, 25.1 vs 20.3 months; p < 0.01), a lower 1-year
mortality rate (22% vs 33%; p < 0.008), a higher rate of objective
response (50% vs 32%; p < 0.001), and a longer response duration
(median, 9.1 vs 6.1 months; p < 0.001).88,89

In the adjuvant, neoadjuvant, or metastasis settings, a number
of adverse events (AEs) have been linked to the use of
trastuzumab, including acute cardiac toxicity in congestive heart
failure (CHF),90,91 gastrointestinal symptoms, minor hematologic
deficiencies, and pulmonary symptoms.92,93 The severe toxicity
incidence rate is about 1% as per recent evidence, among which
cardiac toxicity has been the most predominant limiting factor for
the use of trastuzumab.94,95 Earlier published adjuvant clinical
trials report grade 3–4 cardiac toxicity (1–4%) in trastuzumab-
treated patients. Fortunately, such cardiac dysfunction is reversible
through the removal of dose accumulative effects.96 Currently,
there are no confirmed biomarkers that can precisely predict the
occurrence of cardiac toxicity after trastuzumab use.95 However,
prior or concomitant use of anthracycline and trastuzumab agents
may result in a high risk of dose-dependent irreversible cardiac
damage in HER2-positive patients. Finally, strategies for prevent-
ing left ventricular ejection fraction (LVEF) deterioration have been
explored, which include new combinations with other cytotoxic
agents (vinorelbine, taxanes, and platinum) to avoid anthracycline
use.97,98 In NSABP B-31 adjuvant trial, abnormal LVEF, primary
hypertension, history of diabetes mellitus, and advanced age were
found to be significant predictive factors for CHF development.87

Pertuzumab
Pertuzumab (Perjeta®, Genentech, United States/Hoffman-Roche,
Switzerland), a humanized recombinant monoclonal antibody,
prevents heterodimerization of HER2 with HER3 by interfering
with the ligand-dependent HER3 mediated signaling pathway,99

thus inhibiting the proliferation. This is done by inactivating
multiple downstream signaling networks including the phosphoi-
nositide 3-kinase (PI3K/AKT/mTOR) and the mitogen-activated
protein kinase (RAS/RAF/MEK/ERK) pathway.100 Complementary to
trastuzumab, pertuzumab triggers an ADCC reaction and binds
HER2 at a different ECD than trastuzumab (see Fig. 2).101

Although pertuzumab monotherapy has only shown modest
anti-HER2 efficacy, there may be a synergistic effect when it is
combined with trastuzumab.102

Pertuzumab may also be effective in cases of normal levels of
HER2 with high HER1 (EGFR) levels, or breast cancers with
characteristics of low-level HER2 overexpression.101,102 So far,
efficacy of pertuzumab for HER2-positive metastatic disease has

been successfully confirmed in clinical trials. On 8 June 2012, the
FDA approved the combination of pertuzumab with trastuzumab
and docetaxel, as first-line treatment in HER2-positive MBC.100

CLEOPATRA study describes a 40% ORR rate with multiple
complete and partial responses.103 Furthermore, pertuzumab
was the first drug to be approved with an endpoint of
pathological complete response in the neoadjuvant chemother-
apy on 30 September 2013.104 Interestingly, the value of
pertuzumab beyond progression needs to be properly studied.
Furthermore, new pertuzumab-based regimens are under inves-
tigation to improve the toxicity profile and efficacy of the available
treatment.101,102

Novel tyrosine kinase inhibitors (TKIs)
Several TKIs are in adjuvant clinical research for the treatment of
HER2-positive early breast cancer (EBC).105 Various HER1/HER2
TKIs, pan-HER TKIs, and dual HER2/VEGF TKIs are in different stages
of advance clinical practice.15

Lapatinib
Lapatinib (TykerbTM, GlaxoSmithKline, NC, US) is the only
intracellular blocker approved for both HER2 and EGFR receptors
simultaneously, achieving greater overall inhibitory effects.106,107 It
acts as a dual reversible TKI for both these receptors, thus blocking
the downstream MAPK/Erk1/2 and PI3K/AKT pathways (see
Fig. 3).108,109 Lapatinib has been shown to enhance the
trastuzumab-dependent cell-mediated cytotoxicity against breast
tumor cells, in in vitro studies.110 Lapatinib is metabolized by the
cytochrome P450 system, via the 3A4 isozyme, leading to a single
metabolite activity against EGFR, without involving HER2.111

Lapatinib is specially approved for patients with HER2-positive
advanced-stage breast cancer showing synergistic activity when
combined with anti-HER2 antibodies like trastuzumab.112,113 A
preclinical study showed that lapatinib inhibited the growth of
HER2-positive breast cancer cells that were resistant to trastuzu-
mab and increased the apoptotic effect of anti-HER2 antibo-
dies.114 This suggests that lapatinib alone may be efficient for
treating HER2-positive patients that are resistant to trastuzu-
mab.115 The efficacy of lapatinib seems to be limited to patients
exhibiting overexpression of HER2, as with trastuzumab.116 The
combination of lapatinib and capecitabine showed a significant
efficacy compared with capecitabine alone in metastatic
settings.117

Lapatinib has an ability to diffuse in the central nervous system
(CNS),118 thus potentially improving the control of CNS diseases as
compared with the other monoclonal antibodies.119 Randomized

Fig. 2 Trastuzumab and pertuzumab bind to different regions on
HER2. Trastuzumab suppresses HER2 activity but does not inhibit
heterodimerization. Pertuzumab has the capability of binding to the
extracellular dimerization subdomain of the HER2 receptor, reducing
HER2 intracellular signaling events by blocking heterodimerization
with other HER receptors

Fig. 3 Mechanism of lapatinib action. By competing with ATP, small-
molecule TKI Lapatinib blocks HER2 signaling, preventing auto
phosphorylation and subsequent downstream signaling events
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trials have shown that involvement of CNS may be reduced by
lapatinib administration with chemotherapy.120 Several trials have
demonstrated that lapatinib and trastuzumab combination had
better efficacy than lapatinib alone in disease progression of
patients resistant to trastuzumab.115 Biomarkers to check the
resistance to lapatinib was approved after first-line trastuzumab
treatment, although less information has been published about it.121

A comprehensive analysis of the clinical trials featuring lapatinib
in combination with various agents in MBC treatment have shown
that the most frequent adverse events were diarrhea (65%),
erythro-sensory disturbance (53%), nausea (44%), skin rash (28%),
vomiting (26%), and fatigue (23%).110 However, the incidence of
cardiac toxicity seems to be lower with lapatinib than trastuzu-
mab.122 A pooled analysis of cardiac function in 44 studies of 3689
patients treated with lapatinib found low levels of cardiotoxi-
city.122 Cardiac events were usually asymptomatic and caused
reversible decreases in LVEF. Overall, the incidence of LVEF decline
was 1.6%, with 0.2% patients presenting symptomatic CHF.123 At
present, no confirmed plasma- or tissue-based biomarkers have
strongly been proven for prediction of AEs associated with
lapatinib exposure.124

Afatinib
Afatinib, as an oral small molecule, irreversibly inhibits HER1, -2,
and -4 receptors.125 A phase II study in trastuzumab-resistant
metastatic patients showed partial response in patients with
progressive HER2-positive breast cancer.126 The most frequent AEs
related to Afatinib include diarrhea and rash. Another phase II trial
has evaluated the efficacy of afatinib, with or without vinorelbine
in patients with inflammatory or MBC (NCT01325428).127 LUX-
breast 1 is a phase III trial of afatinib or trastuzumab added to
vinorelbine in patients with MBC who have received initial
chemotherapy plus trastuzumab regimen (NCT01125566).128

However, the promising character of afatinib as a single agent
or in combination with other anti-HER2 therapy is needed to be
investigated further.129

Neratinib
Neratinib is an irreversible pan-HER (HER1, -2, and -4 receptor) and
EGFR TKI that inhibits PI3K/Akt and MAPK signaling pathways after
HER2 receptor activation.130 Earlier clinical studies have demon-
strated the use of neratinib in HER2-positive patients exposed to
prior regimens of trastuzumab or anti-HER2 treatment.131,132

Compared with lapatinib, neratinib has been shown to have more
valid and consistent inhibitory effect in feasible resistance
pathways.130

Since neratinib and trastuzumab have different mechanisms of
action on the HER2 pathway, their combination could be a
synergistic strategy, as evaluated in a phase I/II MBC study.133,134

This trial demonstrated a promising ORR of 27% in 45 MBC
patients with trastuzumab resistance. Another phase II study
showed potential clinical efficacy with excellent tolerance and
feasibility of neratinib.135 No dose limiting toxicities were
recorded. Diarrhea (20%) was the most common grade 3–4
adverse events (AEs), while neutropenia (9%) and dehydration
(2%) were other frequent neratinib-related grade 3 AEs. All AEs
were reversible and manageable with dose reduction, pause
interruption, and proper supportive care.135,136 Lastly, neratinib
plus vinorelbine regimen was evaluated in a phase I/II clinical trial
in patients initially treated with trastuzumab or lapatinib and ORR
of 42% in lapatinib-treated and of 51% in lapatinib-naive patients
was reported.134 Neratinib monotherapy is currently tested in an
open-label phase II trial in HER2-positive patients with brain
metastasis (NCT01494662).137 The earlier promising results
encouraged the researchers to conduct phase III clinical studies
of neratinib. A phase III trial (extended adjuvant treatment of
breast cancer with neratinib, ExteNET) showed that neratinib
significantly improved 5-year invasive disease-free survival (iDFS)

in EBC patients, who completed trastuzumab-based adjuvant
therapy.133,138 A combination of doublet anti-HER2 therapy, i.e.,
neratinib and trastuzumab plus paclitaxel, was evaluated in a
phase I/II study.

Pazopanib
Pazopanib hydrochloride is a novel multitarget receptor TKI of
VEGF receptors 1, 2, 3, PDGF receptor a/β, and cytokine receptor c-
kit that inhibits tumor growth and inhibits angiogenesis.139

A phase II study comparing lapatinib (1500 mg) in combination
with either placebo or pazopanib (800 mg) in patients with
relapsed HER2-positive inflammatory breast cancer (IBC) was
reported at 2012 ASCO annual meeting. Significantly higher
incidence of toxicity grades, i.e., 3–4 diarrhea was found in
combination arm (71%) vs control arm (24%), and this cohort was
terminated ahead of its expected time.140 No clinical benefits were
reported in the combination, compared with lapatinib alone. In
practice, large incidence of toxicities with the combination has
been observed, especially in high-dose group of pazopanib.

Pyrotinib
Pyrotinib, as a new generation of the HER2 targeting drug, is a
small-molecule novel irreversible Pan-ErbB receptor TKI.141 Pyr-
otinib covalently binds to ATP-binding sites in the intracellular
kinase region of HER1, HER2, and HER4. This inhibits the formation
of HER family homodimer, blocks the activation of downstream
signaling pathways, and inhibits the growth of tumor cell.17,142

The progression-free survival (PFS) was up to 18.1 months, as seen
in its groundbreaking phase II clinical results.142,143

Trastuzumab conjugates
Ado-trastuzumab emtansine (T-DM1) (Kadcyla®, Genentech, Uni-
ted States/Hoffman-Roche, Switzerland) is an immunoconjugate of
trastuzumab with an effective microtubule inhibitor agent, which
is a derivative of fungal toxin emtansine (DM1).144,145 This
molecule has three capabilities, anti-HER2 function of trastuzu-
mab, DM1 induced cytotoxicity, and tissue specific expression.146

Phase I/II studies have demonstrated good tolerance, consider-
able ORR, and improved PFS.147,148 A recent phase I trial confirmed
objective responses to trastuzumab-maytansine (T-DM1) antibody
conjugate (Genentech Corp., South San Francisco, CA) with the
tolerated doses. To date, the KAMILLA study149 is the largest
cohort of patients treated with T-DM1. Consistent with previous
randomized studies, T-DM1 has been considered as an effective
and tolerable regimen for second-line treatment of HER2-positive
MBC patients.150

Trifunctional antibody: ertumaxomab
The trifunctional immunoglobulin ertumaxomab (Fresenius Bio-
tech, Hamburg, Germany) is a bispecific antibody.151 It targets
HER2 on cancer cells and triggers T-cell-specific CD3 antigens and
accessory cells, like macrophages, dendritic cells, and natural killer
cells, at the sites of tumor metastases.152,153 Whether its molecular
structure affects the immunological mechanism or induces cellular
immunity against ertumaxomab is still unknown.
For multiline treated MBC patients, a phase I trial proved that

ertumaxomab regimen was associated with one CR case and
several PR cases.154 Trifunctional bivalent antibodies might
complement the therapeutic efficacy of other anti-HER2/anti-ErbB
receptor reagents with modular or sequential treatment.155

HER2-targeted vaccines
Cancer vaccines and acquired immunity therapy targeting HER2
have been considered as leading strategies for HER2-positive
breast cancer treatment.156 Strategies of cancer vaccines designed
to produce specific anti-HER2 immunity are under research,
including HER2 peptide-based vaccines, plasmid DNA-based
vaccines, and vaccines with HER2 delivering in a viral vector.157
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Active anti-HER2 immunization could facilitate the ex vivo
expansion of HER2-specific T cells in adoptive immunotherapy
for the treatment of MBC. Patients immunized with HER2-targeted
vaccines could have strong CD8+ cell-specific responses and
mediated delayed-type hypersensitivity reactions.158

In prior clinical trials, HER2-specific vaccines have shown
efficacy and sustained levels of T-cell HER2 immunity, generating
from active immunity.159 Evidence from prior trials have shown
promising results for examining the potential use of HER2 based
vaccines, in the adjuvant chemotherapy to prevent the recurrence
in high-risk breast cancer patients.160 In a small group of patients
with stage IV breast cancer, a dendritic cell-based vaccine was also
been tested. One patient responded a PR, while three demon-
strated stable disease (SD) profile for more than 12 months.161

Multiple treatment strategies were applied, including therapeutic
alliance of cell-based GM-CSF secreting vaccines and trastuzumab
agent. In clinical practice, normal tissues are being challenged
with seldom occurrence of severe autoimmunity AEs.158 Future
research would need to focus on developing various types of
multi-epitope vaccines.162

PI3K/AKT/mTOR blocking drugs
The PI3K/AKT/mTOR intracellular signal pathway regulating the
cell growth and proliferation is frequently dysregulated in breast
cancer and mediates primary or secondary resistance to anti-HER2
agents.163,164 In preclinical models, everolimus, as an mTOR
inhibitor, has demonstrated efficacy in trastuzumab-resistant
breast cancer.165

At present, two phase III trials of everolimus in anti-HER2 setting
are: Breast cancer trials of oral everolimus-1166,167 (BOLERO-1)
evaluating the combination of everolimus, trastuzumab, and
paclitaxel as first-line therapy, and BOLERO-3168 is a randomized,
double-blind, multicenter trial, which explored the efficacy of
everolimus in combination with trastuzumab and vinorelbine or
placebo control therapy for locally advanced or metastatic
patients with prior taxane therapy. The median PFS was reported
as 7.0 in the combination group vs 5.78 months in the placebo
arm (p= 0.0067).
Two studies, BOLERO-1 and BOLERO-3, reported the combined

exploratory biomarker analysis results of molecular changes in
MBC with HER2 overexpression and the curative effect of
everolimus.167,168 The final result demonstrated that patients with
PIK3CA mutation, PTEN deletion, or PI3K pathway activation of
HER2-positive progressive breast cancer could acquire PFS
improvement from everolimus.169,170

Other exploratory anti-HER2 blocking strategies
Combining anti-HER2 agents with other signaling pathway
blockers could have promising progress in the future, depending
on advances in clinical trials.171,172 Another option is the dual
blockade of HER2 and non-receptor tyrosine kinase c-SRC, which
plays an important role as a modulator in trastuzumab response
and is a common point for multiple downstream trastuzumab-
resistance mechanisms.114 In addition, HER3 is an another
promising strong activator of the PI3K/AKT signaling pathway,
which may be upregulated after the blocking of HER2.173

Although still in the early phases of research, the use of PI3K
inhibitors and CDK4/6 inhibitors,174 a host of new pan-HER
inhibitors, drug antibody conjugates, and anti-HER antibodies,
may be clinically effective and push the boundaries further to treat
HER2-positive patients in the coming years.175,176

ANTI-HER2 REGIMENS
In this section we will outline salient points of clinical trials that
establish the theoretical framework to guide our daily clinical
practice. For convenience purpose, we classified this section into
subgroups in terms of the clinical setting: adjuvant, neoadjuvant,

and metastatic disease. Also, given the volume of information
available in this regard, we mainly concentrated on phase III, and
some phase II clinical trials. Tables 2–4 show the most important
published clinical trials. Most patients were treated with regimens
consisting trastuzumab and chemotherapy agents, while trastu-
zumab is also used as a monotherapy.2

Targeted therapeutic strategies for adjuvant setting
Treatment of HER2-positive EBC with trastuzumab. About 20–25%
of patients with invasive breast cancer are HER2-positive and it is
considered as an independent risk factor for recurrence and
metastasis.8 Large number of data shows that trastuzumab
combined with chemotherapy can reduce nearly 50% RR of
recurrence and metastasis.177 In the adjuvant scenario, trastuzu-
mab is the criteria for the treatment of HER2-positive patients with
breast cancer.87,178 Despite the lack of a widely acknowledged
protocol for HER2 status evaluation, these adjuvant clinical trials
have explored the use of trastuzumab and yielded remarkable
clinical results.179 Besides, central laboratory testing for
HER2 status confirmation is essential before enrollment in some
trials.28

Trastuzumab monotherapy has been recommended in several
practice guidelines for high-risk patients of cardiac serious AEs, in
combination with anthracyclines.180,181 Whether the strategy of
routine trastuzumab monotherapy± endocrine therapy could
reduce recurrence risk is debatable.182 Prior phase III trials have
coherently demonstrated that trastuzumab is fundamental in
adjuvant settings.183,184 Trastuzumab could be used in combina-
tion with anthracycline-based chemotherapy (i.e., doxorubicin and
cyclophosphamide; AC), following a taxane-based regimen
(paclitaxel or docetaxel) or be combined with carboplatin and
docetaxel (TC).185,186

The FNCLCC-PACS 04187 was the only negative result reported
in EBC adjuvant setting. Patients (n= 3010) were randomly
assigned to anthracycline± docetaxel containing chemotherapy
regimens. HER2-positive patients (n= 528) were subsequently
randomized to undertake sequential trastuzumab treatment,
every 3 weeks. The primary endpoint was DFS. However,
trastuzumab-treatment arm resulted in a nonsignificant 14%
reduction in relapse risk (p= 0.41) and no difference in OS was
observed. Further analysis showed that a small portion of patients
(nearly 10%) assigned to trastuzumab were confirmed treatment
lose, and a quarter of patients experienced treatment pause.
Moreover, sequential use appeared to be inferior as compared
with the combined use.
Four significant adjuvant trials have investigated different

approaches with trastuzumab as follows: Herceptin® Adjuvant
(HERA),188 North Central Cancer Treatment Group (NCCTG) N9831,
NSABP B-3132,86,87, and Breast Cancer International Research
Group (BCIRG) 006186 consisting of more than 13,000 female
cases with HER2-positive EBC. The NSABP B-31 compared AC-T
regimen, i.e., four cycles of doxorubicin plus cyclophosphamide
(AC) followed by four sequential cycles of paclitaxel every 3 weeks
with AC-TH regimen, i.e., trastuzumab plus the AC-T regimen
initially with paclitaxel and trastuzumab sequential administrated
for 52 weeks.88,89 The NCCTG N9831 compared the efficacy of
concurrent vs sequential administration of trastuzumab regimen,
i.e., AC applied for four cycles followed by paclitaxel (T) per week
for 12 cycles plus trastuzumab and the same regimen AC-T
without trastuzumab.32 All the trastuzumab administered concur-
rently or sequentially to paclitaxel, for 52 weeks. The primary
endpoint of these trials was DFS and the secondary endpoint was
OS. Both trials were designed initially to include high-recurrence
risk patients with positive axillary lymph nodes. But, the NCCTG
N9831 trial also enrolled patients with node-negative disease of
high-risk recurrence, defined as tumors larger than 2 cm and ER
±PR-positive or tumors larger than 1 cm with negative receptors
status of ER and PR.88,89
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A joint analysis of these clinical trials presented the follow up of
2 years and 4 years data.88,89 The hazard ratio (HR) for DFS was
0.48 (95% CI, 0.39–0.59; p < 0.001) of 2 years. At 4 years, 85.3% of
patients treated with trastuzumab were disease free and alive
compared with 67.1% in the single chemotherapy arm, and
mortality was reduced by 33%. Updated analysis results were
consistent with previous observed data. The final analysis of these
studies was demonstrated in 2012, San Antonio Breast Cancer
Symposium (SABCS) annual meeting, as 10-year DFS of 73.7% vs
62.2% (p < 0.001). An OS of 84% vs 75.2% (p < 0.001) was also
reported in trastuzumab arm.88 Overall analysis confirmed that
trastuzumab-contained regimens contributed to a 40% reduction
of recurrence risk in terms of 10-year DFS, and 37% benefits in OS.
The NCCTG N9831 trial also demonstrated an improvement trend
toward the DFS in the concurrent group.89 Although, the
sequential option showed a better outcome than placebo (p <
0.001).
The benefit of trastuzumab was uniform among different trials,

despite diversity in patient populations, chemotherapy regimens,
and duration of anti-HER2-targeted therapy. These trials have
validated that trastuzumab cut down the 3-year risk of relapse by
about 30% in HER2-positive EBC population. There was also an OS
benefit, as seen in the HERA178 and BCIRG trials.32,88 When a
52 weeks course of trastuzumab was added to adjuvant
chemotherapy, the DFS improved by 33–52% and the OS time
was 34–41% greater than single chemotherapy. Independent
beneficial points such as age, lymph nodal status, hormonal status,
or tumor size were confirmed by univariate cox regression
analyses.178,189

A majority of phase III adjuvant trials focus on trastuzumab and
different combined chemotherapy at various doses and adminis-
tration strategies. The FinHer trial190 was aimed to compare
vinorelbine and docetaxel, as adjuvant chemotherapy agents, in
high-recurrence risk patients with or without lymph node positive
breast cancer. Subgroup consisting of 232 patients with amplified
HER2 status were randomized to receive docetaxel or vinorelbine
with trastuzumab of nine weekly cycles.57 Overall, the result
addressed that trastuzumab group had superior recurrence-free
survival (RFS) (80% vs 73%; p= 0.12), irrespective of combination
of chemotherapy drugs used. This benefit was consistent when
adjusted in lymph node metastatic patients, treated with
docetaxel over vinorelbine.190–192 However, the limitation of this
trial was the short course of treatment that might have under-
estimated the true efficacy of trastuzumab and also the small
sample size of patients with HER2-positive tumors detect a
statistically significant benefit with trastuzumab with strong study
power.82,193

Cardiac toxicity is the most rigorous AE of trastuzumab
treatment, especially in combination with anthracyclines agents.
Hence, there is a need to explore anthracycline-free regimens to
avoid synergistic toxicities, especially cardiac AEs.90,91 The BCIRG
006 study was designed to deal with this situation.186 This phase III
clinical study enrolled HER2-positive patients of high-recurrence
risk to treat with AC-T regimen, i.e., doxorubicin plus cyclopho-
sphamide followed docetaxel and AC-TH regimen (AC-T regimen
plus trastuzumab) or TCH regimen (docetaxel, carboplatin
combined with trastuzumab). With a median follow up of
65 months, 5-year DFS was superior in trastuzumab-containing
arms: 81% (p= 0.04) in the TCH arm, 84% (p < 0.001) in the AC-TH
arm, and 75% in the AC-T arm (control). Meanwhile, OS rate was
also increased (92% with AC-TH vs 91% with TCH vs 87% in the
AC-T; p < 0.001 and 0.04, respectively). The incidence of cardiac
toxicity was less in TCH regimen (0.4%), as compared with AC-TH
regimen (2%). More than 10% of patients experienced LVEF
reductions from basic measurements, which occurred more
frequently in AC-TH subgroup than TCH subgroup (18.6 vs 9.4%;
p < 0.001). Meanwhile, the rate of symptomatic CHF favored
regimens with TCH (p < 0.001). According to these results,

anthracycline-free chemotherapy was efficient and an optional
strategy in patients with high risk of cardiac toxicity, such as
comorbidity of hypertension and diabetes mellitus. In follow-up
with long-term cardiac safety observation, cardiac events were
observed to be within acceptable levels in the trastuzumab-
containing arms of previous trials.97,98

Duration of anti-HER2-targeted therapy. Furthermore, a majority
of adjuvant trials delineated the relationship between treatment
duration of trastuzumab regimens and difference in survival
benefits. Multiple clinical studies including NASBP-31, N9831,
BCIRG 006, and HERA have proved that the application of
trastuzumab in the adjuvant treatment of HER2-positive EBC for
1 year can significantly improve the DFS and OS rate.86,87,186,188

Although 1-year trastuzumab duration as standard recommenda-
tion has been approved for adjuvant scenario, studies have
explored the effects of different treatment durations, from 9 weeks
to 2 years. Based on the 11-year follow-up of HERA trial,
trastuzumab as an adjuvant therapy for HER2-positive EBC
significantly improved the survival of patients. Adjuvant treatment
with trastuzumab for 2 years added no benefit than 1 year, instead
a rise in cardiac toxicity was observed. There was also no
significant improvement in survival efficacy after prolonged
trastuzumab treatment for different hormone receptor status.188

However, there were special investigations on whether the
treatment duration could be shortened to 6 months or 9 weeks
and evaluate its activity, tolerance, and cost.194,195 A noninferiority
study, PHARE trial, was designed to evaluate the length of
trastuzumab adjuvant treatment, 6 months vs 1 year.196 A total of
1691 patients were enrolled in 12-months subgroup, and 1693 in
6-months subgroup, after receiving at least four cycles of adjuvant
chemotherapy. In subgroup analysis, patients were divided as per
hormone receptor status and treatment methods, including
concurrent or sequential therapy. Results from 3.5 years of
follow-up confirmed that 2-year DFS was superior for the 12-
months group than the 6-months group (93.8% vs 91.1%, HR
=1.28; 95% CI, 1.05–1.56). It was concluded that 6-months
treatment failed to meet the noninferior efficacy of trastuzumab
that was seen at 12 months.197 However, cardiac AEs were
commonly observed in the 12-month treatment (5.7% vs 1.9%;
p < 0.001), despite this, 12 months of adjuvant trastuzumab
remained a standard treatment.96 The Hellenic Oncology Research
Group study drew a similar conclusion.198 A similar randomized
controlled study, PERSEPHONE, may not be continued, due to the
negative results.199

The short-course study of trastuzumab (9 weeks vs 1 year) was
investigated to assess the noninferiority of adjuvant trastuzumab
combined with chemotherapy as it appeared promising
(NCT00629278).195 A total of 1254 patients were randomized into
long arm (n= 627) and short arm (n= 626). The 5-year DFS was
88% in the long arm and 85% in the short arm. According to the
Bayesian analysis, the probability that the short arm was
noninferior to the long one was 80% (HR 1.13, 90% CI,
0.89–1.42), with the upper limit of the CI crossing the noninfer-
iority margin. The 5-year OS was 95.2% in the long arm and 95.0%
in the short arm (HR 1.07, 90% CI, 0.74–1.56). Cardiac events were
significantly lower in the short arm (risk ratio 0.33, 95% CI,
0.22–0.50, p < 0.0001). This study failed to show the noninferiority
of a shorter period of trastuzumab administration. However, a 9-
week administration decreased the risk of severe cardiac toxicity
and was proposed as a potential option in patients with cardiac
events during treatment, and for those with a low risk of relapse.
Short-HER and SOLD studies also explored the trastuzumab
treatment for 12 months and 3 months in HER2-positive EBC,
and no expected positive survival results were reported.200

Overall, the optimal duration of anti-HER2 has been under
discussion and even though the answer is still disputed, the
available evidence confirms that 1-year adjuvant trastuzumab
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treatment is probably the most appropriate.75 Cardiac toxicity has
been a major concern, since trastuzumab can result in reduction
of LVEF and cause symptomatic CHF, which may be reversible by
treatment interruption. As the evidence on whether shortened or
prolonged trastuzumab treatment would benefit, is considerably
lacking, further randomized controlled studies are needed.124,201

How about strategies for HER2-positive EBC with small tumor
size?202 The NCCN guidelines recommend that EBC patients with
high risk of recurrence should be treated with chemotherapy
combined with trastuzumab.203,204 For small tumor size patients
lacking high-risk factors, especially for patients with T1a and T1b,
the most exploring evidence comes from retrospective studies
and meta-analysis.205–207 Some retrospective studies have found
that patients with T1a and T1b have good prognosis, although the
benefits of chemotherapy and targeted therapy are not
obvious.182,208 A meta-analysis published in 2015 collected data
from five large randomized clinical trials209: HERA, NCCTG N9831,
NSABP B-31, PACS 04, and FinHER. A total of 4221 patients with
tumor size less than 2 cm were enrolled to analyze the benefit of
anti-HER2-targeted therapy. The results showed that the 8-year
cumulative incidence of DFS events was significantly lower in
targeted therapy than in the control group (17.3% vs 24.3%, p <
0.001). Prospective clinical trial, APT study, was the only
nonrandomized, single-arm trial attempting to reduce chemother-
apy and target therapy for low-risk patients, with lymph node
negative and tumor diameter less than 3 cm. The results showed
that the regimen of 1-week paclitaxel plus trastuzumab for 12
cycles, and sequential trastuzumab for 13 cycles could reach an
appreciable 7-year DFS as 93.3%. This study provided a promising
option for our clinical practice, although evidence was insufficient
for change in treatment decisions.210

Other strategies for the HER2-positive EBC treatment. Lapatinib is
normally approved for second-line MBC, however its use in the
adjuvant setting could be promising, as it is orally taken.211–213

The Tykerb evaluation after chemotherapy (TEACH) trial discussed
the efficacy of lapatinib as adjuvant treatment in trastuzumab-
naive patients. A total number of 3147 patients were randomized
into lapatinib or placebo groups for 52 weeks of treatment, or until
events of disease progression or death. However, DFS with
lapatinib was prolonged nonsignificantly (87% vs 83%; p= 0.09).
For subgroup analysis, patients with centrally confirmed
HER2 status the HR was 0.92 (p= 0.94). It was seen that the
lapatinib monotherapy had low efficacy in the adjuvant setting for
EBC.212,214 Another trial named “the adjuvant lapatinib and/or
trastuzumab treatment optimization” (ALTTO),215 sponsored by
the National Cancer Institute (USA), enrolled more than 8000
patients for the evaluation of the efficacy of lapatinib combination
with trastuzumab regimens, and lapatinib sequential to trastuzu-
mab regimens, vs trastuzumab alone. The median follow-up time
was 4.5 years. Compared with trastuzumab monotherapy, patients
with lapatinib plus trastuzumab who were treated sequentially or
concurrently had a lower risk of iDFS, without significant
difference. The DFS rates were similar in the three treatment
groups (86% in trastuzumab group, 88% in lapatinib+ trastuzu-
mab group, and 87% in the sequential treatment group).
Compared with trastuzumab monotherapy, the incidence of AEs
in combination therapy was higher, and the incidence of severe
cardio-related AEs was extremely low. The incidence of CHF was
less than 1%, even in 95% of patients treated with anthracycline
chemotherapy. Compared with trastuzumab monotherapy, lapa-
tinib+ trastuzumab had no significant advantage in the treatment
of HER2-positive EBC. Based on these evidences, lapatinib was not
recommended for adjuvant therapy.212,214,216

Pertuzumab when added to adjuvant trastuzumab and
chemotherapy improves the outcomes of patients with HER2-
positive EBC.101 APHINITY clinical trials randomly enrolled patients
with high-recurrence risk in HER2-positive EBC.217 Pertuzumab or

placebo was administrated to adjuvant chemotherapy in addition
to standard 52 weeks trastuzumab treatment. The results showed
that 3-year iDFS rate was significantly improved in the pertuzu-
mab arm, as 94.1%, compared with 93.2% in the placebo arm, with
HR of 0.77 (95% CI, 0.62–0.96; p= 0.02).101 In safety analysis,
previous reported AEs, such as CHF, cardiac dysfunction, and
cardiotoxicity related mortality, were seldom reported in both the
treatment groups.101 Diarrhea of grade 3–4 was reported during
chemotherapy, with higher incidences in pertuzumab arm than
placebo (9.8% vs 3.7%).
KATHERINE study, a phase III, open-label clinical trial compared

T-DM1 vs trastuzumab as adjuvant therapy, for 14 cycles in HER2-
positive EBC patients with residual invasive disease, after standard
neoadjuvant chemotherapy of anti-HER2-targeted therapy, includ-
ing trastuzumab.218

For HER2-positive EBC with residual tumor lesions (breast and/
or axillary lymph node invasive carcinoma) after neoadjuvant
therapy, T-DM1 treatment at the adjuvant stage significantly
reduces the risk of disease recurrence or death by 50% compared
with trastuzumab.218,219 The 3-year iDFS was 88.3% in the T-DM1
arm and 77.0% in the trastuzumab arm. The iDFS was significantly
higher in the T-DM1 arm than in the trastuzumab (HR 0.50; 95%
confidence interval, 0.39–0.64; p < 0.001). The safety data of T-DM1
was consistent with earlier studies, and no new AE risks was
reported.220

Targeted therapeutic strategies for neoadjuvant treatment
Trastuzumab in neoadjuvant therapy. HER2-positive breast can-
cers may have potential chemosensitivity in combination with
trastuzumab, in the neoadjuvant treatment.221 The trastuzumab
treatment in neoadjuvant therapy provides significant clinical
benefits and reduces the rate of distant metastasis.222 The HER2
gene amplification is shown to be related to the growth and
survival of breast cancer stem cells, to some extent.223,224

As seen in both, completed and ongoing clinical studies, the
trastuzumab-based neoadjuvant therapy has a higher pathologic
complete response (pCR, defined as the absence of residual
cancer in breast or axillary lymph node pathology)224 in the
treatment of HER2-positive breast cancer.225 Such phenomena
results from removing or downregulating HER2-mediated growth
signals to inhibit stem cell proliferation and invasion.226 There is
need to explore about HER2-targeted therapy that can convert a
HER2-positive into a HER2-negative subtype.227 As per the
previous reports, to achieve pCR in neoadjuvant setting of
trastuzumab plus chemotherapy, nearly 33% of patients with
HER2 overexpression were converted to HER2-negative subtype in
the treatment failure group.228

There are still some limitations in this assumption, and it
requires further discussion and additional prospective studies to
validate.229,230

The treatment with trastuzumab could improve the possibility
of achieving pCR.226 A small randomized trial conducted by the
MD Anderson cancer group was perhaps the first study confirming
the role of anti-HER2 therapies in the neoadjuvant scenario.223,231

Although only 42 cases were enrolled, the competition of
trastuzumab to sequential paclitaxel chemotherapy of four cycles
followed by FEC of four cycles regimens resulted in an out-
standing high rate of 2.5 times (66.7%) of pCR, than
chemotherapy-alone arm (25%), p= 0.02. Despite the small
sample size, the updated versions of this study also confirmed
the findings.231

A multicenter, open-label, randomized phase III study, NOAH
trial, was designed to add further enthusiasm to neoadjuvant anti-
HER2 approach.232 This trial enrolled women with locally
advanced or inflammatory HER2-positive breast cancer, to
compare neoadjuvant chemotherapy plus trastuzumab, followed
by standard 52 weeks trastuzumab maintenance, vs only
neoadjuvant chemotherapy. With a median follow-up of 5.4 years,
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neoadjuvant treatment with trastuzumab improved the 5-year
event-free survival rate as 58% (95% CI, 48–66) to 43% (p < 0.001),
with an unadjusted HR of 0.64 (95% CI, 0.44–0.93; two-sided log-
rank, p= 0.016). A strong association with pCR was observed in
patients given trastuzumab, improving the pCR from 22 to 43%
(p < 0.001).233 These results provided new insight into the
association between pCR and survival outcomes in HER2-
positive disease.234 Trastuzumab also resulted in a 40% RR of
relapse, progression, or mortality compared with chemotherapy
alone, with HR was 0.29 (95% CI, 0.11–0.78) for sustained survival
benefit, between those with and without trastuzumab.232,233

In addition, TECHNO trial,230 an open label, phase II study
demonstrated results of 217 HER2-positive patients with char-
acteristics of larger tumors (≥ 2cm), who received four cycles of AC
(epirubicin and cyclophosphamide, EC), followed by four cycles of
TH (paclitaxel and trastuzumab) as neoadjuvant treatment. Over-
all, pCR was accomplished in nearly 38.7% and 3-year DFS (88% vs
71%; p= 0.003) and OS (96% vs 85%; p= 0.007) was improved.
Meanwhile, other trials, such as the American Z1041 trial,231

GeparQuattro study,235,236 and HannaH trial,237 also enrolled HER2
breast cancer with similar inclusion criteria as TECHNO to evaluate
treatment with chemotherapy plus trastuzumab as concurrently or
consequence regimens. A high proportion of pCR range from 32
to 56% was acquired. However, the combination of anthracyclines
and trastuzumab regimen resulted in higher incidences of cardiac
toxicity (2.9% vs 0.8% at 12 weeks), respectively.238 Trastuzumab
combined with docetaxel and carboplatin achieved good pCR rate
and tolerance for stage II and III HER2-positive breast cancer in
trastuzumab-based neoadjuvant therapy, resulting from the GETN
(A)-1 trial.239

Other target therapy in neoadjuvant setting. In order to achieve
higher efficacy of anti-HER2 therapies, several randomized phase
III studies have explored the hypothesis of lapatinib monotherapy
or its addition to trastuzumab regimen.240

The phase III study of neoadjuvant therapy GeparQuinto
compared the efficacy of two HER2-targeted drugs, lapatinib
and trastuzumab, with the combination of four cycles of
chemotherapy with EC, followed by docetaxel. The result
confirmed that trastuzumab arm showed ~7% more pCR than
lapatinib arm (30.3% vs 22.7%; p= 0.04).241 According to these
results, and significant AEs observed in this study, lapatinib could
not replace trastuzumab in the neoadjuvant chemotherapy;
however, doublet HER2 inhibition may be a promising option.
The DFS, distant DFS (DDFS), and OS of patients with pCR were
significantly better than those without pCR (DFS: HR, 0.63, p=
0.042; DDFS: HR, 0.55; p= 0. 021; OS: HR, 0.31; p= 0.004).
The NeoALTTO trial,242 an international, randomized, open-

label, multicenter, phase III study, compared the efficacy of
lapatinib or trastuzumab monotherapy, or the concomitant
lapatinib and trastuzumab regimen, in addition to paclitaxel, in
neoadjuvant setting.243,244 Promisingly, the combination arm
showed a prominent progress on pCR of 51%, almost twice as
much as the other two monotherapies against HER2 (29.5% in
trastuzumab alone and 24.7% in lapatinib alone, p < 0.001). In
addition, the use of lapatinib was associated with severe AEs, such
as diarrhea and rash. Nevertheless, contradictory to previous
NeoALTTO result, NSABP B-41 study245,246 showed no statistical
difference between the anti-HER2 combination and lapatinib or
trastuzumab monotherapy. Concomitant therapy needs further
evidence to clarify. In the NSABP B-41 study, all patient received
AC × 4 cycles and were then randomized in the sequential
chemotherapy phase of paclitaxel to trastuzumab, and lapatinib
or combination arm. However, the pCR rates between three arms
were abnormally high (62% in combination, 53.5% in trastuzumab
arm, and 52.5% in lapatinib arm). So far, lapatinib has not been
approved by the FDA for the use in neoadjuvant therapy.213,247

This dual inhibitory HER2 regimen of lapatinib combined with

trastuzumab in neoadjuvant therapy significantly increased the
pCR rate and improved the prognosis of pCR patients. However
this did not translate into survival benefits, such as DFS and OS.242

Nonetheless, the FDA has expedited approval of pertuzumab
and trastuzumab regimen, combined with chemotherapy for
neoadjuvant setting. This optional strategy was based on the
following two phase II clinical trials.248 A randomized phase II
study, NeoSphere trial249,250 was designed for multiple centers, in
which HER2-positive patients were randomized to one of four
following subgroups: pertuzumab (P)+ trastuzumab (T)+ doce-
taxel (D); T+ D; P+ D, or P+ T. All enrolled patients underwent
breast mastectomy followed by adjuvant FEC chemotherapy and
routine 52 weeks trastuzumab treatment. In primary endpoint
analysis (i.e., pCR, DFS, OS, etc.), the combination containing triple-
agents (P+ T+ D) showed the statistically significant higher pCR
rate (46%) than doublet arm T+ D (29%) and P+ D arm (24%) and
the T+ P arm (17%). Even without chemotherapy, dual blockage
of the HER2 receptor could still acquire at least 17% pCR rate. This
meant that some patients may not need chemotherapy at the
stage of neoadjuvant therapy, and a simple double-targeted
therapy, as an attractive, can achieve good results. Notably, the
incidence of cardiac toxicity did not rise even when complimented
with pertuzumab (4–5% EF drop across all groups). The
TRYPHAENA trial,104 which contained one of its three arms as
anthracycline-free regimen, achieved more than 55% pCR in
double HER2 blockage of trastuzumab and pertuzumab in
neoadjuvant setting. Thus, anthracycline-free regimen might be
appropriate regimen for the lower risk breast cancer (small tumors
with negative lymph nodes) or in patients with older age and prior
cardiovascular comorbidities.
To sum up, the above study discussed and approved the

current data supporting the use of anti-HER2 agents, either single
or combination in neoadjuvant setting.251 Moreover, in all of the
clinical trials, pCR has been considered as a valid primary endpoint
for clinical outcome evaluation. There are still some doubts about
whether pCR can transfer into survival index with DFS and
OS.252,253 It has been established by many studies, including by
the FDA, that pCR is a predictor of survival in patients for anti-
HER2 therapy with localized breast cancer. A meta-analysis, SABCS,
published in 2012, enrolled 12,900 patients in randomized
neoadjuvant trials.254 The pCR was significantly associated with
RFS in all the analyzed subgroups. This study confirmed that pCR
was most likely to predict survival outcome.255

In addition, a randomized trial, CHERLOB,256 explored neoadju-
vant chemotherapy plus trastuzumab or lapatinib or the doublets
in HER2-positive breast cancer with a larger tumor size (>2 cm).
The endpoint was pCR, for both of these trials that compared
lapatinib plus cytotoxic agents with lapatinib plus trastuzumab
plus cytotoxic agents. However, the efficacy data of these trials has
not been disclosed.
A small phase II trial compared various neoadjuvant mono-

therapy in operable HER2-positive breast cancer for 6 weeks prior
to surgery treatment. Single-agents included afatinib (50 mg/day),
lapatinib (1500 mg/day), and trastuzumab (2 mg/kg weekly, after
initial dose) and the results suggested that afatinib had higher RR
compared with the other two agents (80% vs 75% vs 36%,
respectively).256

The KRISTINE trail251 achieved significant results in chemother-
apy plus dual HER2-targeted blockade (docetaxel, carboplatin, and
trastuzumab plus pertuzumab). Compared with chemotherapy
plus HER2-targeted therapy (T-DM1 plus pertuzumab), more
patients achieved pCR (55.7% vs 44·4%, 95% CI, −20·5 to −2·0;
p= 0·016). However, combination groups had more grade 3-4
severe adverse events. It is necessary to further improve the
efficacy of chemotherapy without increasing toxicity.
To summarize, neoadjuvant with anti-HER2 agents is an

effective and approved treatment option, especially in patients
with locally advanced, unresectable tumors. Its use in small
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resectable cancer may also be appropriate, but it must be
balanced with practical considerations and the patient's
preferences.226

Targeted therapeutic strategies for metastatic disease
HER2-positive advanced breast cancer (ABC) is an aggressive
disease, associated with a poor prognosis and severe survival
outcomes. HER2-positive breast cancer in the advanced settings
prolongs both PFS and OS when combined with chemotherapy and
it has become the standard strategy.12,257,258 Despite the remark-
able therapeutic impact of anti-HER2 considering the previous
outcomes, some HER2-positive patients may initially have primary
resistant disease, causing eventual progression, and this pressing
the need for other novel therapeutic options.259 We review recent
phase III trial data and discuss a practical approach to sequencing
of HER2-directed therapy in patients with HER2-positive MBC. The
significant cumulative survival evidence gained from these trials is
expending our insights of outcomes of HER2-positive MBC.

First-line treatment for HER2-positive MBC. Trastuzumab com-
bined with chemotherapy is currently a novel recommended
treatment of HER2-positive breast cancer patients.260 Besides, the
other emerging anti-HER2 targeting drugs may serve as new
standards in the future.261 Previous pioneering studies have led
the foundation of our understanding of anti-HER2 therapies, and
some new concepts should be highly valued.176,262

Taxanes are the agents most commonly administrated in
combination with trastuzumab263; however, other regimens such
as anthracyclines,181 vinorelbine,193,264 platinum, capecita-
bine243,265, and combination have been explored in several
researches. Presently, NCCN Clinical Practice Guidelines recom-
mends the following regimens, for the first-line options of HER2-
positive MBC266,267: trastuzumab plus chemotherapy single
agents, either paclitaxel (3 weeks or weekly cycle), docetaxel
(3 weeks or weekly cycle), or vinorelbine (weekly).268 Meanwhile,
trastuzumab plus paclitaxel and carboplatin (DCH, 3 weeks per
cycle) or docetaxel plus carboplatin (TCH, every 3 weeks) have also
been recommended for combination therapies.185,269 Combined
use of anthracyclines-free regimens, especially carboplatin-based
trastuzumab regimen, has been proved to be effective with higher
overall RR and longer PFS time.238

In addition, new anti-HER2 therapies, either as monotherapy or
combined with trastuzumab, have demonstrated anti-HER2 tumor
activity.270,271 Single anti-HER2 drugs appear to be mild but with
consistent activity. This has been well confirmed not only for
trastuzumab monotherapies (ORR: 15–25%), but also for pertuzu-
mab (ORR: 5%), lapatinib (ORR: 5%-7%), and T-DM1 (ORR: 35%).
When first-line trastuzumab-containing regimens fails, the newer
drugs may bring sustained SD, thus adding to the clinical
benefits.184,272

Dual distinct anti-HER2 therapies could be combined to achieve
synergistic effect.171,172 Three combinations are particularly
suggestive: (1) Pertuzumab+ trastuzumab+ docetaxel; (2) Trastu-
zumab+ lapatinib; and (3) Pertuzumab+ trastuzumab. The CLEO-
PATRA study103 randomized 808 MBC patients with naive HER2-
positive status, to either the standard regimen (trastuzumab+
docetaxel) or the same combination plus pertuzumab. Almost
50% prolongation in PFS favoring the experimental arm was
observed in this trial (18.5 vs 12.4 months; p < 0.001). A significant
improvement of OS was confirmed by the updated results.
Currently, triple-agents including pertuzumab, trastuzumab, and
docetaxel are evaluated as the standard care for first-line
treatment MBC, as per NCCN guidelines. This regimen utilizes
the concepts previously mentioned, dual HER2 blockage and
addition of chemotherapy drugs.

Strategies for HER2-positive MBC with initial trastuzumab failure.
Some patients are resistant to trastuzumab and develop disease

progression within 1 year, after initial treatment.20,273 Strategies
for HER2-positive MBC with initial trastuzumab failure is a question
worth exploring.
An observational Hermine study274 found that the median OS

and time to progression (TTP) of breast cancer patients who
continued to receive trastuzumab after disease progression were
significantly longer than those who stopped using it. Phase III
GBG26 trial275 compared the use of capecitabine single-agent and
trastuzumab plus capecitabine, in HER2 breast cancer targeted
therapy, after progression. The results showed that the ORR and
TTP were superior in combination group than chemotherapy
alone, and toxicity incidence was not increased. These two studies
further confirmed trastuzumab as a first-line agent for MBC
treatment in clinical practice.266,276

However, dual anti-HER2 blockage remains an option, especially
in initially treated patients, having poor tolerance to chemother-
apy.172,277,278 EMILIA study,279,280 a randomized, open-label, phase
III trial compared T-DM1 with capecitabine+ lapatinib in patients
with previous treatment failure for HER2-positive unresectable
MBC. These patients were previously treated with standard
combination of trastuzumab plus taxane. Enrolled patients were
randomized in 1:1 ratio to T-DM1 arm (3.6 mg/kg intravenously,
every 21 days) or control arm (capecitabine 1000mg/m², orally
twice daily for 1–14 days; plus lapatinib 1250mg, orally once daily
on 1–21 days, 3 weeks one cycle). A descriptive analysis of final
survival outcome shows that T-DM1 improved OS.281 Median OS
was longer in T-DM1 arm (29.9 months, 95% CI, 26.3–34.1) than in
control group (25.9 months, 95% CI, 22.7–28.3), with the HR of 0.75
(95% CI, 0.64–0.88) in previously treated HER2-positive MBC
patients. In safety analysis, the incidence of grade 3 AEs was lower
in the T-DM1 (48% vs 60%). The safety data were similar to prior
results, reconfirming T-DM1 as an effective and tolerable
treatment. Nowadays, T-DM1 has been wildly recognized as the
preferred second-line treatment in HER2-positive MBC population
resistance to initial trastuzumab.282,283

An open-label, phase III trial, EGF104900284 compared the
efficacy of lapatinib monotherapy with lapatinib plus trastuzumab
(median 3 prior regimens) in the treatment of HER2-positive MBC,
and found improvement of PFS (11.1 weeks vs 8.1 weeks; p=
0.008) and clinical benefit rate of dual blockage-targeted therapy.
Combination showed a trend of prolong OS (14 vs 9.5 months;
p= 0.026) better than that of lapatinib alone. This trial confirmed
the efficacy of lapatinib plus trastuzumab, as double targeting on
breast cancer cells as seen in preclinical studies. Thus providing a
safe and effective alternative for patients with non-chemotherapy
HER2+ MBC.244,284

The EGF100151 study177,285 compared the effect of lapatinib
plus capecitabine and capecitabine monotherapy as the second-
line treatment in patients with advanced HER2-positive breast
cancer. The results showed that lapatinib plus capecitabine
significantly prolonged TTP; however, could not improve the OS.
Another promising strategy is chemotherapy-free combination

of pertuzumab and trastuzumab.286 Baselga et al. conducted a
phase II trial248 by using chemotherapy-free combination. This
study reported a progressed ORR of 24% and a median PFS of
5.5 months for patients enrolled with failure of initial trastuzumab-
based therapy.
BOLERO-3 study168 included patients who progressed during

adjuvant treatment, or within 12 months after treatment, or who
progressed within 4 weeks after trastuzumab treatment. After
randomization, one group was treated with everolimus+ vinor-
elbine+ trastuzumab, and the other with placebo+ vinorelbine
+ trastuzumab. The results showed that the median PFS was
7 months in the everolimus group, compared with 5.78 months in
the placebo group.
What about third-line treatment with T-DM1 resistance in HER2-

positive breast cancer?287,288 Anti-HER2-targeted therapy is used
throughout multiline treatment. Treatment strategies include
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either continuing with trastuzumab, switching to trastuzumab in
combination with lapatinib, or considering lapatinib and capeci-
tabine.289 The mechanism of trastuzumab resistance needs to be
studied further.20,74,259 In view of the differences in drug
resistance time, more appropriate treatment strategies should
be considered in order to prolong the survival of patients and
improve the quality of life.176

A recent phase II clinical study compared combination of
pyrotinib with capecitabine17,141–143 and lapatinib with capecita-
bine, to treat the patients with advanced HER2-positive breast
cancer who had previously used/not used trastuzumab within two
lines. The ORR of patients in the pyrotinib arm was significantly
higher than that in the lapatinib arm (78.5% vs 57.1%; p= 0.01).
Further analysis showed that the median PFS in the pyrotinib
group was significantly better than in the lapatinib group (18.1 vs
7.0 months; p < 0.0001). Subgroup analysis showed that in the
previous trastuzumab subgroup, the median PFS of the pyrotinib
group was significantly better than that of the lapatinib group
(18.1 months vs 7.1 months, p= 0.0031). It was suggested that the
antitumor effect of pyrotinib is independent of earlier use of
trastuzumab.141,143

Targeted strategies for triple-positive MBC. Triple-positive patients
(both ER/PR-positive and HER2-positive) could also benefit from
dual blockage.290,291 Nearly 50% of the breast cancers with HER2
amplification also have some expression of hormone receptor and
there is significant cross talk between them.29,292,293

Endocrine therapy combined with double blocking HER2
therapy significantly improved PFS, which may be considered
for the selection of HER2+/HE+ breast cancer patients.273,294 The
randomized clinical trials showed its efficacy to be inferior to that
of chemotherapy plus anti-HER2 regimens. For co-expression of
HER2 and hormone receptors patients, combination strategy of
aromatase inhibitors (AIs) with anti-HER2 therapies has also been
suggested as a new therapeutic option.295–297 Some phase III trials
have explored the superiority of dual blockage, as compared with
the single antihormonal therapy.298 Besides, chemotherapy-free
strategies have always been recommended. TAnDEM study,299 the
first randomized phase III trial, enrolled 207 patients of HER2− and
hormone receptor-positive MBC, without brain metastases and
prior chemotherapy. These patients were randomized to receive
either anastrozole alone or AI combined with trastuzumab. The
primary efficacy point of PFS was found to be extended by
2.4 months in the combination arm (4.8 vs 2.4 months; p=
0.0016). OS was not statistically improved in the total and
hormone receptor-positive populations. Importantly, 70% of
patients in the anastrozole-alone arm crossed over to receive
trastuzumab after progression. Thus, resulting in nearly 15%
patients of combination arm experiencing 2-year RFS, suggesting
that this regimen was appropriate for a small portion of
patients.300

In safety analysis, incidence of grade 3 and 4 AEs was 28% in the
combination arm and 15% in the anastrozole-alone arm, thus
showing that serious AEs were more frequent with the combina-
tion therapy.299

Small eLEcTRA trial297 had similar design and enrollment
criteria, however, letrozole was used instead of anastrozole in
this study. The authors reported an improvement trend in TTP
(14.1 vs 3.3 months; p= 0.23). These studies support the use of
HER2-targeted therapy combined with nonsteroidal AIs, as a valid
effective chemotherapy-free option in the treatment of triple-
positive, postmenopausal patients.
The EGF30008 trial enrolled patients with HR+/HER2+ MBC, but

not HR+/HER2-disease to compare letrozole alone or additional
use of lapatinib.301,302 From the total of 1286 patients, 219 HER2-
positive cases were randomized in this study, without prior
therapy for MBC. Compared with letrozole and placebo, a
significant improved PFS has been seen in combination of

letrozole and lapatinib (8.2 vs 30 months; p= 0.019). No OS
benefits were seen significantly, and the incidence of AEs was
higher in add-on, than that with letrozole alone (8% vs 4%,
p < 0.05).

HER2-positive CNS metastases. The CNS metastases have special
clinical features.303,304 As seen in previous meta-analysis, HER2-
positive patients who receive trastuzumab adjuvant therapy,
compared with chemotherapy alone, may have a higher risk of
brain metastasis as an initial recurrence site.305–307 Traditional
surgical and radiotherapy for the treatment of brain metastases
from breast cancer have great limitations and safety risks.308,309

While, chemotherapy and targeted therapy, as a broad and
relatively low-toxicity treatment method, has attracted increased
attention.310–312 As the molecular structure prevents thing cross-
ing of the blood–brain barrier, most of the currently available anti-
HER2 drugs, like trastuzumab, pertuzumab and ado-trastuzumab,
have limitations to treat such brain metastases.309,313 Thus, small
molecules, such as TKI, may provide better option to achieve
therapeutic concentrations within the brain sanctuary.118,313–315

As lapatinib possess an ability to penetrate the blood–brain
barrier, this small molecular TKI agent has been explored for its
potential efficacy in CNS metastases for HER2-positive MBC, after
the first-line trastuzumab-based treatment progression.118,316,317

In a study of 39 patients heavily pretreated with trastuzumab plus
taxanes chemotherapy, having progression despite radiation, two
patients achieved a PR evaluation, and five experienced at least a
30% volumetric reduction in progressive CNS disease. The
potential efficacy of lapatinib alone in trastuzumab-resistant brain
metastases needs further evaluation in larger scale cohorts.119,318

Lapatinib was approved by the FDA in 2007 for its use in
combination with capecitabine for the treatment of HER2-positive
MBC that had progressed despite standard treatment. The
combination of lapatinib and capecitabine has been correlated
with a lower rate of CNS relapse, compared with capecitabine
alone.120,257,314,319 Nonetheless, the CEREBEL study320 showed no
difference (p= 0.360) in the incidence of CNS recurrence as a first
site of disease progression between lapatinib–capecitabine group
(3.0%) and trastuzumab–capecitabine group (5.0%). Safety analy-
sis reported that serious AEs in the lapatinib–capecitabine and
trastuzumab–capecitabine groups were 13% and 17%, respec-
tively. The major endpoints of PFS and OS were inconclusive and
no differences in the incidence of CNS metastasis were observed
between the two groups. The efficacy of lapatinib–capecitabine
group could be related to the previous trastuzumab treatment,
and/or the number of treatment lines selected in the context of
metastatic disease.303,306,311,321

As per the Anatolian Society of Medical Oncology review,
lapatinib plus capecitabine was recommended for HER2-postive
ABC patients with brain metastasis.120 A total of 203 patients with
HER2-positive MBC, who had progressed after trastuzumab-
containing chemotherapy, were retrospectively evaluated at 11
centers between September 2009 and May 2011. All patients had
undergone cranial radiotherapy and lapatinib therapy, initially.
Median follow-up was 10.5 months (range 1–38 months). The total
RR was 27.1%, including two cases of CR (2.4%) and 21 cases of PR
(24.7%). The median PFS was 7 months (95% CI, 5–9), and the
median OS was 13 months (95% CI, 9–17). Grade 3–4 AEs were
hand and foot syndrome (9.4%), diarrhea (8.3%), fatigue (5.9%),
and rash (4.7%). There were no symptoms of cardiac events. The
combination of lapatinib with capecitabine used had good
efficacy and tolerance.322

A French phase II, randomized study assessed the initial
treatment of capecitabine, combined with lapatinib, in HER2-
positive patients with diffuse CNS metastases, along with whole
brain radiotherapy (WBRT).309,317 This study showed that capeci-
tabine and lapatinib combined regimens had an impressively high
ORR= 66%, as the initial method. The regimen was effective for
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both CNS and extra-CNS diseases and delayed WBRT by an
average of 8 months.115

The LANDSCAPE study323 was a single arm, phase II, open-label,
multicenter study, that enrolled 44 previously untreated patients,
with brain metastases from HER2-positive breast cancer. The
tumor volume shrunk by at least half in nearly two-third of these
patients after the treatment with lapatinib combined with
capecitabine. Lapatinib plus capecitabine group had an ORR of
65.9% (95% CI, 50.1–79.5) with all partial responses, median PFS of
5.5 months, and median OS of 17 months. This study makes it
possible for lapatinib combined with capecitabine to replace
WBRT as the first-line treatment for brain metastasis of HER2-
positive breast cancer. Moreover, a larger scale randomized phase
III trial is warranted.313

The need of treatment and prevention of brain metastasis in
breast cancer patients has yet not been met. Current systemic
treatments lack standard care.319,324 The first clinical decision on
systemic therapy should be based on the best choice for systemic
disease management outside the CNS. In previous retrospective
studies, T-DM1 seemed to be an effective and well-tolerated
treatment for brain metastasis in HER2-positive breast cancer
patients.325,326 These findings require a prospective validation.
Thus, clinical trials of new drugs related to the CNS remains a high
priority.313–315

Emerging treatment strategies for HER2-positive MBC. Discovery of
new targets will lead to development of new and more effective
drugs for the treatment of HER2-positive breast cancer.281 Data
from several interesting studies of HER2-positive MBC were
presented at 2018 ASCO annual meeting.327

Early phase studies using novel antibody-drug conjugates
(ADCs), such as trastuzumab-deruxtecan175,328–330 suggest that
these drugs are relevant to the clinical activity of pretreated
patients; in addition, these ADCs may also play a role in tumors
with low HER2 expression. These trials, while not immediately
changing clinical practice, indicate the future direction of drug
development in this area. T-DM1 in combination with neratinib,331

a TKI, produced high response rates. A comprehensive analysis of
two tucatinib studies showed that after local treatment of brain
metastases, systemic therapy is effective if the CNS progresses in
isolation and extracranial disease is stable.332,333

Anti-HER2 antibodies have synergistic effects with PD-L1
inhibitors.334 In the exploratory study of immune checkpoint
inhibitors for HER2-positive ABC, pembrolizumab in combination
with trastuzumab has demonstrated benefit efficacy and tolerate
safety in trastuzumab-resistant patients with PD-L1 positive
detection. PANACEA study335 showed that 15% ORR can be
obtained with trastuzumab plus Pembrolizumab for treatment of
HER2+ MBC after drug resistance, providing an initial basis for
combined anti-HER2 immunotherapy. The results of this study
provide us with some beneficial enlightenment. Currently, a
number of phase III trials are exploring combined immunotherapy
against HER2. Further studies should focus on this breast cancer
subtype with PD-L1 positive individuals as initial treatment and
choose the right subgroup and the right combination strate-
gies.334,336,337

CDK4/6 inhibitors affect cell cycle and are potentially comple-
mentary to trastuzumab.174 Combination regimens have also been
observed to delay tumor growth in phase Ib clinical trials. PATINA
and MONARCHER are exploring anti-HER2 therapy in combination
with CDK4/6 inhibitors.338

CONCLUSIONS AND FUTURE PERSPECTIVES
Breast cancer, which affects many women worldwide, is a complex
and heterogeneous disease, which can divided into many
subtypes. The HER2-positive breast cancer accounts for 20–25%
of all breast cancers, and it is of great concern in research and

clinical practice. This highly malignant cancer is very aggressive
and has poor metastasis and recurrence outcomes. Anti-HER2
therapy is the cornerstone for early and advanced HER2-positive
breast cancer. All kinds of regimens for HER2-positive breast
cancer should follow anti-HER2 principle.
Trastuzumab is a landmark drug for the anti-HER2 treatment. It

changes the treatment pattern and prognosis in HER2-positive
breast cancer patients. One-year treatment with trastuzumab is a
standard for the adjuvant therapy. Extending the treatment time
has been confirmed not to further improve the efficacy, while it
may increase the cardiotoxicity events. However, shortening the
treatment period of trastuzumab administration shows no
benefits, to some extent. Pertuzumab showed an overall good
efficacy in adjuvant therapy. High-recurrence risk groups (positive-
lymph nodes or ER/PR negative patients) can benefit significantly
from double-targeted adjuvant therapy. At present, this innovative
treatment scheme has been recommended in multiple guidelines
in accordance with experts in China and abroad.
Nevertheless, 25% of early HER2-positive breast cancer patients

still experience disease recurrence after initial anti-HER2 therapy.
Currently, the standard of first-line care for HER2-positive MBC is
dual anti-HER2 blocking with pertuzumab and trastuzumab plus
chemotherapy. The T-DM1 is recommended as the second-line
treatment, and small-molecule TKI as the third-line.
Although trastuzumab, pertuzumab, lapatinib, and neratinib are

greatly promising drugs, some patients may show no response or
develop drug resistance after a period of treatment. The
emergence of many new drugs provides a new view for combined
treatment strategies against HER2. In clinical practice, it is a
direction of future clinical research to explore new clinical trial
methods, especially research design on gene level. In the next 10
years, the detection techniques of HER2 will be further refined and
the results will be more accurate. Research on molecular biology
of breast cancer should be carried out to discover the key genes
that affect the proliferation and metastasis of breast cancer cells.
More convenient and valid prediction of prognostic factors will
guide the individualized diagnosis and treatment of HER2-positive
breast cancer. Through a large number of data analysis, revealing
the law of efficacy and safety to determine reasonable adminis-
tration of regimens should be our persistent effort in the struggle
for ultimate cure and greater survival benefits.
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