
BASIC SCIENCE ARTICLE

Transcriptional regulation of NRF1 on metabotropic glutamate
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BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is a kind of brain injury that causes severe neurological disorders
in newborns. Metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs) are significantly associated
with HIE and are involved in ischemia-induced excitotoxicity. This study aimed to investigate the upstream mechanisms of mGluRs
and the transcriptional regulation by nuclear respiratory factor 1 (NRF1).
METHODS: The rat model of neonatal HIE was created using unilateral carotid artery ligation and in vitro oxygen-glucose
deprivation paradigm. We used western blot, immunofluorescence, Nissl staining, and Morris water maze to investigate the impact
of NRF1 on brain damage and learning memory deficit by HIE. We performed ChIP and luciferase activities to identify the
transcriptional regulation of NRF1 on mGluRs.
RESULTS: The neuronal NRF1 and some glutamatergic genes expression synchronously declined in infarcted tissues. The NRF1
overexpression effectively restored the expression of some glutamatergic genes and improved cognitive performance. NRF1
regulated some members of mGluRs and iGluRs in hypoxic-ischemic neurons. Finally, NRF1 is bound to the promoter regions of
Grm1, Grm2, and Grm8 to activate their transcription.
CONCLUSIONS: NRF1 is involved in the pathology of the neonatal HIE rat model, suggesting a novel therapeutic approach to
neonatal HIE.

Pediatric Research (2023) 93:1865–1872; https://doi.org/10.1038/s41390-022-02353-9

IMPACT:

● NRF1 and some glutamatergic genes were synchronously downregulated in the infarcted brain of the neonatal HIE rat model.
● NRF1 overexpression could rescue cognitive impairment caused by the neonatal HIE rat model.
● NRF1 regulated the expressions of Grm1, Grm2, and Grm8, which activated their transcription by binding to the promoter

regions.

INTRODUCTION
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe
neonatal brain injury caused mainly by perinatal asphyxia,
restricted or suspended cerebral blood flow, and is a common
cause of induced neonatal death.1 The incidence of neonatal HIE
shows geographic inconsistency, ranging from approximately 1 to
8‰ worldwide and up to 26‰ in developing countries.2 Patients
with severe HIE develop neurological sequelae such as cerebral
palsy, mental retardation, and cognitive impairment and even
suffer from the threat of death.3

Excitotoxicity triggered by the amino acid glutamate is now
accepted as the primary pathogenic mechanism of HIE.4 Cerebral
ischemia leads to excessive activation of glutamate receptors and
ion channels, triggering malfunction of neuronal cells and produ-
cing excitotoxicity.5–7 Ionotropic glutamate receptors (iGluRs) and
metabotropic glutamate receptors (mGluRs) mediate excitatory
neurotransmission in the brain, which is essential for memory

formation learning, and several neurodegenerative diseases.8,9 The
dysfunction of iGluRs and mGluRs exacerbates cognitive impair-
ment in psychiatric disorders,10,11 Alzheimer’s disease,12 Parkinson’s
disease,13 and epilepsy.14,15 The glutamate receptor-specific agents
have been reported to achieve neuroprotective benefits on the
hypoxic-ischemic (HI) brain by reducing neuron excitability.16–18

Unfortunately, the effects of NMDA receptor antagonists on
perinatal HI injury are not very uniform. The observed side effects
of these compounds preclude their clinical use.19 mGluRs in the
pathophysiology of the HI brain have been a subject of attention for
several years. The mGluR2/3 agonists and mGluR1/5 antagonists
against ischemic brain injury have neuroprotective effects in the
neonatal HI model.17,20–22 Therefore, studying the upstream
mechanism of mGluRs downregulation in neonatal HIE has
substantial therapeutic implications for neonatal HIE treatment.
Nuclear respiratory factor 1 (NRF1) was first identified to

regulate cytochrome c transcriptionally.23 NRF1 participates in
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several biological processes, such as mitochondrial autophagy,
DNA repair, and bio-metabolism, which affect neurological
function, cardiac function, and tumor formation.24–27 Whole
genome sequencing results predict that 5–6% of genes in neurons
are regulated by NRF1 directly or indirectly.28 Our preliminary
Chromatin immunoprecipitation (ChIP)-seq data identified multi-
ple members of mGluRs and iGluRs as potential target genes of
NRF1. Our previous studies have demonstrated that hypoxia
caused a decrease in NRF1 expression in brain tissue.29 NRF1 was
involved in hypoxia-induced cellular response through transcrip-
tional regulation of hypoxia-inducible factor 1α, steroidogenic
acute regulatory protein, and endothelin-1.29–31 Therefore, we
hypothesized that NRF1 was involved in modulating glutamate
receptors in the neonatal HIE rat model.
This study aimed to investigate whether the expression of

mGluRs and iGluRs were related to NRF1 and to elucidate the
transcriptional regulatory mechanisms of NRF1 on mGluRs in the
neonatal HIE rat model.

METHODS
Neonatal HIE rat model construction and lentivirus infection
Neonatal HIE rat model construction. The 7-day-old Sprague–Dawley rats
were provided by the Experimental Animal Center of Nantong University. We
ligated the right common carotid artery of the pups to block the blood
supply to the right side of the brain. The pups were exposed for 2 h in a
chamber filled with 8%O2 and 92% N2 at 37 °C. The pups were then returned
to their mother and nourished for 24 h. The effectiveness of the model
construction was evaluated using the Bederson Scale32 by an assessor who
was blinded to the experimental groups. There are 5-point scales on
Bederson Scale, including 0 (no deficits), 1 (lost forelimb flexion), 2 (lost
forelimb flexion with lower resistance to lateral push), 3 (unidirectional
circling), 4 (longitudinal spinning or seizure activity), and 5 (no movement).
Lentivirus infection: we used a brain stereotaxic apparatus to inject 5 μ l

of lentivirus (1 × 107 pfu/μl) or 0.9% saline into the right ventricle of
newborn 1-day-old Sprague–Dawley rats. After 7 days, we built the
neonatal HIE model. When the mice were 4 weeks old, we then conducted
behavioral tests.
The Ethics Committee on Animal Experimentation at Nantong University

authorized all investigations. The Laboratory Animal Center at Nantong
University approved all procedures (S20220219-009).

2, 3, 5-Triphenyltetrazolium chloride (TTC) staining
We used TTC staining to verify the success of the model histologically.
Briefly, the brain tissues were quickly frozen for 10min at − 20 °C. The
brain was then cut into successive 2-mm-thick slices along the coronal
plane, followed by incubation with 2% TTC solution (Sigma-Aldrich, MO) at
37 °C for 15min, which was terminated by rinsing with PBS. Subsequently,
the slice section was fixed with 4% paraformaldehyde for 8 h and
photographed. The infarct ratio was calculated by FIJI ImageJ (National
Institutes of Health).

Nissl staining
The 4 µm coronal sections were obtained from the frozen brain sample.
We stained the sections with cresyl violet stain for 30min and washed with
deionized water. All stained sections were progressively dehydrated,
cleared in xylol, and fixed with neutral balsam. The images were captured
using Leica DM4000B.

3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide
(MTT) assay
Briefly, the cells were cultured in a 96-well culture plate and incubation with
MTT reagent (5mg/ml, Sigma-Aldrich, MO) for 4 h at 37 °C. DMSO solution
dissolved the formazan crystal after removing the medium. The absorbance
at 570 nm was detected using a microplate reader (Synergy 2, Biotech).

Morris water maze (MWM)
MWM tests of spatial learning-memory behavior were conducted as
described by Zha et al.33 The testing occurred between 9:00 and 11:00 in
the morning. The maze has four equal quadrants: the northeast (NE),

southeast, southwest (SW), and northwest. Visual cues were posted on the
laboratory walls around the maze to facilitate learning the location of the
platforms. Rats were placed in the 150 cm circular pool with water
temperature maintained at 22 ± 1 °C. In the center of NE, a circular escape
platform (10 cm) was positioned, keeping it 2 cm below the water’s surface.
Before experiments, we trained rats for 3 days. Then mice were placed in
the middle of SE and allowed to find the platform. The time the mice first
found the platform was recorded. On the sixth day, we removed the
hidden platform from the destination quadrant. Mice were released in the
SW quadrant and allowed 180 s free-swimming time. Then we recorded
the time the mice found the escape platform and the frequency of crossing
the destination platform.

Primary neuron and PC12 culture and treatments
Primary neuron was prepared from the cortex of neonatal
Sprague–Dawley rats according to the method described before.34 Cortex
tissue was isolated from fetal rats (16–17 dpc). After digestion using 0.05%
trypsin, cells were dispersed in the presence of DNase I. Then, cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) at 37 °C in a 5% CO2 humidified
incubator. Two hours later, the culture medium was replaced with
neurobasal media (Thermo Fisher Scientific, MA) containing B-27
supplement (Thermo Fisher Scientific, MA). Subsequently, 5 μM cytar-
abine was added on the third day to inhibit glial cell growth. The medium
was semi-transformed every 2 days. Cells were used for experiments until
10 days later.
PC12 cells (gift from Xiaomei Wu, Nantong University) were cultured in

DMEM supplemented with 10% FBS at 37 °C in a 95% humidified incubator
with 5% CO2. To differentiate the cells, we replaced the medium with the
culture medium containing 100 ng/ml nerve growth factor and cultured
them for 10 days.35

For oxygen-glucose deprivation (OGD) treatments, neuron or PC12 cells
were cultured in a glucose-free DMEM medium and exposed to 1% O2 for
0, 2, 4, and 6 h. To overexpress NRF1, we infected neurons or PC12 cells
with an NRF1 expressing lentivirus at MOI= 50.

RNA isolation and real-time PCR
Total RNA was isolated by TRIzol reagent (Thermo Fisher Scientific, CA) and
reverse-transcribed by HiScript III 1st Strand cDNA Synthesis Kit (Vazyme,
Nanjing, China) according to the instructions. The AceQ qPCR SYBR Green
Master Mix (Vazyme, Nanjing, China) performed real-time PCR. All primers
used for real-time PCR are listed in Supplementary Table S1. We used the
2–ΔΔCt method to calculate relative expression.

RT2 Profiler PCR Array Test
Total RNA was extracted from the tissues with TRIzol reagent (Thermo
Fisher Scientific, CA). Reverse transcription was performed using HiScript ®
II 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme, Nanjing, China).
The cDNA was used on the real-time RT2 Profiler PCR Array in combination
with RT2 SYBR®Green qPCR Mastermix (Qiagen, Hilden, Germany). Actb
(Actin, beta), Hprt1 (Hypoxanthine phosphoribosyltransferase 1), B2m
(Beta-2-microglobulin), and Rplp1 (Ribosomal protein, large, P1) were used
as the assay reference gene. The RT2 Profiler PCR Array data analysis
software calculates the fold change using the 2–ΔΔCt method. The QIAGEN
web portal at GeneGlobe exported the data analysis report.

Western blot
RIPA lysed the brain tissue and neuron to obtain proteins. Proteins were
separated by electrophoresis and transferred to polyvinylidene fluoride
membranes. The membranes were incubated with primary antibodies,
including anti-NRF1 (ab175932, Abcam, MA) or anti-β-actin (ab8227,
Abcam, MA). The binding of primary antibodies was visualized with HRP-
conjugated secondary antibodies (Jackson ImmunoResearch, PA). FIJI
ImageJ software carried out the grayscale analysis (National Institutes of
Health).

Immunofluorescence staining
Tissue sections (20 μm) were fixed with 4% paraformaldehyde and
permeabilized with 0.5% Triton X-100. After being blocked by donkey
serum, the brain sections were incubated with anti-NRF1 (ab175932,
Abcam, MA) and anti-NeuN (MAB377, Millipore, CA). The primary
antibodies were visualized by Alexa Fluor 555-conjugated donkey anti-
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rabbit IgG (A31572, Thermo Fisher Scientific, CA) and Alexa Fluor 488-
conjugated donkey anti-mouse IgG (A21202, Thermo Fisher Scientific, CA).
Then, the sections were counterstained with DAPI (Sigma-Aldrich, MO). A
Leica SP8 confocal microscope captured the images.

ChIP assay
According to the manufacturer’s instructions, ChIP assays were performed
using the SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) (CST,
MA). We fixed neurons in the culture medium containing 1% formaldehyde
at room temperature for 10min to crosslink proteins and DNA. Then cells
were lysed and incubated with 0.5 μl of micrococcal nuclease for 20min at
37 °C to digest DNA to 200–500 bp. The mixture was then immunopre-
cipitated with 2 μg of NRF1 antibody (ab34682, Abcam, MA) or a negative
control IgG at 4 °C overnight. The purified DNA was amplified by real-time
PCR with primers in Supplementary Table S1.

Dual-luciferase reporter assay
Fragments of rat Grms promoter region Grm1 (−1700/−1200), Grm1
(−400/+100), Grm2 (−1700/−1200), Grm8 (−1650/−1150), and Grm8
(−1250/−750) were cloned into the KpnI and HindIII restriction sites of the
pGL3-basic vector (Promega, WI). All constructs were verified by
sequencing. PC12 cells (80–90% confluence) were seeded and cultured
in the 24-well plate the day before transfection. Cells were co-transfected
with 250 ng reporter plasmids, 10 pmol NRF1 siRNA, and 10 ng of pRL-TK
(Promega, WI) as an internal control by Lipofectamine 2000 Reagent. After
48 h, we treated cells with OGD for 2 h. Finally, the Dual-Luciferase

Reporter Assay System detected the luciferase activities (Promega, WI).
Firefly luminescence signal was normalized by Renilla luminescence
signal.

Glutamate assay
The relative intracellular glutamate was analyzed using a Glutamate Assay
Kit (ab83389, Abcam, MA). Briefly, cells were harvested and homogenized
in assay buffer, and the insoluble fraction was removed by centrifugation.
The absorbance at OD 450 nm was measured using a microplate reader
(Synergy 2, BioTek).

Statistical analysis
GraphPad Prism v. 8 (GraphPad Software, CA) was used to analyze the data
by Student’s t-test or One-way ANOVA. All the data were presented as
mean ± SD. The level of significance was as follows: *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001.

RESULTS
NRF1 and some glutamatergic genes were synchronously
downregulated in the neonatal HIE rats model
To construct the neonatal HIE rats, we used unilateral carotid
artery ligation to block the blood supply to the brain of 7-day-old
rats. Results in Fig. 1a, b demonstrated that infarction occurred in
the right hemispheres. Nissl bodies reduced, disintegrated, and
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even disappeared on the infarct side (Fig. 1c). Besides, we
evaluated the utility of the neonatal HIE rats using the Bederson
Scale. We found that the motor ability of the neonatal HIE rats was
significantly impaired (Fig. 1d). We also constructed HI neurons by
OGD treatment. The cell viability declined time-dependent when
neurons were subjected to OGD. NRF1-overexpressing cells
exhibited increased cell viability compared with the control
groups (Fig. 1e). We also found that NRF1 expression was
significantly reduced in neurons on the injured side (Fig. 1f–i).
The above results suggested that NRF1 levels were downregulated
in the infarcted tissue of the neonatal HIE model.
Furthermore, we examined the gene expression in the infarct

tissues. The glutamatergic candidate genes were remarkably
downregulated (Fig. 2a). We verified the relevant gene expressions
by real-time PCR (Fig. 2b). iGluRs, including Gria2, Grin1, Grin2b,
Grin2c, Grik1, and Grik2mRNA levels, were decreased on the infarct
side. mGluRs, including Grm3, Grm5, and Grm8 mRNA levels, were
significantly reduced on the infarct side. The results demonstrated
that NRF1 was downregulated in parallel with iGluRs and mGluRs
in infarcted tissues.

NRF1 overexpression rescued cognitive deficits and elevated
glutamatergic candidate genes in the neonatal HIE rats model
We created the NRF1 overexpression in rat brain model to
examine the role of NRF1 in HI-induced neurological damage
(Fig. 3a). Next, we examined the effect of NRF1 overexpression on
the integrity of brain tissue and cognitive function in the neonatal
HIE model on the 28th day after birth. The brain tissue volume on
the infarcted side was noticeably smaller than on the opposite
side (Fig. 3b, c). There was no significant change in the avoidance
latency from day 1 to day 3. From day 4 onwards, NRF1 OE rats
started to shorten the escape latency with statistical significance
(p < 0.01) (Fig. 3d). Neonatal HIE considerably decreased the
frequency of platform passes (p < 0.001), whereas NRF1 over-
expression significantly increased the frequency (p < 0.01) (Fig. 3e).
The above results indicated that NRF1 improved the learning
memory function.
Furthermore, we observed altered expression of glutamatergic

candidate genes in neonatal HIE rats’ infarcted brain tissue. iGluRs

including Grin1, Grin2a, Grin2b, Gria2, Grik1, and Grik2 dramati-
cally decreased on the obstructed side, and NRF1 overexpression
restored the levels of Grin1, Grin2a, Grin2b, Gria2. However,
neither infarcted nor NRF1 overexpression tissues significantly
affected Grin2c or Gria1 (Fig. 3f). In the infarcted brain, Grm1,
Grm2, Grm3, Grm7, and Grm8 levels also considerably decreased.
Additionally, NRF1 overexpression reversed the decline in these
mGluRs expression on the infarct side. However, Grm4 and Grm5
did not considerably change (Fig. 3g). The above results
suggested that NRF1 effectively improved neonatal HIE rats’
cognitive function, accompanied by upregulation of iGluRs and
mGluRs.

NRF1 effectively attenuated the reduction of mGluRs in OGD
neurons
As shown in Fig. 4a, b, OGD treatment time-dependently
decreased NRF1 levels. Similar to the results in vivo, Grm1, Grm2,
and Grm8 expression levels drastically decreased after OGD
treatment (Fig. 4c). To determine whether NRF1 impacted mGluRs
expression, we make neurons overexpress NRF1 in OGD treatment
(Fig. 4d, e). As shown in Fig. 4f, NRF1 overexpression significantly
increased the expressions of Grm1, Grm2, and Grm8. The above
results indicated that NRF1 successfully lessened mGluRs decrease
in OGD neurons.

NRF1 transcriptionally activated metabotropic glutamate
receptors in OGD neurons
We performed ChIP-PCR experiments to confirm whether NRF1
was bound to the Grm1, Grm2, and Grm8 promoter regions. As
shown in Fig. 5a, NRF1 significantly enriched the promoter regions
of mGluRs, including Grm1 (–1684/–1422 and –233/+28), Grm2
(–1617/–1517 and –1436/–1196), and Grm8 (–1662/–1518, –1432/
–1216 and –1012/–832). Under OGD treatment, we discovered
that the luciferase activity of the Grm1, Grm2, and Grm8 reporters
drastically decreased. The outcome showed that OGD prevented
Grm1, Grm2, and Grm8 from being transcribed (Fig. 5b). We
transfected the NRF1 siRNA and evaluated the interference
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efficiency to demonstrate that Grm1, Grm2, and Grm8 were
downregulated by NRF1 transcription (Fig. 5c). The results showed
that NRF1 positively regulated the transcription of Grm1, Grm2,
and Grm8 and that interference with NRF1 was linked to a
decrease in the luciferase activities of Grm1, Grm2, and Grm8
reporters (Fig. 5e). The results above suggest that OGD therapy
may inhibit NRF1 from restricting mGluR transcription. NRF1
knockdown under the OGD condition dramatically reduced
intracellular glutamate (Fig. 5d), indicating enhanced glutamate
release from neurons.

DISCUSSION
In this study, we performed the common carotid artery ligation
combined with hypoxia to investigate the mechanism of brain
injury caused by perinatal hypoxia and ischemia.36 According to

the infarct area and behavioral testing, the developed model is
appropriate for studying non-mild neonatal HIE.
In an intrauterine HI model, mGluR1 expression in the dentate

gyrus of ischemic animals was delayed and markedly reduced at
postnatal day 7.37 We found that almost all types of mGluRs and
numerous glutamate receptors were dramatically diminished in
the newborn HIE model, which was consistent with previous
studies. mGluR1 is widely distributed in the central nervous
system.38 mGlu1α in the hippocampus steadily increases during
postnatal development, suggesting a potential role in learning
memory.39 mGluR1-deficient mice exhibit learning dysfunction
and severe motor incoordination.40,41 mGlu2 has mainly been
found in the presynaptic structures of mossy fibers and
perforant paths in the hippocampus.42 mGluR2 expression
increases rapidly during the first two weeks of life.43 Synaptic
plasticity and learning complicated motor tasks are impaired in
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mGluR2-deficient mice.44,45 mGluR8 is broadly distributed in the
central nervous system and is mainly localized in the active
regions of presynaptic neurotransmitter release.12,46 mGlu8
transcript expression declines progressively during postnatal
development47 and has been linked to anxiety and pain.48,49

Given the extensive significance of mGluRs in motor and
cognitive activities outlined above, upregulating NRF1 could
enhance cognitive skills in neonatal HIE rats by stimulating the
transcription of mGluR1/2/8. The selective agents of mGluR1/2/
5 showed the neuroprotective effects of ischemic brain injury in
neonatal HIE rats.17,20–22 The neuroprotection mechanisms of
mGluRs remain not fully understood and appear complex. Hilton
et al. demonstrated that glutamate-induced cell death in
immature hippocampal neurons was mediated primarily by
mGluRs and subsequent metabotropic Ca2+ release from
intracellular stores.50 Bratek et al. investigated that mGluR2/3
activation in a short time after neonatal HI triggered neuropro-
tective mechanisms by inhibiting oxidative stress and ROS
production.17 We identified for the first time that NRF1 was
severely reduced in the infarcted region and partially reversed
the decrease in mGluR1, mGluR2, and mGluR8 in the neonatal
HIE model. The functional NRF1 binding sites were present in the
promoter regions of Grm1, Grm2, and Grm8. It has been reported
that Grin1, Grin2b, and Gria2 are downstream target genes of
NRF1.51,52 We also detected that NRF1 could rescue cognitive
impairment caused by neonatal HIE. Therefore, we hypothesized

that NRF1 transcriptionally regulated numerous glutamate
receptors, which might impact brain function.
Numerous studies have demonstrated that hypoxia-induced

glutamate over-release can activate iGluRs, leading to impaired
neurological functions.53–55 Because of the restricted blood flow
brought on by ligation and hypoxia, the brain receives less
oxygen and glucose. The immediate fall in energy triggers a
series of additional mechanisms, beginning with a failure of the
ATP-dependent Na+-K+ pump, followed by membrane depolar-
ization and excessive glutamate release.56,57 In the present
study, interference with NRF1 expression on the infarct side
increased glutamate release. We speculated that NRF1 affected
glutamate release to some extent through transcriptional
regulation of Na+/K+-ATPase subunits α1 and β1.58 The
ameliorative effect of NRF1 on neurological function might
associate with a reduction in glutamate release, which lessened
neurotoxicity.
Furthermore, NRF1might impact neonatal HIE through the following

mechanisms. The energy failure results in energy metabolism disorder
in mitochondria. NRF1 regulates the mitochondrial respiratory chain
andmitochondrial DNA replication.59 For example, NRF1 regulates
cytochrome c oxidase subunit genes in neurons, which is an
essential enzyme of the energy-generating machinery.60 The
evidence suggested a mechanism for coordinating regulation of
NRF1 and energy consumption in the HI model. Mitophagy in
neurons is another potential mechanism. Our previous study
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found that NRF1 was involved in the regulation of mitophagy by
regulating the PINK1/Parkin pathway.25 PINK1/Parkin pathway is
involved in the pathophysiological reoxygenation process after
ischemia-reperfusion and neuronal OGD model.61 The reduction
of NRF1 in the infarct zone might inhibit PINK1/Parkin-associated
mitochondrial autophagy, resulting in neuronal cell loss.
NRF1 efficiently synchronized the expression of its target genes

to create a constant and harmonic connection among energy
metabolism, synaptic transmission, and autophagy. Therefore,
NRF1 might be able to initiate and/or maintain the intricate
processes of HIE. In the present study, we discovered that NRF1
regulated the transcriptional level of mGluRs in the neonatal HIE
model and could effectively reverse the neurological impairment.
The novel findings of the effect of NRF1 on HIE may create fresh
concepts for future in-depth investigation.
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