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Brain proton magnetic resonance spectroscopy and
neurodevelopment after preterm birth: a systematic review

Burcu Cebeci'?, Thomas Alderliesten’, Jannie P. Wijnen?, Niek E. van der Aa', Manon J. N. L. Benders’, Linda S. de Vries',

Agnes van den Hoogen' and Floris Groenendaal ('

BACKGROUND: Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance
spectroscopy ("H-MRS) is used to evaluate brain metabolites in asphyxiated term infants. The aim of this review is to assess
associations between cerebral "H-MRS and neurodevelopment after preterm birth.

METHODS: PubMed and Embase were searched to identify studies using "H-MRS and preterm birth. Eligible studies for this review
included "H-MRS of the brain, gestational age <32 weeks, and neurodevelopment assessed at a corrected age (CA) of at least

12 months up to the age of 18 years.

RESULTS: Twenty papers evaluated 'H-MRS in preterm infants at an age between near-term and 18 years and neurodevelopment.
'H-MRS was performed in both white (WM) and gray matter (GM) in 12 of 20 studies. The main regions were frontal and parietal
lobe for WM and basal ganglia for GM. N-acetylaspartate/choline (NAA/Cho) measured in WM and/or GM is the most common
metabolite ratio associated with motor, language, and cognitive outcome at 18-24 months CA.

CONCLUSIONS: NAA/Cho in WM assessed at term-equivalent age was associated with motor, cognitive, and language outcome,
and NAA/Cho in deep GM was associated with language outcome at 18-24 months CA.

Pediatric Research (2022) 91:1322-1333; https://doi.org/10.1038/541390-021-01539-x

IMPACT:

® In preterm born infants, brain metabolism assessed using "H-MRS at term-equivalent age is associated with motor, cognitive,

and language outcomes at 18-24 months.

® 'H-MRS at term-equivalent age in preterm born infants may be used as an early indication of brain development.
® Specific findings relating to NAA were most predictive of outcome.

INTRODUCTION

One in ten infants is born preterm. According to the World Health
Organization, the annual number of preterm born infants is
assumed to be ~15 million. Around one million children die every
year because of prematurity-related morbidities.” With advances
in neonatal care, mortality after preterm birth has decreased.
However, as a result of numerous risk factors preterm survivors, in
particular those born before 32 completed weeks of gestation, are
faced with a wide range of significant challenges of brain
development.? Long-term neurodevelopmental impairments
(NDils) like cerebral palsy (CP), neurocognitive, behavioral, and
motor impairments affect nearly 25-35% of the preterm infants
and increase with a decrease in gestational age (GA).>* Preterm
infants have ~12-point lower intelligence quotient (IQ) levels,
reduced language and motor abilities,%” attention difficulties and
impaired social skills,® and academic underachievement® later in
life. CP in preterm born infants may result from parenchymal brain
injury such as periventricular hemorrhagic infarction or cystic
periventricular leukomalacia, and can be predicted using term-
equivalent age (TEA) magnetic resonance imaging (MRI). However,

neurocognitive or behavioral impairments are commonly seen in
extremely born preterm infants, and difficult to predict. Prediction
of NDIs as a result of prematurity is crucial for proper clinical
assessment and parental counseling, and guiding neurodevelop-
mental follow-up, as well as for the development of future
neuroregenerative strategies.

MRI is increasingly used as a diagnostic tool for central nervous
system evaluation since the early 1980s in both the neonatal and
childhood period.'®'" Proton magnetic resonance spectroscopy
("H-MRS), a much older technique than MRI, has mainly been used
for the prediction of outcome after perinatal asphyxia in term
infants.'?

During brain development, concentrations of metabolites
change, with the most rapid alterations occurring within the first
2 years of life.'*'® It has been suggested that "H-MRS metabolites
are biomarkers for long-term neurodevelopment in preterm
infants.

Therefore, the aim of the present review is to assess the
association between cerebral "H-MRS metabolites and neurode-
velopmental outcome after preterm birth.
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Fig. 1
abstract screening, eligible and included studies.

METHODS

Design

A systematic search strategy was performed following the
principles of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement in order to identify eligible
studies.'” In this review, the aim was to identify and discuss all
published "H-MRS studies that predicted any neurodevelopmental
outcome in infants (12-24 months), young children (2-6 years),
and older children (6-18 years) born preterm <32 weeks.

Search strategy and information sources

Identification of studies was performed by an extensive search of
electronic database Medline (PubMed, from 1995 to present, and
Embase from 1988 to present). The last update of this search was
on 31 May 2020. Entry terms were formulated based on the aim of
the review, including premature infants, MRI techniques, and
neurodevelopmental outcome, and were searched with the
Medical Subject Heading search terms. Appendix 1 includes an
overview of the entry terms and search strategy. The reference
lists and bibliographies of the selected studies for inclusion were
also manually reviewed to identify any other additional studies
that were not included. The language choice for the published
articles was limited to English and papers written in any other
language were excluded. All prospective or retrospective human
studies were included and no restriction was performed for the
type of study to capture all eligible articles. Since the possibility of
change in data after published version of studies, conference
abstracts were not included in the review. Inclusion criteria were:
(1) brain "H-MRS acquired during the neonatal period and/or later
ages, (2) prematurity at or below 32 weeks GA or very-low-birth-
weight infants (birth weight <1500 g); (3) neurodevelopmental
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PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram of results of electronic database search, title,

outcome assessment: CP, cognitive or intellectual impairments,
social-emotional problems, and/or behavioral abnormalities
diagnosed at a minimum age of 12 months corrected age (CA)
up to 18 years.

Study selection

Title and abstract of studies were evaluated first, and if the
screened articles met the inclusion criteria, then the full text of
eligible articles was assessed. Two independent reviewers (B.C.
and F.G) read the full text of the selected studies. Records of
screening and study selection are presented in Fig. 1. When
debates occurred regarding the inclusion of studies, it was
discussed with a third researcher (A.v.d.H.).

Data extraction

Data were extracted by two independent researchers (B.C. and F.
G.) and crosschecked by a third researcher (T.A.). Detailed features
of the articles (study design, sample size, 'H-MRS screening
protocols, predictor metabolites, and neurodevelopmental tests
and outcomes) were extracted to a specifically designed Excel
workbook to classify the studies for the systematic review. When a
'H-MRS examination and neurodevelopmental follow-up were
performed more than once, they were listed separately in the
table (Table 3). When data were missing, the researchers
contacted the author to request the data.

Methodological quality and synthesis

Included studies were critically appraised using the McMaster
critical review form for quantitative studies'® and were compre-
hensively reviewed in terms of methodological quality. The review
form consisted of 15 items including the risk of bias, and cut-off
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points were set according to the articles from the literature using
this critical appraisal tool. Each point was assessed as fulfilled,
partially fulfilled, and unfulfilled. Only items scored as fulfilled
generated one point. A score of 13-15 was considered high
quality, a score of 9-12 was moderate quality, and a score of <8
was low quality. If the included studies were heterogeneous, a
narrative best-evidence synthesis was applied.

RESULTS
Of 96 reported studies between 1995 and May 2020, 45 articles
with results of preterm born infants underwent MRS screening.
Among those 45 articles, 17 articles contained both "H-MRS results
and neurodevelopmental outcome and therefore met the
inclusion criteria. Three additional articles were found after
reviewing references of the initially included articles. Overall, 20
published articles examined brain metabolites using 'H-MRS and
performed neurodevelopmental assessments in preterm infants
and ten of these studies (four high-quality and six moderate-
quality studies) reported significant associations between "H-MRS
metabolites and neurodevelopmental outcome (see PRISMA
flowchart in Fig. 1). All characteristics of the studies (design,
quality, number and GA of study population, age at MRI, age at
follow-up, neurodevelopmental test, and association between 'H-
MRS metabolites and neurodevelopmental outcome) are summar-
ized in Table 1. All included studies showed a total score of 10-13
points according to the McMaster critical review form for
quantitative studies. Five of these studies were considered as
high quality and 15 were moderate quality. After summarizing the
included studies, it became apparent that the included studies
were heterogeneous, having a diversity of study settings and
approaches. To synthesize the methodological quality of the
studies and to enable conclusions to be drawn, a narrative best-
evidence synthesis was applied.

Overarching outcome and subheadings from the narrative
synthesis are described as follows:

1. Magnetic resonance spectroscopic imaging (field strength,
echo time (TE), and voxel dimensions).

2. Voxel localization (white matter (WM), gray matter (GM), and
cerebellum).

3. "H-MRS metabolites (N-acetylaspartate (NAA), creatine (Cr),
choline (Cho), myo-inositol (Ins), lactate (lac), and glutamate/
glutamine (Glx)).

4. Neurodevelopmental outcome.

Magnetic resonance spectroscopic imaging

Field strength. Eight recent studies used a 3.0-Tesla scanner,
the other studies used 1.5T equipment. 'H-MRS screening
protocol and results of included studies are given in Table 2.

19-26

Echo time. Among the studies included in the systematic review,
Simobes et al.2* used a short TE (30 ms), whereas a long TE (272 ms)
was reported in the study of Groenendaal et al.” Both short and
long TEs were used in two studies.'®?® Lac was utilized at TE
ranging from 135 to 272 ms in four of the studies®’>° and short TE
(of 35 ms) was used in one study to assess Lac.?'

Voxel dimensions. Single voxel spectroscopy uses one volume of
interest. It is the most commonly used acquisition method that
can be easily implemented and processed. Two-dimensional (2D)
MRS imaging is an extension of the single voxel to a slice, in which
the voxels are phase-encoded. The 2D can be further extended to
3D to simultaneous coverage in the z/Feet-Head/caudal-cranial
direction. The more extensive coverage of 2D and 3D acquisitions
provides more informations, but requires more scanning time. 'H-
MRS screening applied single voxel spectroscopy in 17 studies and
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only Hyodo et al.?? used 2D and Chau et al.3? and Xu et al.3* used
3D spectroscopy.

Voxel localization

White matter: Four studies selected a region of interest in the WM
for the prediction of NDI.'9?*%82° Of these studies, two were of high
quality’** and two were of moderate quality;?®*° all showed a
significant association with neurodevelopmental outcome (motor,
cognitive, disabilities, 1Q, and memory function). One of the four
studies showed an association between low total Cho (tCho)/total
creatine (tCr) ratio in preterm born infants and long-term adverse
IQ, memory, and attention performance.'”” Two of the studies
specifically studied metabolites in the periventricular WM, which is
known to be the most vulnerable area as it includes a high
proportion of oligodendrocytes.?®?° In most of the studies, 'H-MRS
was performed in both WM and GM with the frontal lobe being the
most common region to place the VOI2*23313334 Three of the
included studies demonstrated an association between "H-MRS and
developmental outcomes both at 18 months CA and at 3-4 years of
age (cognition, language, and motor disabilities).’**>'

Gray matter: Three of the studies with moderate quality
performed 'H-MRS only in the GM.>**>3% Hippocampus, basal
ganglia, and thalamus were the areas most frequently studied. No
association between 'H-MRS metabolites and neurodevelopmen-
tal outcome was reported in these studies. The VOI was most
often placed in the basal ganglia and motor deficit was the
prominent NDI in these studies.?%?7>"32

The combination of "H-MRS in both GM and WM was reported
in 12 of 20 studies.20723262731-3336=38 Adyerse neurodevelop-
mental outcomes related to 'H-MRS metabolites were reported in
five studies, one study of high quality’’ and four studies of
moderate quality.?>?’?'3? Among these five studies, two
studies?™?’ reported a significant association between metabolites
only in WM areas and adverse motor and cognitive outcome,
whereas two studies?**' found significant associations with motor
impairment in only GM located metabolites. One study>? reported
the association between metabolites in both WM and GM voxels
and NDI (adverse cognitive outcome in WM and GM, and adverse
motor outcome in WM).

Cerebellum: Only one study of high quality evaluated the
cerebellum for 'H-MRS and reported a significant association
between cerebellar metabolites and low cognitive scores at 2
years of age.”®

"H-MRS metabolites. Main metabolites and factors affecting the
alterations in concentrations will be discussed in detail for each
metabolite.

N-acetylaspartate. NAA, a metabolite present in neurons, is
synthesized in the mitochondria and decreases after injury as a
result of neuronal integrity loss, but is also present in immature
oligodendrocytes.3**°

All of the 20 studies evaluated NAA as a metabolite, given as
concentration or as the ratio of various metabolites. NAA/Cho
ratio was the most commonly used metabolite ratio in WM alone
or together with GM areas predicting motor, language, and
cognitive outcome,?'?%26-2832 and NAA/Cr was the second most
commonly used metabolite ratio and was predictive of motor,
cognitive, and language scores as well as memory and attention
as a long-term outcome measure in the study by Cheong and co-
workers, 920242831 only one study of high quality demonstrated
the predictive value of NAA/Ins ratio with the Bayley Scales of
Infant Development Third Edition (BSID-IIl) at 18-22 months CA.%'
NAA concentrations were utilized in two studies (one study of
high quality?®> and one study of moderate quality®®), but no
association was found with neurodevelopmental assessment.

Pediatric Research (2022) 91:1322-1333
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Brain proton magnetic resonance spectroscopy and neurodevelopment after...

B Cebeci et al.
Table 3. 'H-MRS details of the included studies.
Age at MRl Author and year of VOI Location Predictive metabolites Age at Adverse Neurodevelopmental
publication follow-up outcome
30-34 weeks Chau 2013 WM + GM NAA/Cho 18 mo Yes (motor, cognitive, and
language)
Podrebarac 2017 WM + GM NAA/Cho, Lac/Cho 18 mo No
Roelants-Van Rijn 2004 WM + GM NAA/Cho, Lac/Cho, GIx/Cho, Ins/Cho 24 mo No
Taylor 2018 GM NAA/Cho,NAA/Cr, Cho/Cr, Ins/Cr, 4y No
Ins/Cho
Xu 2011 WM + GM NAA/Cho, Lac/Cho,Lac/NAA 12 mo No
37-44 weeks Augustine 2008 WM + GM NAA/Cho, NAA/Cr, Cho/Cr 18-24 mo No
Akasaka 2016 WM + GM NAA/Cho, NAA/Cr, Cho/Cr, Ins/ 12 mo No
Cho, Ins/Cr
Bapat 2014 WM + GM NAA/Cho, NAA/Ins 18-22 mo Yes (mental and language)
Chau 2013 WM + GM NAA/Cho 18 mo Yes (motor, cognitive, and
language)
Groenendaal 1997 WM + GM NAA/Cho 18-24 mo Yes (motor)
Hart 2014 WM NAA/Cho, NAA/Cr, lactate 18 mo Yes (only Lac doublet in PPWM and
fine motor)
Hyodo 2017 WM + GM NAA/Cho, NAA/Cr 18 mo Yes (mild DD)
Kendall 2014 WM NAA/Cr, Cho/Cr 12 mo Yes (motor and cognitive)
Podrebarac 2017 WM + GM NAA/Cho, Lac/Cho 18 mo No
Roelants-Van Rijn 2004 WM + GM NAA/Cho, Lac/Cho, GIx/Cho, Ins/Cho 24 mo No
Tanifuji 2017 GM NAA/Cho, NAA/Cr, Cho/Cr, Ins/Cho, 12-16 mo No
Ins/Cr, GIx/Cr, GIx/Cho, GABA/Cr,
GABA/Cho
Taylor 2018 GM NAA/Cho, NAA/Cr, Cho/Cr, Ins/Cr, 4y No
Ins/Cho
Van Kooij 2012 Cerebellum  NAA/Cho 24 mo Yes (cognition)
1-2 years Akasaka 2016 WM + GM NAA/Cho, NAA/Cr, Cho/Cr, 12 mo No
Ins/Cho, Ins/Cr
Phillips 2011 WM + GM NAA/Cho, Cho/Cr 18-22 mo No
3-4y
Simoes 2017 WM NAA/Cr 22.5 mo Yes (cognitive, language, motor)
Tanifuji 2017 GM NAA/Cho, NAA/Cr, Cho/Cr, Ins/Cho, 12-16 mo No
Ins/Cr, GIx/Cr, GIx/Cho, GABA/Cr,
GABA/Cho
4-6 years Durlak 2016 WM + GM Ins/Cr, Cho/Cr 3545y Yes (mild, moderate/severe DD)
Gasparovic 2018 WM + GM NAA, Cr, Cho, Ins, glutamate, 4y No
concentration 6y
Phillips 2011 WM + GM NAA/Cho, Cho/Cr 18-22 mo No
3-4y
Taylor 2018 GM NAA/Cho, NAA/Cr, Cho/Cr, Ins/Cr, Ins/ 4y No
Cho
8 years Rademaker 2006 GM NAA/Cho, Lac/Cho, GIx/Cho, Ins/Cho 84y No
18 years Cheong 2016 WM NAA/Cr, Cho/Cr 18y Yes (IQ, working memory, shifting
attention)
Cho total choline-containing compounds, Cr combined creatine and phosphocreatine, Glx combined glutamate and glutamine, GM gray matter, Ins myo-
inositol, Lac lactate, mo month, NAA combined N-acetylaspartylglutamate and N-acetylaspartate, PIQ performance intelligence quotient, /Q intelligence
quotient, WM white matter, y year.

The relationship between metabolite ratios and neurodevelop-
mental outcome at different age of MRS scan is given in Table 3.

Creatine. Cr is the primary supply for cellular energy metabolism.
It is synthesized in the kidneys and liver and is then carried to the
brain to maintain adenosine triphosphate in neurons.*' Cr peak
consists of free Cr and phosphocreatine.*® Cr is generally utilized
as a reference metabolite in ratios since its levels remain constant
after the first year of life.*> Fourteen of 20 included studies used Cr

Pediatric Research (2022) 91:1322-1333

in peak ratios with several metabolites. As a predictor for the
neurodevelopmental outcome, NAA/Cr was the most common
metabolite ratio in the studies in both WM and GM regions at
18-22 months CA as well as at 4 and 18 years of age.'??%24283!
One study of high quality and two studies of moderate quality
reported an association between Cho/Cr metabolite ratio and
motor, expressive language, and memory scores.'*?*3! Cr
concentrations were reported in two studies without any evident
relation with outcome.?®?
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Choline. Cho or tCho is used to address the signals of Cho-

containing compounds such as free Cho, phosphocholine (PC),
and glycerophosphocholine (GPC), which resonate at almost the
same frequency. PC and GPC are found in phospholipids
(phosphatidyl Cho and sphingomyelin), which are the main
components of cell membranes.** Cho is therefore accepted as
an indication of structural integrity. Cho is also a precursor of
acetylcholine, which is the main neurotransmitter in the brainstem
responsible for signaling pathways.** Cho levels increased in case
of cellular proliferation, membrane turnover, myelination, or
inflammation®*™° and decreased with age as the rapid brain
growth in the neonatal period decelerates later in childhood.?

Overall, 20 studies involved the Cho peak or concentration to
evaluate the adverse developmental outcome. Eight of the studies
studied Cho in ratios of either NAA or Cr and reported an
association with NDI.'%21:2226:27.2931.32 NAA/Cho ratio in frontal
WM and deep GM nuclei was the most common predictor of NDI
in one study of high quality’’ and four studies of moderate
quality?*?”?132 and Cho/Cr ratio was the metabolite ratio to
predict adverse developmental outcome including both motor
and cognitive problems at childhood and adolescence period.'*?'
Low Cho/Cr level was significantly associated with motor
impairments in childhood period®' and higher tCho/tCr in GM
was significantly correlated with higher IQ in preterm born
adolescents."’

Myo-inositol. Ins is the precursor metabolite of phosphatidylino-
sitol, which is essential for signal transduction, especially in WM.>°
It has a crucial role in the regulation of extracellular osmolality>'>2
and is accepted as a marker of gliosis in the brain.>® It increases in
the early stage of hypoxia—ischemia and has a decreasing trend in
the perinatal period.>* Ins was evaluated in 9 of 20 included
studies?%2'23726313637 and an association between metabolites
and NDI was noted in two studies of high quality*’** and one
study of moderate quality.>’ Among these studies, one study of
high quality reported NAA/Ins ratio in the WM was significantly
associated with BSID-ll mental and cognitive scores at
18-22 months CA.”'

Lactate. Lac is accepted as hypoxic and/or ischemic marker. At a
TE of 144 ms, Lac is fully inverted and a TE of 288 ms allows Lac to
be seen in a completely upright position and reduces the amount
of lipid contamination.>® Elevated Lac is indicative of brain
parenchyma ischemia after underlying nonoxidative glucose
consumption. Several studies of term neonates with encephalo-
pathy demonstrated that an increase in Lac concentration and a
decrease in NAA concentration is correlated with NDI.>®™® A meta-
analysis about neonatal encephalopathy in (near) term infants
reported that Lac/NAA ratio in deep GM is the most precise
biomarker currently available for prediction of adverse neurode-
velopmental outcome.®® Elevation of Lac in preterm born infants
might be interpreted as normal because of usual alterations in
metabolism in the preterm brain.2°*"%° Lac was evaluated in 8 of
20 included studies,’>?%73133 and among these eight studies, five
studies reported an association between metabolites and NDI, and
only study of Hart et al.?® with moderate quality identified high
Lac doublet to be significantly associated with fine motor scores of
BSTID-II.

Glutamate/glutamine. ~Glutamate, the major component of the
Glx peak including y-aminobutyric acid, glutamine, and glutamate,
is the most abundant excitatory neurotransmitter in all brain
regions. Increased glutamate concentration after hypoxia causes
toxicity to neurons, which ends up in cell injury and/or death.®’”
Five of the included studies used Glx either in metabolite ratios or
as Glx concentrations.”®?%?°%> No association was reported
between GIx and neurodevelopmental outcome in two studies
of high quality and three studies of moderate quality.

SPRINGERNATURE

Neurodevelopmental outcome. The neurodevelopmental assess-
ment was conducted with the BSID-lll in ten of the included
studies,?'23242628-30323338  and among these studies, three
studies of high quality?'?*?® and three studies with moderate
quality®®?*32 demonstrated adverse neurodevelopmental out-
come relative to neurometabolites. Two studies estimated NDI
using other tests. The Wechsler Preschool and Primary Scale of
Intelligence-lll test was used as a developmental test tool at 3-4
years of age in the study of Phillips et al.>*> and Cheong et al.'®
performed a two-subtest version of the Wechsler Abbreviated
Scale of Intelligence test at 18 years. Motor disability was the main
reported outcome in six studies??**?723132 and it was mostly
associated with NAA/Cho ratios in WM at 18-24 months CA in one
study with high quality*® and two studies with moderate
quality.>**” Only one study with moderate evidence assessed
developmental delay at 3.5-4.5 years reporting lower Cho/Cr
ratios in both WM and GM.3' NAA/Cho ratios in WM were
associated with low cognitive scores at 18-24 months CA in three
of the studies.*****? Low NAA/Cho ratios in both WM and GM
were significantly associated with lower language score in two
studies in preterm born infants assessed at 18-24 months CA in
two studies of high quality.?'** Only Cheong et al.'® reported that
low Cho/Cr ratios correlated with lower 1Q in preterm born
adolescents.

DISCUSSION

This systematic review included 20 studies investigating the
predictive role of 'H-MRS metabolites in neurodevelopmental
outcome in infants (12-24 months), young children (2-6 years),
and older children (6-18 years) in infants born preterm. Ten of the
studies reported the association between 'H-MRS metabolites
and NDI.

Conventional MRI is not able to define changes in cellular
biochemical composition and structure that can be available with
'H-MRS. The number and quantitation of detectable metabolites
depend on the pulse sequence and its parameters, besides
spectral resolution and signal-to-noise ratio (SNR).°®%° Metabolites
obtained from 'H-MRS are reported most frequently as either
peak-area ratios or absolute concentrations. Measurements of
absolute concentrations of metabolites have been performed by
using external or internal standards, although both methods have
some disadvantages. Using external standards is inconvenient and
time-consuming,”®”" and use of water as the internal standard has
the disadvantage of the assumption that brain water content is
constant, which is not true in different brain diseases such as post
hypoxia—ischemia. During brain development, concentrations of
several neurochemicals change, resulting in various alterations
that occur during the first 2 years of life.”>'%”? The maturational
pattern of preterm infants is different compared to term infants. In
preterm infants, NAA, Cr, glutamate increase, and Ins and Lac
decrease towards TEA.®

Most of the tissue abnormalities seen by MRI in preterm
infants are observed in the WM, including small punctate or
cystic lesions, diffuse excessive high signal intensity, impaired
myelin maturation, parenchymal tissue loss, and corpus callo-
sum abnormalities.”*’® Disrupted maturation and chronic
myelination disturbances are accepted as the main underlying
pathologies”” and CP is the most common cause of long-term
NDI in children with severe WM injury.”®®° Since the largest
number of developing oligodendrocytes are localized in the
posterior periventricular white matter, this area is one of the
most vulnerable regions in the preterm brain.?'

GM is composed of the cerebral cortex and deep central nuclei
(basal ganglia, thalamus), which provide interconnection between
cerebral cortex and several other brain areas. Preterm infants with
GM damage are at risk for long-term neurocognitive impairments
via direct or secondary injury to sensory and motor axons.”> Some

Pediatric Research (2022) 91:1322-1333



studies revealed that reduced cortical and deep GM volume in
preterm born infants had an association with moderate-to-severe
NDI at 12 months CA compared to term infants.>”32 Additionally,
cognitive disabilities including working memory and IQ were
found to be correlated with GM damage.®3®” Any WM injury is
also assumed to disturb the development of GM affecting motor,
cognitive, and intellectual outcomes.2*°! The cerebellum provides
interconnection with the cerebral hemispheres and processes in
higher functioning, such as motor functions, as well as learning,
memory, cognitive, and behavioral functions.®*®> Cerebellar
hemorrhage is a serious and not well-recognized complication
in preterm born infants related with high mortality and NDI.***”

Our review demonstrates that in preterm infants, "H-MRS
performed in WM areas at TEA is associated with neurodevelop-
mental outcome at 18-24 months CA. Motor disability at
12-24 months CA is the most commonly reported adverse finding
among all other evaluated parameters, and low cognitive score
was the second common outcome performed at 18-24 months
CA. Most studies evaluated "H-MRS at TEA and a few studies did a
scan at a later age including four studies at 4-6 years of
age, 22233136 one study at 8 years of age,>® and 1 study at 18 years
of age.'” Several studies had repeated MRI scans at different time
points202223:25:26303236 and two studies (one study of high and
one study of moderate quality) performed more than one
neurodevelopmental assessment at different time period.?%*
Only one study of moderate quality found a relation between an
early "H-MRS age (30-34 weeks) with an adverse motor and
cognitive outcome.®? The region with the highest association
between brain metabolites and neurodevelopmental outcome
cannot be identified based on data from the present review. More
studies measuring various brain areas are necessary to clarify this.
There are limited data assessing other cognitive, behavioral, and
language scores at a later age so that further studies are needed
to evaluate long-term neurodevelopmental outcome.

Studies included in this systematic review were composed of
variable populations involving both a small number (range 12-43)
and a large number of infants (range 65-177) born at or below 32
gestational weeks. The number of infants that participated in the
majority of the studies was <30. More than half of the studies had
a control group consisting of term babies to compare with the
preterm infants. Only one study of moderate quality reported
sensitivity and specificity to define predictive value of metabolites
for neurodevelopmental outcome.? In addition, only two studies
reported the relation between IUGR in preterm infants and 'H-
MRS metabolic ratios.'>** Therefore, no definite conclusions on
the effects of IUGR in preterm infants can be made.

Detection of in vivo biochemical data provides not only a
perspective to the metabolic assessment that enlighten brain
development, but also may enable a better insight to alterations
of metabolites in case of abnormal processes.'® Several metabo-
lites were measured to predict neurodevelopmental outcome,
however, mostly restricted to the first 2 years of life with limited
data for later ages. NAA/Cho ratio has the highest predictive value
for motor impairments in infants, but still there is a lack of data to
predict cognitive impairments because outcome reports of school-
aged children were limited. The use of NAA as a biomarker for
neurodevelopment carries a high potential given the almost
exclusive presence of NAA in neurons and immature oligoden-
drocytes, cells that have a particular vulnerability in the
preterm brain.

Concerning field strength, the older studies have been
performed in using a 1.5T system, the newer studies used 3.0 T
equipment, which may improve the identification of metabolites.
Studies performed with 3.0 T report tissue levels for metabolites
such as Ins, GIx, and gamma-aminobutyric acid (GABA) as
quantification of these metabolites is more reliable at 3.0T
because of its increased SNR. Recently, the first study of human
infants in a 7 T field was published, which demonstrated increased
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chemical shift dispersion and less overlap between the different
metabolite peaks, which benefits the detection of the overlapping
signals of, e.g., glutamate, glutamine, and GABA.”® For the major
signals in (ischemic) brain, such as NAA, Cho, and Lac, the use of
1.5T or 3.0T 'H-MRS did not result in different clinical decision-
making.”

TE is important in the identification of metabolites. "H-MRS at
short TE enables the quantification of a comprehensive biochem-
ical profile including several brain metabolites.'®® More com-
pounds can be detected using shorter TEs (25-35 ms) compared
to longer TEs (144 or 288 ms). The disadvantage of the short TE
might be the presence of broad signal from high-molecular-
weight macromolecules and lipids,'®" which have a relatively short
T2. Longer TEs are mainly preferred to discriminate Lac from lipids
and overlapping multiplets.>*'°2

There are several limitations of the data used in our review. 'H-
MRS techniques varied among the studies including different TEs,
magnetic field strengths, preferred regions, and voxel size, which
may affect tissue specificity and resulted in regions of interest that
include nontargeted tissues. The larger chemical shift dispersion at
higher field strengths provides a better discrimination of
individual components, and SNR is improved. Ideally, raw data
need to be processed using the same processing pipeline to
compare 'H-MRS results between different scanners. Recently,
recommendations on single voxel MRS data processing have been
summarized by the MRS experts’ working group.'®® The methods
used in the main steps, preprocessing, analysis, and quantification,
should be reported along with study results to be able to compare
results from different studies. The reporting of data processing
methods for most studies in the present review did not meet the
new standards as proposed by the MRS expert’s working group.'%*
Nevertheless, by comparing ratios of metabolite levels and not the
absolute concentrations of metabolites, the effect of differences in
processing methods on clinically relevant parameters is largely
reduced.

There were insufficient data investigating metabolites like
glutamate, taurine, lipids, and other macromolecules, which might
be associated with neurodevelopment. Neurodevelopmental
assessment in the included studies was evaluated with a variety
of developmental tests and the results may be affected by several
variables as linguistic, socio-economic, and cultural patterns.

Future developments

'H-MRS plays a special role in the assessment of brain
development, providing information on the molecular composi-
tion of brain tissue. Use of chemical shift imaging preferably at
higher magnetic field strength to reduce scanning time will
enable clinicians to obtain detailed information on metabolites
of several brain structures, including periventricular WM, deep
GM, and the cerebellum, which are all known to be at risk in
preterm neonates.

With short scanning times, metabolic imaging can be added to
the standard imaging protocol even in very preterm and
vulnerable patients. Multicenter studies in preterm infants will
be needed to compare findings obtained in different scanners,
which will facilitate the use of 'H-MRS as a surrogate end point in
clinical trials.

CONCLUSION

"H-MRS is a potential surrogate end point for neurodevelopment
in preterm infants: NAA/Cho ratio in WM at term equivalent age
is associated with motor outcome in preterm infants at
18-24 months’ CA. NAA/Cho ratios in the WM were associated
with cognitive scores and NAA/Cho ratios in the WM and GM
were significantly related to language scores in preterm born
infants assessed at 18-24 months’ corrected age. There is a need
for further studies evaluating the association between neonatal
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