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The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and
memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is
principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third
trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is
exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal
growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter
hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental
disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review,
we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits
observed following common human pregnancy complications.

Pediatric Research; https://doi.org/10.1038/s41390-024-03105-7
IMPACT:

® The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal

life.

® We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship
between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early

neurodevelopment.

INTRODUCTION

The hippocampus lies deep within the medial temporal lobe of
the brain and mediates critical functions related to emotional
regulation, learning, memory, and cognitive functions. The
primary cellular structure and hippocampal form is laid down
in utero, ' with postnatal development necessary for the full
complement of cellular connections.? Both anatomically and
functionally, the hippocampus is a heterogeneous structure, with
distinct subfields that differentially regulate learning, memory, and
emotions. Common pregnancy complications, which include
preterm birth, fetal growth restriction (FGR), intrauterine inflam-
mation, and acute hypoxic-ischaemic insult at birth, can have
profound effects on brain development and disrupt the hippo-
campus with life-long consequences for brain function. The rapid
growth of the hippocampus during the third trimester of
pregnancy, combined with its high neuronal density, renders it
susceptible to injury in the event of intrauterine compromise.®*
Magnetic resonance imaging (MRI) studies confirm that hippo-
campal structure is altered in human infants in response to
perinatal compromise, with reduced hippocampal volume
observed in children born preterm or growth restricted.>>® A
recent meta-analysis demonstrates that preterm-born individuals
have smaller hippocampal volume compared to term-born

individuals, even after accounting for differences in brain size,
indicating that in utero compromise adversely impacts hippo-
campal growth.” Additionally, pregnancy complications can lead
to alterations in the connective pathways between the hippo-
campus and other brain regions. Subsequent to these structural
alterations, short- and long-term functional consequences have
been described, including problems in cognition, memory, and
motor function.

The breadth of clinical and preclinical studies to examine
normal and disrupted hippocampal development has necessitated
a two-part review. Part one of this review is focused on normal
hippocampal structure and function and provides available
evidence from human studies that common perinatal insults
disrupt hippocampal development. In the second part of this
review'?, we introduce the preclinical literature which describes
the mechanisms underlying altered hippocampal form and
function, including impaired neuronal morphology and synaptic
connectivity.

Overview of hippocampal structure

Hippocampus is derived from the Greek terms for horse (hippo)
and sea (kampos), reflecting the resemblance of this structure to a
seahorse. It lies within the medial temporal lobe and forms part of
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Fig. 1 Diagram of the hippocampal formation. a Diagram depicting connectivity within the hippocampal region, and the connections to the
entorhinal cortex (EC) layers (I-VI) and subcortical regions (i.e., thalamus, amygdala, hypothalamus). The distinct hippocampal subfields include
the dentate gyrus (DG), Cornu ammonis (CA),1, CA2, CA3, and subiculum (S). b The hippocampus is comprised of five layers; stratum alveus
(ALV) stratum oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), and stratum lacunosum moleculare (SL-M). Imaged created with

BioRender.com (agreement number YW266CRAY9).

the limbic system, regulating emotions, memory, cognitive
function, spatial navigation, and motivational processes.''™"® The
hippocampus comprises four cornu ammonis (CA) subfields (CA1,
CA2, CA3 and CA4) and, together with the dentate gyrus (DG),
subiculum and entorhinal cortex, is termed the hippocampal
formation'*'® (Fig. 1). These regions of the hippocampal
formation form a tightly connected circuit from the entorhinal
cortex to the DG, and then into the CA subfields, with outputs
from the subiculum to the thalamus, amygdala, hypothalamus,
septum, and prefrontal cortex.'® The hippocampus is a neuron-
rich, five-layer structure; a thin layer of white matter consisting of
axons, the stratum alveus (ALV), a pyramidal neuronal layer,
stratum pyramidale (SP) with basal dendrites extending to the
stratum oriens (SO) and apical dendrites projecting into the
stratum radiatum (SR), and stratum lacunosum moleculare (SL-M)
layers (Fig. 1b). Supporting the pyramidal cells within the
hippocampus are interneurons in the SO and SL-M layers, which
are present in many different subtypes, however, all contribute to
synaptic connections and cell signalling, and allow the intricacies
of the hippocampal circuit to function appropriately.'”~"®

Hippocampal structure and development

Hippocampal development commences within weeks of concep-
tion and continues through the first years of life in human infants
(Fig. 2). By week 8—9 of human gestation, the hippocampus is
distinguishable from other brain regions, marking the beginning
of distinct hippocampal development.> The DG and CA begin as
thin structures, and from 10 weeks’ gestation growth rate and
thickness increase resulting in the folding of the DG and CA
between 13 and 16 weeks’ gestation to form two interlocking
C-shaped structures, in a process termed hippocampal inver-
sion.>2>2" Histological assessments from Humphrey®° formed the
basis for many diagrammatic representations of hippocampal
development during gestation, particularly describing this inver-
sion, folding, and sulcation process. From the time of hippocampal
inversion until approximately 20 weeks’' gestation represents a
period of rapid growth, and it is said that the hippocampus
develops faster than most other brain regions during this time,
with peak neurogenesis occurring over this period." By 18 to
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21 weeks’ gestation, the cellular foundations of the hippocampal
formation are in place with the characteristic folded structure and
sulcus present, with a near-full complement of pyramidal
neurons.™' Thus, it is said that the hippocampus resembles the
‘adult’ form by mid-gestation in the human."?" Histological
analysis of human fetal and infant hippocampal samples
demonstrates that pyramidal neurons are primarily laid down in
the first half of pregnancy.??

The pyramidal neurons within the hippocampus align in an
organised unidirectional formation along the pyramidale layer,
residing within the five-layered structure from external to internal
hippocampus; ALV, SO, SP, SR, and SL-M,>® with the pyramidal
neuronal cell bodies sitting within the SP (Fig. 1). Interneurons
reside within the SO and SL-M layers and support the connectivity
and function of the pyramidal neurons. Formation of this five-
layered structure occurs over a prolonged period in late gestation,
with the pyramidal neurons following a “climbing” technique from
the ventricular zone, where they are generated, to the SP layer,
where they will reside. The climbing technique seen in the
hippocampus differs from the typical migration of cortical and
neocortical neurons>*?> and occurs due to the highly branched
processes on the migrating hippocampal cells, which make
contact with the radial fibres to allow a zig-zag motion through
to the crowded SP layer.? In the CA1 region, once the cell bodies
of the pyramidal neurons reach their final destination within the
SP, the neurons commence neurite outgrowth with basal
dendrites extending into the ALV and SO, and apical dendrites
projecting down into the SR and SL-M. The migration patterns of
neurons within CA3 are thought to be similar to the CA1l
neurons,>*?® however, less is known about the migration patterns
of the other CA regions.

Mature pyramidal neurons have a highly arborised dendritic
structure, which is an important determinant in the complexity of
functions mediated by the hippocampus.?’ Dendritogenesis of
hippocampal neurons occurs from approximately mid-pregnancy
in the human fetus and extends well into infancy.?? Structural
analysis of CA3 hippocampal neurons in the human brain
demonstrated that at 18 weeks’ gestation, both apical and basal
dendrites were present but sparsely distributed, while at 33 weeks’
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Fig. 2 Timeline of perinatal injury in humans relative to hippocampal development milestones. Dark solid colour indicates peak

development, or time of insult.

gestation, dendritic arborisation had increased 3-fold and showed
a highly developed structure.’® Commencing days after a neuron
has been generated, neurite sprouting commences, with one
neurite extending in length to send the axon to the target area,
while remaining neurites grow, extend and branch into the
dendritic arbour for the establishment of synaptic connections.?
These synaptic connections between cells occur as membranous
protrusions along the dendrites called spines. Spines are diverse in
shape and length resulting in subtypes (filipodia, thin, stubby,
mushroom spines) classification that develop along different
timelines; filipodia are long and thin protrusions that exist
transiently early in postnatal life and decrease into adulthood.*°
Thin, stubby and mushroom spines are more stable with long-
term potentiation, and regenerate throughout all stages of
development, providing strong connections between synapses
for optimal hippocampal function.*® Bourne and Harris®' describe
an extensive list of molecular mediators (e.g., PSD-95, CamKiIl,
Actin, N-cadherin) of spine development, stabilisation, and
plasticity, highlighting the dynamic and adaptive nature of
dendritic spines, which in the hippocampus is likely an important
factor for structural and functional plasticity.

In Fig. 2, we broadly describe the developmental profile of the
CA1 - CA3 regions. It is crucial, however, to appreciate the
important role of the DG as the gateway of the hippocampus.
Moreover, there are distinct structural and functional differences
between the DG and the CA regions. For example, maturation of
the DG occurs later than CA1 — CA3.3%33 The DG granule cell layer
appears from the 12th week of gestation, with a high rate of cell
proliferation from this timepoint through to the 24th week of
pregnancy. From the 24th week of gestation, neurogenesis slows
significantly but continues to about two years of a%e, where it
then remains lifelong although at a diminished rate.>** One of the
critical differences between the DG and the CA regions lies in the
capacity of the DG for ongoing neurogenesis throughout life, with
new neurons generated in the subgranular zone (SGZ) of the
DG.>*3> Thus, the DG is considered to be a unique brain region as
it holds a pool of neural stem cells that produce new neurons,
contributing to brain plasticity and tissue regeneration.>*> While
knowledge gaps remain regarding the drivers and processes of
adult neurogenesis, with likely some overlap between embryonic
and adult neurogenesis, it is argued that lifelong neuronal
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regeneration is confined to the DG.>® The synaptic plasticity of
DG hippocampal cells is regulated by activity and experiences that
result in the formation of new memories and mediate DG
neurogenesis.?? Interestingly, the granule cells of the DG are more
resistant than pyramidal neurons of the CA1 to a number of
adverse conditions,>”*® and therefore, the majority of the clinical
research effort to date investigating hippocampal deficits has
focussed on the CA regions.

The vasculature within the CA regions of the hippocampus is
relatively sparse given the area of the hippocampus relative to
other brain regions,> with fewer, widely spaced microvessels,
requiring oxygen to diffuse further into tissue3® The lower
vascular density is matched by a relatively low basal blood flow
(~50% lower basal blood flow compared to the thalamus or
brainstem).”® As would be expected, metabolic demand in the
hippocampus matches the low vascular density and blood flow,
with adjacent hippocampal pyramidal neurons not likely to be
active simultaneously, reducing local energy demand compared
to cortical regions.>® However, the low vascular density but
neuron-rich population may explain the susceptibility of the
hippocampus to perinatal compromise, as the sparse vasculature
is not well suited to rapid adjustments in oxygen supply in
response to a hypoxic insult.

Hippocampal connectivity

The size, anatomical structure, and extensive connectivity within
and external to the hippocampus are key to its heterogeneous
functionality (Fig. 1). The axons that emanate from neurons in the
entorhinal cortex synapse with dendrites of the granule cells of
the DG, and axons from granule cells synapse with pyramidal cells
in the CA3 region via hippocampal mossy fibres, an important
pathway in memory formation.*' The hippocampal mossy fibres
connect DG granule cells to CA3 pyramidal neurons allowing
information to flow in a unidirectional manner to the CA1, and
then extend out of the hippocampus proper via CA1 axons.'® The
DG, therefore, provides a crucial gateway between the entorhinal
cortex and the hippocampus proper, with DG neurons receiving
the first input and passing information further along the
pathway,*’ with the entorhinal cortex mediating hippocampal
communications, acting as the major input and output regula-
tor.*? Multiple areas including the amygdaloid complex, medial
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septal region, and the thalamus, provide extrinsic inputs into the
hippocampal circuitry, via the entorhinal cortex, as described by
Papex.”® Distal to the CA1 region, the subiculum of the
hippocampal formation is an anatomical transition zone (sub-
iculum means support in Latin), and a major source for
hippocampal output into the cortical regions of the brain, thereby
directing activity across the brain.**

Interrogation of the CA1 pyramidal neuron structure within the
hippocampal circuitry reveals the unique roles of the basal and
apical dendrites. The apical dendrites receive inputs at various
points along the dendrite, from the CA3 neurons via Schaffer
collaterals at the proximal end to the soma, and direct
glutamatergic input from the entorhinal cortex at the distal
dendrites. Conversely, the basal dendrites receive direct inputs
from CA2 neurons (Fig. 1).**~*8 This is an important distinction to
consider as there are examples of perinatal compromise that
impact only the apical dendrites, impairing both connectivity and
functionality of the neuron in a unique manner, compared to an
insult that may affect basal dendrites.*®

Compared to the intra-hippocampal microcircuitry, the extra-
hippocampal connections are complex and not well charac-
terised.>® In vivo assessment of hippocampal connections under-
taken by Maller et al.>° revealed six predominant hippocampal
pathways - the inferior longitudinal fasciculus, spinal-limbic
pathway, anterior commissure, cingulate bundle, fornix and
tapetum - all long-range pathways connecting limbic and sub-
cortical structures. This connectivity reflects the wide-ranging
functionality of the hippocampus and the ability of the
hippocampus to moderate multiple brain processes.

The optimal function of the complex internal neuronal network
of the hippocampus and the long-range extrinsic connections
requires mature myelin. Myelin is the fatty insulation that
surrounds the axons and aids the conduction velocity of neurons
in the hippocampal pathways.”>' The developmental profile of
myelin within the hippocampus, described by Abraham et al.>?
begins at 20 weeks' gestation with the presence of mature
oligodendrocytes and myelinated axons appearing in the
hippocampal region between 21-35 weeks. Myelination extends
well past birth until adult-like myelin density is present in
adolescent tissue,>>** consequent with an increase in hippocam-
pal volume over this period.”* It is not yet understood when
myelination ceases, however, the increase in hippocampal volume
that occurs in childhood is followed by stabilisation or subtle
subfield decreases at adolescence, suggesting that adolescence
may be the timepoint where myelination is complete.”*

Overview of hippocampal function

Functional assessments of the hippocampus have a rich and well-
documented history. Famously, the 1953 case of H.M., who lost
much of his memory when his hippocampus was removed in an
attempt to treat epilepsy, provided the first insight into the
primary functions of the hippocampus.>® Since then, research has
taken great strides to elucidate the function of the hippocampus,
including the differential roles of the component sub-regions. The
intrinsic circuitry of the hippocampus, as well as the vast
connections to cortical and subcortical brain regions, gives rise
to multiple functions that span episodic memory, emotional
regulation, spatial navigation, learning, and cognition. Further, the
distinct structure and connections of the anterior and posterior
hippocampus have been shown to underpin separate functional
roles, however, this is still to be fully elucidated.”® The posterior
hippocampus is described as playing a more significant regulatory
role in spatial memory as it receives visual and spatial information
from the anterior cingulate cortex.'>*%57 |n contrast, the anterior
hippocampus has strong connections with the prefrontal cortex,
amygdala, and hypothalamus, favouring emotional processing
and autonomic endocrine systems.'**® To date, there is little
research that separates the anterior from the posterior
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hippocampus in the context of hippocampal dysfunction or injury
during fetal and neonatal development.

Many functions of the hippocampus, including learning,
memory, and spatial navigation, are facilitated by long-term
potentiation (LTP),>*~®2 which is the persistent strengthening of
synapses that fosters signal transmission between neurons. Long-
term potentiation is widely recognised as the cellular mechanism
of memory formation.®®> Within the hippocampus, LTP is shown to
regulate hippocampal plasticity with glutamate receptors such as
a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or
N-methyl-D-aspartate (NMDA) integral to this role.* It is these
receptors that drive synaptic plasticity, promote LTP, and allow for
wide-ranging functionality of the hippocampus. Neuropeptides
also play a key role in supporting the neurotransmitters within the
hippocampus; somatostatin is one neuropeptide known to
significantly contribute to emotion regulation signals.®®

The consequences of perinatal insult on the hippocampus
Brain development over the perinatal period is sensitive to
disruptions arising from common pregnancy complications,
including preterm birth, FGR, and hypoxic-ischaemic encephalo-
pathy (HIE).?*°° The strong association between perinatal
compromise and structural abnormalities of the hippocampus is
evident from clinical studies linking brain imaging outcomes with
functional deficits. Key milestones in hippocampal development
such as neuronal migration, neurite outgrowth of axons and
dendrites, and synaptogenesis are highly active from about mid-
pregnancy (20 weeks' gestation) onwards (Fig. 2), therefore,
preterm birth or other complications during pregnancy will
significantly disrupt these developmental processes. Further, as
the hippocampus is still developing at term, insults occurring
around the time of birth, such as perinatal (birth) asphyxia
resulting in HIE, can also cause damage.

Prematurity. Preterm birth affects approximately 11% of births
worldwide and results in significant perturbations in brain
development.’® Preterm birth can be sub-categorised as extre-
mely preterm (<28 weeks gestation (GA)), very preterm
(28-32 weeks GA) and moderate to late preterm (32—37 weeks
GA).”" There is a multitude of factors and complications that can
arise during pregnancy to induce preterm birth including having
had a previous premature baby, twin/multiple pregnancy,
intrauterine infection, substance abuse, premature rupture of
membranes, or impaired development of the baby indicating early
delivery.”> Numerous studies show that neuropathology asso-
ciated with the preterm brain is principally via two relatively
common upstream insults, hypoxia-ischaemia (HI) and infection/
inflammation.®”* Intrauterine inflammation, including placental
and amniotic fluid infection (chorioamnionitis), is recognised as a
causal factor that both predisposes to preterm birth,”* and is also
independentlsy associated with altered brain development and
brain injury.”>7¢

Fetal growth restriction. FGR, also known as intrauterine growth
restriction (IUGR), is a common pregnancy complication in which
the fetus fails to reach its genetic growth potential in utero.®® It
affects 6—10% of infants born in high-income countries, and up
to six times more infants born in low-income countries.”””®
Placental insufficiency is the most common cause of FGR, in
which suboptimal placenta structure and function results in
reduced transfer of nutrients and oxygen to the developing fetus,
thus adversely impacting the trajectory of fetal growth.”® FGR is
strongly linked to neurodevelopmental deficits across the
domains of cognition and learning, motor function, and
behaviour.?8%8% previously, the term small for gestational age
(SGA) was also used as a proxy to describe FGR, but SGA generally
includes all infants who were below the 10th percentile for
weight and therefore does not necessarily include evidence of
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10 years of age.

HIE.

HIE; n=17

therapeutic hypothermia.

Annink et al.""

| hippocampal volumes were

| hippocampal volumes with

moderate HIE.

Mild HIE; n =26

Term-born children with mild and

moderate HIE.

Perinatal hypoxia-

ischaemia

associated with poorer long-
term visuospatial memory.

Moderate HIE; n =26
Control; n =37
HIE; n=10

Pfister et al.'"?

Within-group correlation

between the

Term-born children with neonatal | hippocampal volumes with HIE.
HIE, treated with hypothermia

Hypoxic ischaemic
encephalopathy

=8

Controls; n

hippocampal volume and

memory scores in children with

HIE.

APIB assessment of preterm infants’ behaviour, BSITD Bayley scale for infant and toddler development, BW birth weight, FIQ full intelligence quotient, GA gestational age, GM grey matter, GM-IVH germinal matrix-

intraventricular haemorrhage, HIE hypoxic-ischaemic encephalopathy, /Q intelligence quotient, MDI mental development index, MRl magnetic resonance imaging, NA not assessed, VLBW very low birth weight,

VPT very preterm, SGA small for gestational age, w/ with, WM white matter.
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placental insufficiency.®* The 2016 consensus definition of true
FGR includes infants with an estimated fetal weight <10th
percentile for gestation and sex together with Doppler indices of
disrupted uteroplacental blood flow, or estimated fetal weight
<3rd percentile as a sole parameter®* FGR can be further
classified as early-onset FGR, diagnosed before 32 weeks’
gestation, or late-onset, diagnosed after 32 weeks. Early-onset
FGR appears to portend worse neurological outcomes than late-
onset FGR.%¢

Hypoxic-ischaemic encephalopathy. HIE is a condition of dis-
rupted neurological function as a consequence of severe or
prolonged hypoxia-ischaemia at the time of birth® HIE is a
devastating condition, related to the death of 1 million infants in
their first month of life, while 25% of children who survive will
have long-term debilitating conditions such as cerebral palsy.2¢%”
An acute hypoxic-ischaemic insult and subsequent HIE can affect
infants born prematurely or at term, and therefore the con-
sequences of HIE are broad.®® Most commonly, HIE is linked to an
acute, severe, asphyxic event at birth, which induces a well-
described injury cascade with distinct phases of metabolic
disturbance and injury that ultimately result in the degeneration
of neurons,®® and this progression of injury is best described in
infants born at term.”® Placental abruption, uterine rupture, or
umbilical cord compression are common causes of an acute
hypoxic insult that may lead to HIE2*

These three perinatal conditions have been highlighted in this
review as they are prominent pregnancy complications and have
profound impacts on hippocampal development, morphology,
and function. The clinical studies detailed below describe the
consequences of each of these conditions on the hippocampus,
however, it is important to note that due to the intricate nature,
size, and location of this brain region, imaging techniques are
limited, thus accompanying preclinical investigations are needed
to dissect mechanisms of disease'®.

Impact of perinatal insults on hippocampal structure

A large number of clinical studies have investigated the impacts of
preterm birth, very low birth weight (VLBW), FGR, and HIE on
hippocampal morphology and function (Table 1). The studies
summarised in Table 1 have been selected as they examined the
impact of these insults on hippocampal structure and their
association with functional outcomes. Collectively, these studies
demonstrate that prematurity (+inflammation), VLBW, FGR, and
HIE, are all clearly associated with a total reduction in hippocampal
volume measured using MRI imaging techniques such as T1-
weighted and T2-weighted imaging, segmentation, and hippo-
campal shape analysis.>*87490-112 A one example, MRI voxel-
based morphology was used to detect significant volume loss in
both the left and right hippocampus of adolescents with a history
of prematurity.”* Further to reductions in hippocampal volume,
Lammertink et al.®® utilised MRI data of preterm infants and found
a reprioritisation of neurodevelopmental trajectory to the
amygdala and insula in response to preterm birth (mean 26 weeks
GA), resulting in a reduced volume of connections in the
hippocampus, parahippocampal gyrus and fusiform area mea-
sured by constructed maturational covariance networks relative to
grey matter volumes.”> Another study of premature-born adults
assessed at 20 years of age, used functional MRI (fMRI) to
investigate the impact of prematurity and found reduced
fractional anisotropy tracts passing through the thalamic and
hippocampal regions of the preterm group, resulting in altered
activation patterns of the hippocampus during retrieval tasks.”®
This study highlights the impact of prematurity on impaired
connectivity of key structures of the learning and memory
network, including the anterior cingulate and caudate body,
thalamus, and hippocampus and consequently, hippocampal
function.”®

SPRINGER NATURE
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Relative to prematurity, less is known about the impact of FGR
on hippocampal form and function. Studies that have investigated
infants classified as FGR or VLBW often include co-morbidity with
prematurity in their study cohort, as naturally many FGR or VLBW
infants are born prematurely. Thus, it is often difficult to
disentangle the effect of prematurity and growth restriction.
Despite this, FGR has consistently been associated with a
reduction in hippocampal volume®'0*196-198113 |n infants born
preterm, (<32—34 weeks GA), MRI voxel-based morphometry
showed that in growth restricted preterm infants, hippocampal
grey matter volume'® and hippocampal white matter volume
were reduced.'” Further, one study of SGA infants born at term
provides unique insight into the impact of reduced birth weight
with the absence of prematurity and found with fMRI analysis less
activation in the left parahippocampal region compared to control
children.'®®

Due to the nature of studying neurodevelopmental conditions
in humans, assessing hippocampal structure beyond volumetric
analysis is challenging. One study, by Gonzalez Fuentes et al. '*°
studied the brains of six infants who had been diagnosed with
hypoxic exposure, and at autopsy found a reduction in
somatostatin and neuropeptide expression in the pyramidal cell
layer and stratum oriens of the CA1 region. The reduction of key
neurotransmitters in this autopsy study suggests that the
hippocampus would likely have impaired function.'®

Collectively, these studies demonstrate that the hippocampus is
particularly vulnerable to perinatal compromise, with volume
deficits a common consequence of a broad spectrum of
pregnancy and birth complications. The reduction in hippocampal
volume may be indicative of neuronal loss or lack of synaptic
arborisation, impairing its intricate connectivity, with implications
for hippocampal function. To further reveal mechanisms driving
hippocampal volume loss seen with prematurity, VLBW, FGR and
HIE, preclinical studies are essential. However, all conditions
disrupt the intricate development profile of this brain region
across gestation.

Impact of perinatal insults on hippocampal function

Many studies of perinatal compromise utilise MRI to assess
hippocampal volume and morphology, often pairing this struc-
tural analysis with various neurocognitive assessments to reveal
any deficits in function. However, this field is currently lacking
studies that have utilised objective functional assessment such as
fMRI to reveal hippocampal-specific impairments (Table 1).%67°°
Nonetheless, the current literature shows pervasive functional
deficits associated with prematurity, VLBW, FGR and HIE, as
evidenced by a number of learning, memory, and cognitive
assessments.

Follow-up studies of children and adults who were born
preterm have investigated the persistent functional impacts of
perinatal compromise and a potential relationship to altered
hippocampal development. As shown by Gimenez and collea-
gues,®® where a significant correlation between deficits in left
hippocampal volume and memory dysfunction in children born
prematurely was found, and authors noted “the lower the volume,
the lower the level of learning”, emphasising the structure-
function relationship.* Cole et al. ® investigated the psychiatric
outcomes of adolescents born very preterm compared to
adolescents born at term. Using the Peters Delusion Inventory
examination, they showed that delusional ideation scores were
associated with anterior surface deformation of the hippocampus,
thus linking long-term neurodevelopmental consequences of
preterm birth with hippocampal structure.”> Fernandez de
Gamarra-Oca and colleagues®® found that while adolescents born
preterm (mean 28 weeks gestation) had Full Intelligence Quotient
(FIQ) scores within a normal range, the FIQs were significantly
lower than term-born adolescents.”® Another study undertaken in
adults found that those who were born preterm had a persistent

SPRINGER NATURE

reduction in hippocampal volume that correlated with reduced
FIQ scores’ In school-age preterm-born children, reduced
hippocampal subfield volumes were associated with impaired
working memory function.'® Further, ex-preterm adults pre-
sented with strikingly different patterns of activation in memory
recall tasks, indicating that connections between the hippocam-
pus and other brain regions were impaired.® To assess functional
outcomes of preterm children, Thompson, et al. © used the Mental
Development Index (MDI) of the Bayley Scales of Infant Develop-
ment to show that infants with reduced corrected hippocampal
volume at 2 years of age showed reduced MDI scores, indicative of
reduced cognition.

The posterior hippocampus is fundamental to memory forma-
tion and retrieval, particularly spatial memory.>® Memory deficits
are observed in preterm and VLBW children with hippocampal
volume loss.>'% Typically, motor function is not assumed to be
directly related to the hippocampus, however, a study by Strahle
et al. °’ found that reduced hippocampal volumes in children born
preterm were related to worse motor performance. Further, it has
been shown that the volume of hippocampal subfields CA2 and
CA3 is associated with motor sequence learning and memory.''* A
critical detail missing from research examining the impact of
perinatal compromise on the hippocampus is that most studies do
not specify whether volumetric differences were observed in the
anterior hippocampus, posterior hippocampus, or both. The lack
of specificity in reporting results hinders our ability to gain a
comprehensive understanding of the structure-to-function rela-
tionship between these hippocampal regions, and whether
differential vulnerability to injury exists.

As discussed above, a challenge exists in our understanding of
the impact of FGR on hippocampal function, as most clinical studies
are confounded with prematurity. For example, one study of
growth-restricted preterm infants revealed both less mature scores
on the Assessment of Preterm Infants’ Behaviour and reduced
hippocampal volume at term-equivalent age compared to control
infants.'® At the 2-year follow-up, neurocognitive dysfunctions
persisted and were correlated with a reduction in hippocampal
volume.'® The study of SGA term-born infants by De Bie et al. '*
used fMRI, and found less activation in the left parahippocampal
region in SGA children compared to controls, with SGA children
demonstrating lower IQ scores and slower performance in encoding
and recognition tasks.'® There is a paucity of studies investigating
late-onset FGR and hippocampal function/development. As such, it
is not possible to understand the potential distinction between the
impact of early-onset and late-onset FGR in studies on hippocampal
development and subsequent function. Whilst not investigating
hippocampal structure specifically, two studies by Geva et al.,''>""®
assessed children diagnosed at birth with FGR and found lower 1Q,
memory impairments, and more frequent neuropsychological
difficulties including executive functioning, inflexibility-creativity,
and language. Future research should aim to improve our under-
standing of these observed functional impairments with accom-
panying analysis of hippocampal structure, to uncover the depth of
this association, particularly in late-onset FGR.

When investigating children who had been diagnosed with
moderate HIE as infants, it was shown that working memory,
processing speed, and motor outcomes were significantly reduced
compared to children with mild HIE.""" Further, at 10 years of age,
neurocognitive and memory problems were persistent in children
born with HIE.'"

Knowledge of neurodevelopmental disorders that affect lan-
guage, skills, behaviour, social interactions, and attention, such as
Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactiv-
ity Disorder (ADHD), is rapidly expanding. The aetiology associated
with these disorders is complex, with no singular causal pathway
underlying their manifestation, but rather a combination of genetic
and environmental factors, including conditions of perinatal
compromise. MRI studies find that both ASD and ADHD are
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associated with reductions in hippocampal volume.''” It is also
postulated that disruptions in the connectivity between the
hippocampus, amygdala, and orbitofrontal cortex may contribute
to common hallmarks of ADHD, including behavioural disinhibi-
tion.'®®'"® To date, work to reveal these associations between
perinatal compromise, disrupted hippocampal development, and
neurodevelopmental disorders is limited, however, it has been
flagged as an area that requires further investigation.'"®

CONCLUSIONS

The clinical evidence presented within this review, focused on
normal hippocampal development, followed by pregnancy and
birth complications, clearly indicates that the hippocampus is
highly susceptible to perinatal compromise. Premature birth FGR
and HIE are common complications of pregnancy, and all have the
potential to impact the gross structure and organisation of the
hippocampus, with negative consequences for long-term func-
tion. The most frequent pathological observation in clinical studies
of perinatal compromise and hippocampal development is a
reduction in total hippocampal volume. Reduced hippocampal
volume is seen across all perinatal complications outlined in the
current review, as evidenced from the MRI undertaken from as
early as term-equivalent age in infants born preterm® through to
adolescence.” Current literature has established an association
between suboptimal hippocampal structure and deficits in
learning and memory. Moreover, damage to the hippocampus
has profound and lasting impacts on behaviour and motor
function and is associated with a range of neurodevelopmental
disorders. In Part 2 of this review'®, we focus on the extensive
preclinical literature on this topic which gives insight into
mechanisms underlying observed hippocampal deficits, and
potential therapeutic targets designed to protect the hippocam-
pus in the presence of pregnancy complications.
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