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Abstract
Background Clinical and preclinical studies have revealed that alterations in DNA damage response (DDR) pathways may
play an important role in prostate cancer (PCa) etiology and progression. These alterations can influence PCa responses to
radiotherapy and anti-androgen treatment. The identification of DNA repair gene aberrations in PCa has driven the interest
for further evaluation whether these genetic changes may serve as biomarkers for patient stratification.
Methods In this review, we summarize the current knowledge on DDR alterations in PCa, their potential impact on clinical
interventions and prospects for improved management of PCa. We particularly focus on the influence of DDR gene
mutations on PCa initiation and progression and describe the underlying mechanisms.
Results and Conclusions A better understanding of these mechanisms, will contribute to better disease management as
treatment strategies can be chosen based on the specific disease properties, since a growing number of treatments are
targeting DDR pathway alterations (such as Poly(ADP-ribose) polymerase inhibitors). Furthermore, the recently discovered
crosstalk between the DDR and androgen receptor signaling opens a new array of possible strategies to optimize treatment
combinations. We discuss how these recent and ongoing studies will help to improve diagnostic, prognostic and therapeutic
approaches for PCa management.

Introduction

Prostate cancer (PCa) is the second most common cancer in
men and the fourth most common tumor type worldwide
[1]. Although organ-confined disease can be well managed,
curative therapeutic options for disseminated disease are
limited. First-line therapy for disseminated PCa is androgen
deprivation therapy (ADT) that prevents androgen receptor
(AR) pathway signaling as most PCas are dependent on

activated AR signaling for cell survival [2, 3]. In time,
patients under ADT may progress to castration-resistant
PCa (CRPC), requiring first line chemotherapy (commonly
docetaxel) [4]. New therapeutic strategies for CRPC are
being offered to patients, such as new combinations and
sequences of second-generation antiandrogen therapy
(enzalutamide, abiraterone, apalutamide) or second line
chemotherapy (cabazitaxel), which have shown notable
benefit for patient survival [4]. In addition, promising new
treatment modalities, such as Radium-223 and prostate-
specific membrane antigen (PSMA)-directed radioligand
therapy, are being exploited for patients with (bone) meta-
static disease. Despite this progress in the development
of new drugs, CRPC continues to be incurable, and drug
resistance remains an issue.

Clinical and preclinical studies have revealed that
alterations in DNA damage response (DDR) pathways play
a role in PCa etiology and progression, especially in CRPC
patients [5–10]. These DNA repair defects may be targeted
by specific treatments, such as Poly(ADP-ribose) poly-
merase (PARP) inhibitors [11]. Moreover, several studies
provided evidence that AR signaling links to the DDR in
prostate cancer cells, which may have relevance for the first

* Julie Nonnekens
j.nonnekens@erasmusmc.nl

1 Department of Molecular Genetics, Erasmus MC, Rotterdam, The
Netherlands

2 Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
3 Department of Radiation Oncology, Erasmus MC Cancer Institute,

Rotterdam, The Netherlands
4 Department of Experimental Urology, Erasmus MC,

Rotterdam, The Netherlands
5 Department of Radiology and Nuclear Medicine, Erasmus MC,

Rotterdam, The Netherlands

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41391-019-0153-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41391-019-0153-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41391-019-0153-2&domain=pdf
http://orcid.org/0000-0003-1473-8148
http://orcid.org/0000-0003-1473-8148
http://orcid.org/0000-0003-1473-8148
http://orcid.org/0000-0003-1473-8148
http://orcid.org/0000-0003-1473-8148
http://orcid.org/0000-0002-9644-7522
http://orcid.org/0000-0002-9644-7522
http://orcid.org/0000-0002-9644-7522
http://orcid.org/0000-0002-9644-7522
http://orcid.org/0000-0002-9644-7522
mailto:j.nonnekens@erasmusmc.nl


line disease management using ADT and AR-targeted
agents [12, 13]. In this review, we summarize the current
knowledge of DDR alterations in PCa, the AR-DDR
crosstalk and the potential exploitation of DDR targeting
drugs to improve clinical interventions.

DNA damage response pathways

DNA damage has emerged as a major culprit in cancer
initiation and progression. The DNA is constantly damaged
by exogenous sources such as genotoxic chemicals, ultra-
violet (UV), and ionizing radiation (IR), as well as by
endogenous DNA-damaging agents, such as reactive oxy-
gen and nitrogen species [14, 15]. These sources will induce
various damages to the DNA, including base oxidation,
deamination, alkylation, interstrand crosslinks, adduct for-
mation, single-strand breaks (SSBs), and double-strand
breaks (DSBs). Additionally, spontaneous DNA damage is
induced during replication. Collisions of the replication fork
with DNA-binding proteins or the transcription machinery
are the most common causes leading to replication fork
stalling or collapse, which in turn induces DNA damage
[16, 17]. Incorrect or failed repair of damaged DNA can
lead to genetic alterations. Important consequences of
genetic alterations are loss of tumor suppressor genes and
activation of oncogenes, which may trigger the develop-
ment of malignant cells or increase aggressiveness of tumor
cells. Normal cells maintain genomic integrity using various
DDR mechanisms to repair damaged DNA or induce cell
death. The concept of DDR has been introduced to describe
a series of biological reactions including DNA lesion site
detection, repair protein recruitment, damage repair, cell
cycle checkpoint control, and cell death pathways.

The highly diverse spectrum of DNA lesions can be
repaired by a number of different DNA repair pathways,
which have been reviewed extensively elsewhere [18–20].
In short, base excision repair (BER) involves multiple
enzymes to excise and replace a single damaged nucleotide
base, such as an oxidized base, but also an SSB [21].
Mismatch repair (MMR) is mainly involved in repair of
base mismatches and insertions/deletions that can occur
during replication and recombination [22]. The Fanconi
anemia (FA) pathway repairs DNA interstrand crosslinks in
the genome [23]. DSBs are resolved either by high-fidelity
homologous recombination (HR) or error-prone non-
homologous end joining (NHEJ). The HR pathway is only
active when the cell is in the S/G2 cell cycle stage since it
requires the presence of the sister chromatid as a repair
template [24]. DSBs can be generated during replication
when the replication fork encounters a DNA lesion and
these breaks are exclusively repaired by HR. NHEJ is active
during all cell cycle stages and functions by directly ligating

broken DNA ends. Since no template is used during NHEJ,
repair via this pathway is error prone (Fig. 1) [24]. After
DNA damage induction, depending on the severity of the
lesion and repair capacity, cells will continue to proliferate
if damages are repaired, or cells stop proliferation, become
senescent, or undergo programmed cell death (apoptosis)
to remove damaged DNA from the cellular population [25].
Alterations in any of these pathways can result in genomic
instability and consequently predispose to cancer, affect
disease progression and/or influence therapy efficacy.
Nonetheless, impaired DNA repair can also be a possible
Achilles heel of the cancer that can be exploited for treat-
ment [26].

Molecular mechanisms underlying PCa risk

Multiple studies have indicated that germline mutations in
DNA repair genes are associated with a higher risk of
developing PCa. The individuals at risk have one inherited
dysfunctional allele of the DNA repair gene and a second
event (mutation or epigenetic silencing) can cause inacti-
vation of the functional allele. The most common germline
mutated DDR genes in primary PCa or CRPC are found in
the Breast Cancer 1 and 2 (BRCA1 and BRCA2) genes.
Similar to the role of mutations in BRCA1/2 in the devel-
opment of breast cancer and ovarian cancer [14], various
studies have shown that inactivating BRCA1/2 mutations,
predominantly BRCA2, increase predisposition to PCa

Fig. 1 DNA double strand (DSB) and single-strand break (SSB) repair
pathways. The majority of the DSBs are repaired by the error-prone
Non-Homologous End-Joining pathway (NHEJ, available during all
cell cycle stages) and a smaller fraction of the DSBs are repaired via
Homologous Recombination (HR, only during S/G2 cell cycle stages).
SSBs are repaired by the Single Strand Break Repair pathway
(available during all cell cycle stages). During DNA replication an
unrepaired SSB can be converted into a DSB which can then only be
repaired by HR
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(Table 1) [7–9, 27–29]. BRCA1/2 are tumor suppressor
genes and both encode large proteins which act in multiple
cellular pathways. BRCA1 and BRCA2 are both involved
in the HR pathway [30, 31], while BRCA1 has also been
found to have other functions [32]. Loss-of-function
mutations in BRCA1/2 lead to a deficiency in error-free
HR repair. Therefore, DSBs will be repaired alternatively
by other non-conservative and potentially mutagenic
mechanisms, such as the NHEJ pathway. The resulting
genomic instability (chromosomal translocations and dele-
tions) and mutations may be the underlying mechanism of
BRCA1/2 associated cancers [33, 34]. This could increase
the risk of acquiring fusion genes, such as the TMPRSS2/
ERG fusion that is found in 40-50% of PCa cases [35],
although no solid evidence has been acquired to link
BRCA1/2 mutation status to this fusion. Furthermore, the
reason why BRCA1/2 mutations are particularly associated
with specific cancer types, such as breast, ovarian and PCa
remains unknown.

Francis et al. showed that BRCA2 can act as a tumor
suppressor in the prostate [36]. Using a genetically engi-
neered mouse model, it was found that deletion of Brca2 in
prostate epithelia resulted in focal hyperplasia and low-
grade prostate intraepithelial neoplasia (PIN) in animals
over 12 months old. Epithelial cells in these lesions showed
an increase in DNA damage. The evidence that other
inherited gene mutations in DSB repair genes, such as
BRCA1 Interacting Protein C-Terminal Helicase 1 (BRIP1)
and Nibrin (NBS1), are also associated with PCa has been
documented less extensively [6, 8].

Besides DSB gene alterations, mutations in the MMR
genes MutS homolog 2 and 6 (MSH2 and MSH6) are also
associated with increased PCa risk [7, 27]. MMR mutations
would mainly cause point mutations or small insertions and
deletions of short repetitive sequences of DNA which may
result in microsatellite instability [37]. Therefore, under-
lying mechanisms of PCa can be linked to Lynch syndrome,

a hereditary ‘non-polyposis’-colorectal carcinoma that is
caused by MMR pathway mutations. The increased risk of
PCa in MMR mutation carriers and in families with Lynch
syndrome provide the rationale to include PCa in the Lynch
syndrome tumor spectrum, which is relevant for risk esti-
mates and surveillance recommendations in MMR mutation
carriers [38].

DDR defects in PCa

DDR defects in primary PCa

The clinical behavior of localized PCa is highly variable:
while some men have aggressive cancer leading to metas-
tasis and death, many others have indolent cancers and
these men can be cured by local therapy or may be safely
observed without treatment [39]. Several studies have
identified primary PCa tumors harboring a diversity of DDR
gene alterations (summarized in Table 2) [40–45]. These
studies identified a heterogeneous panel of repair defects
caused by homozygous mutations or copy number altera-
tions in primary prostate tumors compared to paired normal
tissue in Ataxia–telangiectasia mutated (ATM), BRCA2,
RAD51, mediator of DNA damage checkpoint 1 (MDC1),
PARP1, and FA complementation group D2 (FANCD2),
although the level of incidence varied between the studies.
This considerable heterogeneity of repair defect prevalence
among different studies could at least in part be attributed to
the diversity of the study populations, as the genetic back-
ground can differ significantly between indolent, non-
symptomatic and progressive PCa [46–48].

Loss-of-function DDR gene mutations can contribute to
a more aggressive PCa phenotype with a higher probability
of nodal involvement and distant metastasis [5, 49–51].
This aggressive phenotype was also reported in patients
harboring BRCA1/2 and ATM combined mutations [52] and

Table 1 Germline DDR mutations increase PCa risk

Gene Path-
way

Relevance

BRCA1 [9] HR Deleterious BRCA1 mutations confer a relative PCa risk of 3.75, and a 8.6% cumulative risk
by age 65.

BRCA1 and BRCA2 [28, 49, 61] HR BRCA2 mutation carriers have an increased risk of PCa and a higher histological grade.
BRCA1 and BRCA2 mutation carriers had a higher risk of recurrence and PCa-specific death.

MSH2, MLH1, and MSH6 [27] MMR Increased PCa risk. Evidence to link PCa to Lynch syndrome.

MLH1, MSH2, MSH6, and PMS2 [7] MMR MMR genes may confer a high risk of PCa when mutated.

MSH2, MLH1, and MSH6 [29] MMR MMR gene mutation carriers have at least a twofold or greater increased risk of developing
MMR-deficient PCa where the risk is highest for MSH2 mutation carriers.

BRIP1 [8] FA Truncating mutations in BRIP1 might confer an increased risk of PCa

BRCA1/2: Breast Cancer 1 and 2, MSH2/6: MutS protein homolog 2 and 6, MLH1: MutL homolog 1, PMS2: PMS1 homolog 2, BRIP1: BRCA1
interacting protein C-terminal helicase1, HR: homologous recombination, MMR: mismatch repair, FA: fanconi anemia pathway

26 W. Zhang et al.



NBS1 mutations alone [6]. Recent clinical data have shown
a strong prognostic value of a DDR mutation signature
which may be used for risk stratification for high-risk PCa
patients. Treatment outcome for BRCA1/2 mutation carriers
showed worse outcomes for these patients than non-carriers
when conventionally treated with surgery or radiation
therapy [53].

The studies discussed above found DDR mutations in
primary PCa, with a heterogeneous and overall low muta-
tion rate. However, a direct (mechanistic) link between
these mutations and PCa predisposition and treatment has
not yet been established. As primary PCa is typically well
managed and not lethal, it will therefore be of more interest
to focus on the landscape of DDR defects in advanced PCa.

DDR defects in mCRPC

An enrichment of DDR gene alterations can be found dur-
ing PCa progression, especially when the disease develops
into metastatic CRPC (mCRPC) (summarized in Table 3)
[54–56]. Heavily pre-treated mCRPC contained more
genetic alterations in DDR genes (46%) than treatment-
naive high grade localized tumors (27%) [54]. A multi-
institutional clinical sequencing study revealed that the
majority of affected individuals with CRPC harbor clini-
cally actionable homozygous molecular alterations, with
23% of mCRPC harboring DDR aberrations and 8% har-
boring DDR germline mutations [55]. Aberrations in
BRCA1, BRCA2, and ATM were observed at substantially
higher frequencies (19.3% overall) in mCRPC compared

to those in primary PCa. Among these DDR alterations,
BRCA2 was the most frequently altered (12.7%), and ∼90%
of these BRCA2 defective tumors exhibited biallelic loss. As
aberrations in these genes are expected to confer sensitivity

Table 3 Prevalence of selected DDR genes alteration in mCRPC

DDR
pathway
involved

Grasso et al.
[54]

Robinson
et al. [55]

Total

Number of
patients

59 150 209

ATM General 11.8% (7) 5.3% (8) 7.2% (15)

ATR 5% (3) 8.6% (13) 7.7% (16)

BRCA1 HR 0.7% (1) 0.5% (1)

BRCA2 11.8% (7) 9.3% (14) 10.0% (21)

RAD51 1.7% (1) 2.0% (3) 1.9% (4)

PARP1 BER 3% (2) 2.7% (4) 5.5% (6)

MLH1 MMR 1.7% (1) 1.3% (2) 1.4% (3)

MSH2 3.3% (2) 2.7% (4) 2.9% (6)

FANCD2 FA 3.3% (2) 2.7% (4) 2.9% (6)

All genes 41.6% 35.3% 40%

Data was acquired from The Memorial Sloan Kettering cBioportal
database (http://cbioportal.org)

ATM: ataxia–telangiectasia mutated serine/threonine kinase, ATR:
ATM and RAD3-related serine/threonine kinase, BRCA1/2: Breast
Cancer 1 and 2, RAD51: RAD51 recombinase, PARP1: poly(ADP-
ribose) polymerase 1, MLH1: MutL homolog 1, MSH2: MutS protein
homolog 2, FANCD2: FA complementation group D2, HR: homo-
logous recombination, BER: base excision repair, MMR: mismatch
repair, FA: fanconi anemia pathway

Table 2 Prevalence of selected
DDR gene alteration in
primary PCa

DDR
pathway
involved

Barbieri
et al. [41]

Baca et al.
[40]

Cancer
Genome
Atlas [42]

Fraser
et al. [45]

Ren et al.
[44]

Total

Number of
patients

112 57 333 449 65 1017

ATM General 2.8% (3) 12.5% (7) 7.2% (24) 1.8% (8) 3.1% (2) 4.3% (44)

ATR 1.8% (1) 2.4% (8) 5% (3) 1.2% (12)

BRCA1 HR 1.8% (2) 1.2% (4) 1.5% (1) 0.69% (7)

BRCA2 7.1% (4) 3.3% (11) 1.5% (1) 1.58% (16)

RAD51 3.6% (2) 2.1% (7) 0.88% (9)

PARP1 BER 3.6% (2) 3.0% (10) 3.1% (2) 1.38% (14)

MLH1 MMR 0.3% (1) 0.09% (1)

MSH2 1.5% (5) 0.49% (5)

FANCD2 FA 1.8% (1) 0.9% (3) 1.5% (1) 0.49% (5)

All genes 4.6% 30.4% 21.9% 1.8% 15.7% 11.1%

Data was acquired from The Memorial Sloan Kettering cBioportal database (http://cbioportal.org)

ATM: ataxia–telangiectasia mutated serine/threonine kinase, ATR: ATM and RAD3-related serine/threonine
kinase, BRCA1/2: Breast Cancer 1 and 2, RAD51: RAD51 recombinase, PARP1: poly(ADP-ribose)
polymerase 1, MLH1: MutL homolog 1, MSH2: MutS protein homolog 2, FANCD2: FA complementation
group D2, HR: homologous recombination, BER: base excision repair, MMR: mismatch repair, FA: fanconi
anemia pathway
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to PARP inhibitors [56], nearly 20% of mCRPC patients
may potentially benefit from this therapy. Additionally,
three out of four mCRPC tumors in this cohort which pre-
sented hypermutations are harboring defects in the MMR
pathway genes MLH1 or MSH2 [55]. Whether this abun-
dance of DDR alterations is specifically targeted to these
genes or a general consequence of high mutational burden
for advanced disease is still unclear.

DDR defects and response to PCa treatment

Various retrospective and prospective studies have been
performed in which treatment outcome to conventional PCa
treatment was compared in DDR mutation carriers and
wild-type individuals. The prognostic and predictive
impact related to standard therapies for DDR mutated
mCRPC has yet to be determined, since these trials (sum-
marized in Table 4) report inconsistent and conflicting
outcomes: one study found no difference between the
patient groups [57], while other studies reported DDR
mutation carriers to have either inferior [58] or improved
responses [59, 60] to the therapy. This inconsistency
could be explained in several ways. First, the number of
mCRPC patients harboring DDR mutations is very limited
in each cohort. Second, the results can be biased due to
different sampling, as metastatic biopsies are only feasible
for patients with low-to-moderate tumor burden. This
might exclude highly aggressive tumors and blood-based
sequencing may underestimate the mutation rate as the
somatic status is unknown for certain patients. Third, the
disease showed extensive heterogeneity and patients had
received various pre-treatments in the different cohorts. A
recent prospective study showed that BRCA2 mutation
carriers have a worse outcome in mCRPC disease and this
may be affected by the first line treatment used [61].
However, future prospective studies are needed to shed

further light on this issue and will hopefully resolve the
above-mentioned controversy.

Radium-223, a bone-seeking α-particle emitter that
induces DSBs, thereby killing cancer cells in the bone
microenvironment, is commonly used for CRPC patients
with symptomatic bone metastases [62]. Recently, a retro-
spective single-institution study showed that germline or
somatic HR-deficient patients responded better to Radium-
223 therapy compared to wild-type patients, with a better
alkaline phosphatase responses (80% vs 39%, p= 0.04),
and a trend toward longer overall survival (median 36.9 vs
19.0 months, p= 0.11) [63]. Synthetic lethality between HR
mutations and Radium-223 activity maybe the underlying
mechanism of a better efficacy, however these promising
results need further (prospective) validation.

AR and DDR pathway crosstalk

Clinical trials have shown that the combination of ADT or
anti-androgens with radiotherapy significantly increases
patients survival and reduces distant metastases compared
to radiotherapy alone [64–69]. It is widely perceived that
suppression of the AR axis enhances the cytotoxic effects
of radiotherapy and based on the beneficial effects, this
combination is currently the standard of care for locally
advanced PCa.

The molecular mechanism of radiosensitization induced
by ADT was investigated in preclinical studies. Goodwin
et al. reported that ADT potentiates the tumor-killing effect
of ionizing radiation (IR) in AR proficient cells both in vitro
and in vivo: ADT treated C4-2 (androgen independent) cells
had a diminished capacity to repair IR induced DSBs. This
study showed that the AR pathway directly regulates the
NHEJ factor DNA-dependent protein kinase catalytic sub-
unit (DNA-PKcs), resulting in a slight increase in NHEJ

Table 4 Clinical outcome of mCRPC patients with wild type vs DDR gene mutations after standard AR-targeting therapy

Author and year Study design Sampling Treatment DDR defect
patients

PSA-PFS OS

Annala et al. 2017 [58] Retrospective
four cohorts

Blood
germline

Enzalutamide/
Abiraterone

24/319 (7.5%) 3.3 mo DDR(-)
vs 6.2 mo WT

29.7 mo DDR(-)
vs 34.1 mo WT

Mateo et al. 2018 [57] Retrospective
two cohorts

Blood
germline

Enzalutamide/
Abiraterone

60/390 (15.4%) 8.3 mo DDR(-),
vs 8.3 mo WT

36 mo DDR(-)
vs 38.4 mo WT

Antonarakis et al. 2018 [59] Retrospective/
prospective
Single cohort

Blood
germline

Enzalutamide/
Abiraterone

22/172 (12%) 10.2 mo DDR(-)
vs 7.6 mo WT

41.1 mo DDR(-)
vs 28.3 mo WT

Hussain et al. 2018 [60] Randomized phase 2
multicenter trial

Biopsy
mixed

Abiraterone plus
Prednisone

20/80 (25%) 16.6 mo DDR(-)
vs 8.2 mo WT

N/A

Castro et al. 2019 [61] Prospective
multicenter/cohort

Blood
germline

Abiraterone
Enzalutamide

16/302 (5.3%)
8/126 (6.3%)

8.1 mo DDR(-)
Vs 9.2 mo WT
(combined)

N/A

PSA: prostate-specific antigen, PFS: progression-free survival, OS: overall survival, DDR: DNA damage response, WT: wild-type
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activity upon androgen addition in a plasmid-based func-
tional assay [12]. The involvement of NHEJ was confirmed
by Polkinghorn et al. who identified a set of 32 DDR genes
as direct AR target genes [70]. Other studies using patients
samples have demonstrated that castration primarily reduces
Ku70 protein expression, which is essential for NHEJ
[71, 72]. These studies suggest that ADT enhances IR
effects by impairing NHEJ activity. Reciprocally, IR treat-
ment caused marked induction of the androgen target genes
TMPRSS2 and FKBP5 [12], suggesting that DNA damage
induces AR activity (Fig. 2).

In addition to direct regulation of the NHEJ pathway,
other studies show that AR signaling plays a role in reg-
ulating genes involved in the HR, MMR, and FA pathways
[12, 70, 73]. Enzalutamide treatment suppressed the
expression of the HR genes BRCA1, RAD54L, and RecQ
Mediated Genome Instability 2 (RMI2) [73]. A combination
strategy in which enzalutamide pretreatment was followed
by the PARP inhibitor olaparib resulted in significantly
increased PCa cell apoptosis and inhibited colony formation
in vitro. Further in vivo evaluation showed clear synergistic
suppressive effects on PCa xenografts in hormone-sensitive
models, but not in CRPC models [73]. However, from these
studies, it is not yet clear whether enzalutamide directly
induces HR deficiency, also called the BRCAness pheno-
type. A reduction of the S/G2 cell cycle fraction might also
have caused reduction of HR gene expression, which
resulted in reduced HR in the total cell population. What-
ever the mechanistic explanation may be, this study war-
rants further clinical investigation into AR and PARP
inhibitor combination therapies.

Based on these results, it is clear that both preclinical and
clinical studies have found that AR signaling regulates the

expression and/or function of DDR genes. Elucidation of
the precise regulatory mechanisms and pathway interactions
requires additional studies, which should focus on direct
measurement of NHEJ and HR capacity in the presence and
absence of AR signaling.

Exploiting DDR alterations for PCa treatment

As discussed above, 10–25% of PCa patients are harboring
DDR mutations, especially among mCRPC patients. This
section summarizes clinical and preclinical evidence how
DDR alterations could be exploited therapeutically.

Immune checkpoint inhibitors

The successful development of immune checkpoint inhibi-
tors such as programmed cell death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L1) inhibitors revolutio-
nized the field of cancer immunotherapy [74]. The inter-
action of PD-L1 on tumor cells with PD-1 on T-cells
reduces T-cell functionality, preventing the immune system
from attacking the tumor cells. Inhibitors that block this
interaction can unleash a patient’s own T cells to kill tumors
[75]. Immunotherapy responses appear to correlate with the
mutational burden, presumably by the increase in neo-
antigens [76]. PCa patients harboring MMR mutations, such
as in MLH1 or MSH2, could be selected for PD-1 blockade
immunotherapy, as a favorable response to PD-1 blockade
therapy was observed previously in MMR-deficient tumors,
as a result of the high level of neo-antigens in various solid
tumors [77]. Interestingly, ductal adenocarcinoma, an
aggressive histopathology of PCa, is associated with MMR
defects, suggesting that these patients are possible candi-
dates for this type of immunotherapy [78]. Interestingly, an
increase in neo-antigens was also observed in patients who
harbor a HR deficiency [79]. Altogether, these subgroups
represent nearly 20% of mCRPC patients, making the use of
PD-1/PD-L1 inhibitors a potentially attractive strategy for
clinical trials in these patients.

PARP inhibitor treatments

Monotherapy

Tumors with compromised HR are highly sensitive to
reduction of SSB repair by PARP1 inhibition, a phenom-
enon called synthetic lethality [80–82]. The mechanism of
action of PARP inhibitors was originally described as
inhibition of SSB repair via blocking the catalytic activity of
PARP1. Unrepaired SSBs will be converted into the more
genotoxic DSBs during DNA replication. These DSBs are
repaired via HR in normal cells, but cannot be repaired in

Fig. 2 Interplay between androgen receptor (AR) and DNA damage
repair in prostate cancer. Activation of AR by dihydrotestosterone (T)
leads to transcriptional upregulation of DNA repair genes in various
repair pathways. Reciprocally, irradiation results in upregulation of
keys genes in the AR pathway via ROS. HR, homologous recombi-
nation; NHEJ, non-homologous end-joining; ROS, Reactive oxygen
species; IR, Irradiation
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HR-deficient cancer cells, leading to tumor-specific cell
death. Recently, this model has been updated as studies
have shown that various PARP inhibitors are able to trap
PARP1 at the DNA damage site [83–85]. Trapped PARP
results in DSBs when the replication fork encounters this
lesion, which require HR for resolution (Fig. 3). Con-
sidering the different PARP trapping abilities of the dif-
ferent PARP inhibitors, various therapeutic responses can
be expected, with talazoparib having the most profound
PARP trapping and cytotoxic effects [86].

Following previous in vitro [80, 81] and in vivo studies
in Brca2 knockout breast and ovarian tumor mouse models
[87, 88], a number of trials evaluated PARP inhibitors as a
single agent in CRPC patients with HR defects. The
TOPARP study evaluated olaparib in a population of 50
mCRPC patients. Interestingly, 14 out of 16 DDR mutation
carriers responded to olaparib treatment, compared to two of
33 patients in the non-DDR mutated group [56]. The pro-
mising results from this study led to the initiation of a large
number of clinical trials targeting PARP by different inhi-
bitors with or without HR gene mutation preselection in
order to validate the effect, evaluate its safety profile and
define the optimal timing of prescribing PARP inhibitors in
mCRPC [89–92]. Interestingly, a recently published multi-
center retrospective study including 23 mCRPC patients
harboring DDR mutations (2 BRCA1, 15 BRCA2 an 6 ATM)
showed that men with ATM mutations responded inferior
to PARP inhibitor treatment compared to BRCA1/2 muta-
tion carriers [93]. These data suggest that ATM mutated
patients may not benefit from PARP inhibitor treatment
as previously thought, and preselection of patients is
importance to avoid unnecessary toxicity.

It is to be expected that due to increased use of next
generation sequencing approaches, it is likely that more PCa
patients with HR defects will be detected. However, the
implementation and standardization of genomic testing still
remains a major challenge. Besides blood-based germline
mutation and biopsy based somatic mutation testing, new
studies are looking into circulating tumor cells (CTC)
or cell-free DNA based detection of a panel of clinically
actionable genes to select eligible patients [90, 94, 95].
Moreover, the efforts made for identifying tumors with HR
deficiency by using mutational signatures (HRDetect) or
functional HRD tests will guide us to a more personalized
cancer management approach [96–100].

Combination therapies

Besides PARP inhibition as monotherapy, trials have
been initiated to evaluate combination of PARP inhibitors
with other treatments in mCRPC patients. In view of
the working mechanism of PARP inhibitors, an obvious
strategy is to combine them with DNA-damaging agents, such
as chemotherapy, radiotherapy and radioligand therapy
(ongoing clinical trials are summarized in Table 5). Synergy
with PARP inhibitors was identified in various clinical trials
in other tumor types [101]. However overlapping hematolo-
gical toxicities may represent a major hurdle when
combining DNA-damaging agents and PARP inhibitors [102].

Previous preclinical work offered the rationale for the
potential synergy of combining AR-targeting agents with
PARP inhibitors. First, blockage of AR signaling and PARP
inhibition cause downregulation of the DNA repair capacity
of the cells via different complementary pathways (DSB
repair and SSB repair) [73, 103]. According to preclinical
studies, anti-androgen treatments may induce a BRCAness
phenotype, which can be targeted by PARP inhibition.
Second, PARP1 has been reported to promote AR-
dependent transcription and PARP inhibitors will therefore
reduce AR-functioning [104]. Unfortunately, a randomized
multicenter trial failed to show a significant difference in
prostate-specific antigen (PSA) response rate and median
progression-free survival (PFS) between patients treated
with abiraterone/prednisone plus the PARP inhibitor veli-
parib compared to abiraterone/prednisone alone [105]. Lack
of effectivity can be explained by inefficient PARP trapping
by veliparib. Interestingly, another recent randomized
double-blind phase 2 trial showed significantly longer PFS
for mCRPC patients receiving olaparib plus abiraterone
treatment than single abiraterone therapy. Although the
combination strategy showed more adverse events than
monotherapy, the health-related quality of life did not
decline [106]. These clinical data support the preclinical
results in which synergy between olaparib and AR signaling
inhibitor was found, regardless of the HR status [73, 103].

Fig. 3 Mechanism of action of Poly(ADP-ribose) polymerase (PARP)
inhibitor. PARP enhances repair of single-strand breaks (SSBs) via
base excision repair (BER). If SSBs remain unrepaired due to inhi-
bition of PARP catalytic activity with PARP inhibitors (PARPi),
double-strand breaks (DSBs) can be formed during replication.
Alternatively, PARPi can trap the PARP protein on the DNA, which
causes replication fork (RF) stalling and collapse. Homologous
recombination (HR) is essential for repairing these DSBs
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Other trials are combining PARP inhibitors with vascular
endothelial growth factor (VEGF) inhibitors, which func-
tion by inhibiting tumor angiogenesis. Preclinical studies
showed that restriction of angiogenesis induces hypoxia,
which may create a BRCAness phenotype by reducing the
expression of BRCA1 and RAD51 [107]. The VEGF inhi-
bitors bevacizumab and cediranib were reported to induce
severe hypoxia, causing a reduction of HR capacity and
increased sensitivity to PARP inhibitors [108]. Based on
these data, a clinical study targeting both processes in
mCRPC patients is ongoing (Table 5).

Another approach that has been explored is the use of
PARP inhibitors as radiosensitizer for patients with high-
risk localized PCa (radiotherapy) or with metastatic lesions
(radioligand therapy). Irradiation induces cell death by the
production of reactive oxygen species (ROS) as well as by
direct ionization of the DNA which leads to SSBs and
DSBs. PARP inhibition is predicted to enhance this effect
by preventing the repair of radiation-induced SSBs. In vitro
models support the idea that PARP inhibitors can enhance
radiation-induced cytotoxicity [109, 110]. Similar results
were also found in targeted radioligand therapy for PCa
[111], suggesting targeted radiotherapy can be further
optimized in combination with PARP inhibitors.

As described above, the MMR pathway has been
implicated in the immunotherapy response and alterations in
other DDR genes may also increase efficacy of immu-
notherapy [79, 112]. Therefore, several studies were started
in which PARP inhibitors were combined with immu-
notherapy. The PARP1 inhibitor talazoparib has been found
to exhibit immunoregulatory effects in a Brca1 deficient
ovarian cancer mouse model as the number of peritoneal
CD8 (+) T cells and NK cells increased significantly after
talazoparib treatment [113]. Furthermore, Higuchi et al.
have shown that cytotoxic T-lymphocyte antigen-4 (CTLA-
4) antibody synergized with PARP inhibitors ther-
apeutically in the Brca1 deficient ovarian cancer mouse
model and support the clinical testing of this combination
regimen [114]. The first clinical trial with a small cohort of
patients showed that the PD-L1 inhibitor durvalumab plus
olaparib in mCRPC patients has acceptable toxicity and
efficacy, and the therapeutic response is superior in men
with DDR abnormalities [115]. This triggered other studies
to investigate whether mCRPC patients with DDR defects
would benefit from this particular combination therapy.
Clinical trials are ongoing to evaluate its safety, optimal
dosing and efficacy (Table 5).

Platinum-based chemotherapy

Platinum-based agents cause crosslinking of DNA, most
notably interstrand crosslinks that covalently couple both
DNA strands [116]. These crosslinks interfere with DNA

replication and translation and induce apoptosis. Although
platinum compounds have long been studied in advanced
PCa patients in a large number of clinical trials, the various
treatment regimens have not demonstrated a significant
overall survival benefit in the overall patient population, and
no treatment has received approval. Tumors with mutations
in BRCA1/2 are specifically susceptible to platinum-based
chemotherapy since the interstrand crosslinks can only be
adequately repaired by HR-based DNA repair. Recent
clinical trials provided evidence that breast and ovarian
cancer patients with BRCA1/2 mutations are highly sensi-
tive to platinum-based chemotherapy [99, 117, 118].
Pomerantz et al. retrospectively analyzed a single-institution
cohort of mCRPC patients who received carboplatin-based
chemotherapy and showed that BRCA2 mutation carriers
had a higher response rate to carboplatin-based che-
motherapy than non-BRCA2 associated patients [119].
Furthermore, a few case reports also highlighted exceptional
responses to platinum-treatment in mCRPC patients with
HR defects [120, 121]. With such promising results, more
trials of carboplatin alone and in combination with doc-
etaxel have been designed in advanced PCa harboring DDR
aberrations (ongoing clinical trials are summarized in
Table 6).

DNA-PKcs targeting treatment

Besides the discovery of the AR-DDR crosstalk via the key
mediator DNA-PKcs, a following study has identified a new
function of DNA-PKcs as a potent driver of PCa progres-
sion. Goodwin et al. found that DNA-PKcs functions as a
selective modulator of transcriptional networks that induce
cell migration, invasion and metastasis and suppression of
DNA-PKcs inhibits tumor metastases. Moreover, DNA-
PKcs levels are significantly increased in advanced disease
and can be independently predictive for biochemical
recurrence, poor overall survival [122]. Based on these
findings, a phase I clinical trial is ongoing (NCT02833883)
in which the combination of enzalutamide and DNA-PKcs
inhibitor CC-115 is evaluated for treatment of mCRPC.

Conclusion

The identification of DDR defects in mCRPC has driven the
interest for further evaluation of these gene deficiencies in
patient stratification. PARP inhibitors may become part of
the standard care of mCRPC patients who harbor HR
deficiency; however the most optimal use of PARP inhibi-
tors alone or in combination with other treatment modalities
remains to be elucidated. Given the clearly aggressive
course of DDR-deficient PCa, there is an urgent need to
identify these patients at an early stage where the right
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treatment strategy could greatly improve prognosis. The
discovery that the AR may regulate DDR factors opens
a new array of possible strategies to optimize treatment
combinations. Future studies are needed to broaden our
understanding of DDR defects and interactions between
DNA repair pathways and other processes in PCa, as well
as to determine how this knowledge can be used to improve
diagnostic, prognostic and therapeutic approaches.
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