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Abstract
Chromosomal fragile sites are genomic loci sensitive to replication stress which accumulate high levels of DNA damage, and
are frequently mutated in cancers. Fragile site damage is thought to arise from the aberrant repair of spontaneous replication
stress, however successful fragile site repair cannot be calculated using existing techniques. Here, we report a new assay
measuring recombination-mediated repair at endogenous genomic loci by combining a sister chromatid exchange (SCE)
assay with fluorescent in situ hybridization (SCE-FISH). Using SCE-FISH, we find that endogenous and exogenous
replication stress generated unrepaired breaks and SCEs at fragile sites. We also find that distinct sources of replication stress
induce distinct patterns of breakage: ATR inhibition induces more breaks at early replicating fragile sites (ERFS), while
ERFS and late-replicating common fragile sites (CFS) are equally fragile in response to aphidicolin. Furthermore, SCEs
were suppressed at fragile sites near centromeres in response to replication stress, suggesting that genomic location
influences DNA repair pathway choice. SCE-FISH also measured successful recombination in human primary lymphocytes,
and identificed the proto-oncogene BCL2 as a replication stress-induced fragile site. These findings demonstrate that SCE-
FISH frequency at fragile sites is a sensitive indicator of replication stress, and that large-scale genome organization
influences DNA repair pathway choice.

Introduction

Replication stress is a potent source of DNA breaks in
proliferating cells and is frequently elevated in cancer cells
[1, 2]. Disruptions in replication fork stability generate
replication stress, leading to increased fork stalling or col-
lapse. Specific genomic regions called fragile sites are
exquisitely sensitive to replication stress, accumulating high
levels of DNA breaks in response to chemical or genetic
perturbations of DNA replication [3, 4].

Common fragile sites (CFS) were identified as sites of
recurrent DNA breaks in cells exposed to the DNA poly-
merase inhibitor aphidicolin (APH). CFSs primarily occur
in gene-poor, late replicating regions enriched for AT
repeats prone to forming secondary structures [5–7]. We
recently identified a new class of fragile sites occurring in
gene-rich regions with a high density of replication origins
termed early replicating fragile sites (ERFS) [8]. ERFS are
transcriptionally active, and are enriched for CpG islands—
a common feature of mammalian promoters. Studies of
fragile site stability directly measure unsuccessful DNA
repair using fluorescent in situ hybridization (FISH) to
visualize DNA breaks in metaphase chromosome spreads.
Though CFSs and ERFSs have distinct genetic and epige-
netic features, FISH studies revealed that oncogene over-
expression and ATR inhibition induce frequent DNA breaks
at both sites in primary B cells [6, 8, 9].

Collapsed replication forks contain a double-strand break
(DSB) intermediate, and homologous recombination (HR)
plays a critical role in fork recovery. Cells lacking the HR
factors Brca1, Rad51, Xrcc2, or Mus81 exhibit increased
DNA breaks at fragile sites, suggesting that HR suppresses
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spontaneous replication stress-associated damage
[8, 10–12]. Xrcc2 is a Rad51 paralog, forming a hetero-
tetrameric complex with its family members Rad51B,
Rad51C, and Rad51D (BCDX2) [13]. This complex sti-
mulates HR and influences the choice between short and
long-tract gene conversion [14].

Unrepaired fragile site breaks are readily detected fol-
lowing induced replication stress. However, it is not known
if fragile sites experience spontaneous replication stress that
is normally repaired, as no prior studies measured suc-
cessful DNA repair at fragile sites on the single cell level.
DNA blotting and PCR amplification-based measurements
of successful recombination have limited utility at fragile
sites [15]. Both techniques require mapping break sites
within 2–20 kilobases (kb), while fragile sites span >100 kb
[16, 17]. In addition, only ~10% of cells contain damage at
an individual fragile site, further hampering detection by
these methods.

Here we combine sister chromatid exchange (SCE) with
FISH—SCE-FISH—to measure successful HR-mediated
repair at endogenous fragile sites in mouse and human
primary lymphocytes. We found that replication stress from
inhibition of either ATR or DNA polymerase induced DNA
breaks and SCEs at ERFSs and CFSs in WT and HR-
deficient Xrcc2f/f mouse B cells. Further, SCE-FISH
revealed that Xrcc2 is not required for replication stress-
induced SCE formation. We also observed distinct differ-
ences in SCE frequency at ERFSs and CFSs in response to
ATRi and APH, indicating that exogenous sources of
replication stress differentially affect early and late-
replicating fragile sites. We also investigate the effects of
genomic location on fragile site stability and repair pathway
choice.

Results

SCE-FISH measures locus-specific DNA repair

HR-mediated repair involves invasion of the adjacent sister
chromatid to prime new DNA synthesis. The resulting
cruciform structure—the Holliday junction—can be
resolved as noncrossover or crossover events, the latter
generating SCEs. SCEs are visualized through the differ-
ential labeling of sister chromatids by incorporating the
nucleoside analog bromodeoxyuridine (BrdU) into DNA for
two rounds of replication (Fig. 1a). To simultaneously
visualize SCEs and single-locus FISH, we detected BrdU by
immunofluorescent staining (Fig. 1a). Unlike immuno-FISH
involving protein detection, the bromine-modified thymi-
dine analog recognized by the BrdU antibody is heat, pro-
tease, and formamide-insensitive, yielding robust and
repeatable fluorescent signal when combined with standard

FISH procedures (Fig. 1b, c). In addition, SCE-FISH helped
visualize mitotic chromosome damage; BrdU staining
helped differentiate between chromosomes harboring
chromatid breaks from twisted but intact sister chromatids
(Fig. 1c, Supplementary Fig. 1a).

SCE-FISH reveals spontaneous DNA repair at
endogenous fragile sites

To measure DNA damage and repair at individual fragile
sites, we performed SCE-FISH in antigen-stimulated WT
and XRCC2-deficient mouse primary B cells undergoing
rapid proliferation [18]. We measured breaks and SCEs at
two ERFSs (GIMAP and BCL2), two CFSs (IMMP2L and
FHIT), and two control loci termed cold sites (64O1 and
164J15)—chosen for their distance from mapped fragile
sites (>15 MB). Xrcc2f/f cells act as a positive control, as
~10% of metaphases contain DNA breaks compared with
0–2% in wild type cells [8], and damage at GIMAP is a
frequent event (Fig. 1d, Supplementary Fig. 1b, c).

In the absence of exogneous replication stress, WT cells
contained virtually no DSBs (<0.01 breaks/metaphase), and
no breaks at fragile or cold sites (Fig. 2a, c). Xrcc2f/f cells
harbored ~0.25 breaks/metaphase with ~4% of breaks at the
ERFS GIMAP; these were the only spontaneous fragile site
or cold site breaks observed (Fig. 2a, b). In contrast to
DSBs, we observed extensive spontaneous SCE formation
(Fig. 2c). Similar to previous reports, we observed 15%
fewer spontaneous SCEs in Xrcc2f/f cells than WT cells [19]
(Fig. 2c). Both WT and Xrcc2f/f cells harbored 2.5-fold
more SCEs at the ERFSs GIMAP and BCL2 than cold sites,
and 1.8-fold more SCEs at the CFS IMMP2L (Fig. 2d).
Intriguingly, the SCE frequency at FHIT was similar to cold
sites. These results suggest that GIMAP, BCL2, and
IMMP2L experience more spontaneous DNA damage and
recombination than cold sites.

ATR inhibition induces DNA damage and
recombination at ERFSs and CFSs

To measure replication stress-induced fragile site breakage,
we analyzed DNA aberrations in WT and Xrcc2f/f cells
exposed to a small molecule inhibitor of ATR, ETP-46464
(ATRi). The DNA damage checkpoint kinase ATR is a
central player in the replication stress response, and loss of
ATR activity leads to replication-associated genome
instability and cell death [20–22]. Approximately 2% of
WT cells contained breaks at GIMAP, IMMP2L, and FHIT
in response to 1 μM ATRi, however total damage (0.4
breaks/cell) was too low to calculate break frequency
accurately at individual loci. Therefore, we measured ATRi-
induced damage in Xrcc2f/f cells where breaks were 3.5-fold
higher (Fig. 2a). All four fragile sites co-localized with

Visualizing locus-specific sister chromatid exchange reveals differential patterns of replication. . . 1261



DNA damage in 2.5–3% of Xrcc2f/f cells, compared with no
breaks at cold sites [8, 23] (Fig. 2b, Supplementary Fig. 2b).

To calculate the rate of successful repair, we next ana-
lyzed SCE formation. In response to 1 μM ATRi, total SCEs
increased 1.5-fold in WT and Xrcc2f/f cells (Fig. 2c). The
number of SCEs also increased at GIMAP, BCL2, and
IMMP2L—however the relative frequency of SCE forma-
tion at fragile sites was comparable between ATRi-treated
and untreated cells (Fig. 2d, Supplementary Table 1). These
results support the hypothesis that ATR inhibition induces
genome instability by impeding the cellular response to
spontaneous replication stress. In addition, the SCE fre-
quency at individual fragile sites was similar in WT and
Xrcc2f/f cells in the presence or absence of ATRi (Fig. 2d).
Together, these results indicate that Xrcc2 is not required
for spontaneous and ATRi-induced SCE formation at
fragile sites.

Similar to untreated cells, SCEs at FHIT were fourfold
lower than IMMP2L in ATRi-treated cells (Fig. 2d, Sup-
plementary Table 1). This difference is highlighted by SCE
frequency within the cell population: 15% of ATRi-treated

WT cells have an SCE at IMMP2L while fewer than 5%
have an SCE at FHIT (Supplementary Fig. 2d). We
observed similar levels of damage at FHIT and IMMP2L
(Fig. 2b, Supplementary Table 1, Supplementary Fig. 2b),
therefore these results raise the possibility that SCE for-
mation is suppressed at FHIT.

Increasing ATRi concentration enhances fragile site
damage

One micromolar ATRi induces modest levels of damage in
WT cells; therefore, we increased the drug concentration to
confirm that ERFSs and CFSs are sensitive to ATRi.
Compared with 1 μM ATRi, 5 μM ATRi increased total
DNA damage 5-fold in WT cells and 2.5-fold in Xrcc2f/f

cells (Fig. 3a). Exposure to 5 μM ATRi led to distinct dif-
ferences in the frequency of fragile site breaks in WT and
Xrcc2f/f cells. ERFS harbored extensive damage in WT and
XRCC2-deficient cells—breaks at GIMAP or BCL2 com-
prised of ~5% of total aberrations (Fig. 3b, Supplementary
Table 2). In contrast, CFS breaks occurred more frequently
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Fig. 1 SCE-FISH measures successful recombination-mediated repair
at endogenous genomic loci. a SCE-FISH assay scheme. SCE is an
event where the two strands of DNA exchange after repair of a DSB,
resulting in a crossover event. SCEs can be visualized by differentially
labeling the two sister chromatids with the nucleotide analog BrdU.
Combining single locus FISH with BrdU staining to measure SCE
events allows the measurement of successful DSB repair at a specific
locus on a single cell level. Telomere probe to visualize chromosome

ends facilitates cytogenetic analysis of DNA damage. FISH probes are
shown in green, telomere-specific probe is in red, and BrdU shown in
cyan. b SCE-FISH validation showing a spontaneous SCE at the ERFS
locus BCL2. c Chromatid break at the fragile site BCL2. d Example of
a spontaneous DNA break at GIMAP in Xrcc2f/f B cells. GIMAP is in
green, DAPI in greyscale. Probe for fragile sites in green, telomeres in
red, BrdU in cyan, and DAPI in greyscale. Images in c and d taken
from cells exposed to 1 μM ATRi
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than cold sites only in Xrcc2f/f cells (~3% vs. ~1% of total
damage). Thus, ERFSs are more sensitive to ATRi-induced
replication stress than CFSs.

Intriguingly, 5 μM ATRi exposure increased the number
of cells with DNA breaks at both fragile site alleles,
revealing that replication fork stress occurred at the same
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locus on both chromosomes (Supplementary Table 2). This
finding raises the possibility that the lack of an intact repair
template prevents inter-homolog recombination, resulting in
unrepaired breaks in mitosis.

ERFSs are hotspots of aphidicolin-associated DNA
damage

ERFSs and CFSs have contrasting epigenetic and genetic
features [24], therefore distinct sources of replication stress
may differentially impact ERFS and CFS stability. To test
this, we exposed cells to the B-family DNA polymerase
inhibitor aphidicolin (APH) which hinders replication
initiation and progression [25]. Exposure to 0.4 μM APH
induced extensive DNA damage in WT and Xrcc2f/f cells
(Fig. 4a). In WT cells, ~6% of aberrations occurred at the
CFSs FHIT and IMMP2L compared with ~1% of aberra-
tions co-localizing with cold site probes (Fig. 4b, Supple-
mentary Fig. 3a, b). We observed a similar break frequency
for the ERFS GIMAP and BCL2 in WT cells, contrary to
previous experiments [8]. APH also induced more aberra-
tions in Xrcc2-deficient cells, however this result was not
statistically significant. To confirm Xrcc2f/f cells were

hypersensitive to APH, we re-expressed wild-type murine
XRCC2 (MIGR1-X2) in Xrcc2f/f cells by retroviral infection
and measured fragile site DSBs. APH-induced DNA
damage decreased over 50% in Xrcc2f/f cells complemented
with XRCC2 than cells infected with empty vector
(MIGR1-EV) (Supplementary Fig. 3e). However Xrcc2 re-
expression did not affect fragile site breakage; GIMAP and
IMMP2L breaks occurred at the same frequency in MIGR1-
EV and MIGR1-X2-expressing cells (Supplementary
Fig. 3f).

To measure APH-associated repair, we next analyzed
SCEs. APH induced a 3.5-fold increase in total SCEs in WT
and Xrcc2f/f cells (Fig. 4c). SCEs also occurred more fre-
quently at GIMAP, BCL2, and IMMP2L than cold sites in
WT and XRCC2-deficient cells (Fig. 4d). Unlike ATRi, we
found no difference in SCE frequency between ERFSs and
CFSs—SCEs at all three sites were twofold higher than cold
sites (Fig. 4d, Supplementary Table 3). However the SCE
frequency at fragile sites was significantly lower than in
untreated or ATRi-treated cells (Fig. 4d). WT and Xrcc2f/f

cells had a similar SCE frequency, indicating that XRCC2 is
not required for replication stress-induced SCE formation.
We propose that APH provokes replication fork stalling
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throughout S phase, affecting both early and late-replicating
fragile sites.

Similar to ATRi, we observed few SCEs at FHIT in
response to APH—while 25–30% of cells harbor one or
more SCEs at IMMP2L, <15% had an SCE at FHIT (Fig.
4d, Supplementary Fig. 3d). However ~15% of cells con-
tained damage at FHIT—similar to other fragile sites
(Supplementary Fig. 3b, Supplementary Tables 1, 3). These
results further support the hypothesis that replication stress-
induced SCEs are suppressed at FHIT.

SCEs are suppressed at centromere-proximal fragile
sites

From yeast to humans, centromeres experience meiotic
crossover suppression that can affect adjacent genes
[26, 27]. FHIT is located 7Mb from the centromere, raising
the possibility that it experiences centromere-associated
crossover suppression. To test this, we performed SCE-
FISH at IKZF1, an ERFS located ~7Mb from the chro-
mosome 11 centromere. In response to 0.4 μM APH, the
break frequency at IKZF1 was twofold higher than cold
sites (Supplementary Fig. 4a, Supplementary Table 3).
Similar to FHIT, IKZF1 harbored APH-induced SCEs at
cold site levels (Supplementary Fig. 4b, Supplementary
Tables 1, 3). In addition, SCEs at IKZF1 occurred at cold
site levels in response to 1 μM ATRi (Supplementary Table
3, Supplementary Fig. 4b). The break frequency of IKZF1
in response to 1 μM ATRi was too infrequent to measure
accurately in WT cells, therefore we exposed cells to 5 μM
ATRi. Here, IKZF1 harbored extensive DNA damage—the
break frequency was similar to the ERFS GIMAP and BCL2
(Supplementary Table 2, Supplementary Fig. 4b). We were
unable to measure fragile site SCEs in 5 μM ATRi-treated
cells due to the low mitotic index; BrdU-labeled metaphases
were insufficient. Taken together, this data suggests that
SCE formation is suppressed at fragile sites proximal to
centromeres.

Replication stress induces fragile site breaks on
both alleles

ERFSs replicate early, suggesting that damaged forks per-
sist many hours to be observed in mitosis. One possible
explanation for this persistence is both chromosomes
experience damage leaving no intact template for repair. We
found evidence for such events: in WT cells exposed to
5 μM ATRi, 4/21 cells with GIMAP damage contained
breaks at both alleles (Supplementary Table 2c). Further,
10.3% of cells contained an SCE on both BCL2 alleles, and
3.7% at GIMAP (Supplementary Table 1e). HR shows a
strong preference to use the sister chromatid in mammals,
however the homologous chromosome is also utilized in

allelic repair [28]. If both repair templates are damaged,
then DSBs may persist into mitosis. The majority of HR-
mediated repair events result in noncrossover products,
therefore we are likely underestimating this phenomenon.
We propose that damage at both alleles—and the absence of
a viable repair template—accounts for a significant portion
of persistent fragile site breaks observed in mitosis.

ATRi and APH induce distinct rearrangement types

Both ATRi and APH induce dicentric chromosomes, chro-
mosome breaks, and chromatid breaks—the last comprises
over 70% of observed damage (Fig. 5a–c). APH also induces
the formation of radial chromosome fusions while ATRi
does not (Fig. 5b–e). APH induces more unrepaired breaks
than1 μM ATRi; therefore it is possible that having multiple
exposed DNA ends in a single cell promotes radial formation
(Figs. 2c and 4c). However exposure to 5 μM ATRi dra-
matically increases the number of unrepaired breaks without
inducing radials (Fig. 3a, Fig. 5d, e), therefore increasing
DNA breaks is insufficient to drive radial formation. Further,
Xrcc2f/f cells harbor high levels of DNA damage yet contain
no radial chromosomes in response to either 1 μM or 5 μM
ATRi (Fig. 3a, Fig. 5d, e). Thus, a high level of DNA
damage is not sufficient to induce radial formation.

ATR activity promotes APH-induced radial fusion
formation

ATRi and APH both induce replication stress, however
radial chromosomes only form in response to APH. To
define the impact of ATR inhibition on APH-induced radial
chromosome formation, we characterized DNA aberrations
and SCE formation in cells exposed to both 1 μM ATRi and
0.4 μM APH (ATRi+APH). As expected, total DNA
aberrations were higher in ATRi+APH-treated cells than
single treatments (Fig. 5f). ATRi+APH induced a lower
rate of total SCEs per cell than APH alone (Fig. 5g), sug-
gesting that ATR activity is required for a subset of SCE
events. Neither SCE nor break frequency were significantly
different at fragile sites in ATRi+APH-treated cells com-
pared with single treatments (data not shown). Intriguingly,
radial chromosomes were greatly reduced in response to
ATRi+APH treatment compared with APH alone
(Fig. 5f, g).

Radials are potentially cytotoxic DNA rearrangements;
chromosome fusions containing more than one centromere
promote mitotic errors [29, 30]. Therefore it is possible
combined treatment with APH and ATRi leads to increased
apoptosis, complicating the analysis of radial formation. To
test this, we measured cell viability in ATRi- and APH-
treated cells. No treatment increased cell death more than
10% by propidium iodide staining (Fig. 6a). Similarly, the
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radial chromosomes (% of total damage) in response to different

treatments. e Percent of cells containing radial chromosomes in
response to different treatments. f Number of DNA aberrations per
metaphase in response to combination of 1 μM ATRi and 0.4 μM APH
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fraction of TUNEL-positive cells modestly increased in
response to ATRi+APH (40% vs. 25–30%, Fig. 6b). In
contrast, we found that 60% of cells were TUNEL-positive
in 5 μM ATRi-treated cells—a twofold increase from 1 μM
ATRi (Fig. 6b). Thus, it is unlikely that the lack of radial
chromosomes observed in ATRi+APH-treated cells is due
to increased cell death (Fig. 6b). These results indicate that

ATR kinase activity is required for radial chromosome
formation.

SCE-FISH is elevated at fragile sites in human cells

CFSs were first identified in primary human lymphocytes
exposed to APH [3, 4]. To measure successful fragile site
repair in primary human cells, we exposed stimulated per-
ipheral blood mononuclear cells (PBMC) from whole blood
to 0.4 μM APH for 20 h then performed SCE-FISH. Similar
to previous reports, APH treatment induced breaks and
SCEs in human PBMCs [31] (Fig. 7a, c). APH induced a
high level of DNA aberrations, particularly at CFSs (Fig.
7b, Supplementary Fig. 5b). We also observed breaks at the
ERFS BCL2, albeit at lower levels than either CFS (Fig. 7b;
Supplementary Fig. 5b; Supplementary Table 4). APH also
increased SCEs at CFSs and ERFSs relative to cold sites
(Fig. 7d, Supplementary Table 4). SCEs were strongly
elevated at CFSs, correlating with DNA breakage. Nearly
70% of cells harbored an SCE at FHIT, compared with
~14% in mouse (Supplementary Fig. 5d). The FHIT region
shares high sequence homology between mouse and human,
however it is located ~30Mb from the centromere in
humans [32]. We hypothesize that chromosomal location
drives the difference in SCE rate between human and mouse
rather than sequence variation. ERFS also exhibited ele-
vated SCE formation in response to APH; SCEs at BCL2
were threefold higher than cold sites (Fig. 7d). Together,
these results demonstrate that replication stress generates
DNA damage at ERFSs and CFSs in human peripheral
lymphocytes, and CFSs are significantly more prone to
APH-induced damage than ERFSs.

Discussion

Fragile sites were discovered over 30 years ago, leading to
the hypothesis that fragile site instability promotes cancer
initiation and development. Indeed, fragile site instability is
observed in many human cancers [8, 33–35]. While mul-
tiple studies revealed that fragile sites are hypersensitive to
exogenous replication stress, assessing their instability in
unperturbed cells has remained elusive.

Using SCE-FISH to measure successful fragile DNA
repair, we found that spontaneous DNA damage and
repair at fragile sites frequently occurs in proliferating
cells. Furthermore, exposure to ATRi and APH elicit
distinct responses in ERFS and CFS breakage rates.
ERFSs harbored more SCEs than CFSs in untreated and
ATR inhibitor-treated cells, suggesting that early repli-
cating fragile sites experience more HR-repaired sponta-
neous damage than late-replicating counterparts.
However, ERFSs and CFSs experience elevated damage
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in response to APH, indicating that perturbation of pol α
primase disturbs fork stability in early- and late-
replicating regions equally. It will be interesting to
determine if these differences arise solely from replication
timing, or are governed by additional factors such as
transcriptional activity.

HR preferentially repairs transcriptionally active
euchromatin while condensed heterochromatin favors
NHEJ, suggesting that defective HR would preferentially
increase ERFS breaks. However, ERFS and CFS break
frequency was similar in Xrcc2f/f and WT cells. Xrcc2f/f cells
exhibited a modest but reproducible reduction in sponta-
neous and replication stress-induced SCEs, however SCE
frequency at fragile sites is similar to WT cells. These
results show that XRCC2 suppresses replication stress-
associated instability, however it is largely dispensable for
replication stress-induced SCE formation. XRCC2 pro-
motes HR and replication fork protection [36–38], therefore
the increase in unrepaired damage in response to ATRi is
likely a combination of increased fork collapse and reduced
noncrossover repair.

SCE formation at the two fragile sites located near cen-
tromeres—CFS FHIT and ERFS IKZF1— was similar to
cold sites in mouse B cells. We did not observe differential

BrdU staining at centromeric heterochromatin (Fig. 1b, c);
therefore it is possible that SCEs at FHIT and IKZF1 were
not detected. However this explanation is unlikely: SCEs
were visible at both FHIT and IKZF1 even in highly
compacted chromosomes (Supplementary Fig. 4d). We
hypothesize that SCEs are suppressed at FHIT and IKZF1
due to their proximity to the centromere, similar to cross-
over suppression in meiosis [26, 39]. In yeast, the Ctf19
complex promotes cohesion enrichment in the pericen-
tromeric region, suppressing break formation and crossover
formation [40]. In mouse, loss of the histone methyl-
transferase DNMT1 or DNMT3A and DNMT3B leads to
increased SCE within centromeres—demonstrating that
epigenetic modifications also regulate crossover formation
in pericentromeric repeats [41]. Further studies employing
SCE-FISH will define whether mitotic SCE suppression is
governed by similar or distinct mechanisms.

Different sources of replication stress also induced dis-
tinct types of DNA damage. ATRi and APH both generated
chromosome and chromatid breaks, however APH also
induced radial chromosome fusions. Both ERFS and CFS
probes frequently localized at radial fusion junction sites,
indicating they are both rearrangement hotspots. We
hypothesize that APH exposure generates specific DNA
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structures that promote radial formation. Radial chromo-
somes contain multiple centromeres, and have profound
effects on genome stability. Multiple centromeres promote
severe chromosome segregation defects, mitotic defects,
and entry into “breakage-fusion-bridge” (BFB) cycle.
Importantly, BFB cycles are implicated in driving oncogene
amplification and tumorigenesis in multiple cancers [42–
44]. Intriguingly, we found that ATR kinase activity pro-
moted APH-induced radial chromosome formation. It will
be interesting to determine if ATR inhibition impacts the
viability of cells experiencing BFB.

Fragile sites have emerged as replication stress-specific
sites of DNA damage and are exquisitely sensitive to a
range of genotoxic agents. HR efficiently repairs sponta-
neous fragile site damage, therefore why does replication
stress induce such a profound increase in unrepaired
damage at these sites? Two possibilities likely contribute:
(1) fragile sites experience more fork collapse, and (2) the
resulting DNA breaks are difficult to repair. Fragile sites are
enriched for repetitive DNA, prone to forming secondary
structures, and associate with RNA:DNA hybrid (R loop)
formation [4, 45, 46]. All three can perturb replication fork
progression, and often require additional enzymes for break
resolution [47–49].

Here we show that SCE-FISH reveals the ongoing
spontaneous DNA damage and successful repair occurring
at ERFSs and CFSs in mouse and human B cells. For non-
centromeric loci, enhanced SCE formation directly cor-
relates with increases in DNA breaks observed in mitosis
—whether they are induced by genetic defects in DNA
repair or the application of chemical agents. We predict
that high levels of crossovers measured by SCE-FISH at
fragile sites can act as a biomarker for patients with high
risk for developing second cancers or proliferative
syndromes.

Materials and methods

Mice and cells

All experiments were performed in accordance with proto-
cols approved by the UC Davis Institutional Animal Care
and Use Committee (IACUC protocol #20042). Mice used
in this study include CD19cre and Xrcc2f/f [50, 51]. Splenic
B cells were isolated using the Dynabeads untouched CD43
mouse B cell isolation kit (Thermo Fisher, 11422D) and
cultured as previously described [8]. Human lymphocytes
were obtained from peripheral blood of three unrelated
volunteers and cultured for 72 h in MF-Chang medium
(Irvine Scientific, 91005), supplemented with 10% heat
inactivated fetal bovine serum and 3 μg/mL phytohe-
magglutinin (Remel, Inc., 30852701).

Metaphase chromosome preparation

To visualize SCE, 1 μM BrdU (Sigma, B5002) was added
to medium for 20–40 h, depending on cell cycle length.
Cells were arrested in metaphase by a 1-h treatment with
0.1 μg/ml demecolcine (Sigma, D1925), treated with
0.075M KCl, fixed in methanol:acetic acid (3:1), spread
onto glass slides and air-dried.

Drug treatments

ATRi (mTOR Inhibitor XIII, ETP-46464, Millipore,
5.00508.0001) or APH (Fisher Scientific, BP615-1) were
added to the cell culture medium 20 h prior to harvest at the
designated concentration.

Bacterial artificial chromosome probes

All Bacterial Artificial Chromosomes (BACs) used for
custom-designed probes were purchased from Children’s
Hospital Oakland Research Institute Resource Center
(BACPAC). Probes were direct-labeled using a nick trans-
lation kit (Abbott Molecular, Inc., 07J00-001) with DY-
495-dUTP (Dyomics, 495-34) and hybridized to metaphase
cell preparations of a karyotypically normal donor to con-
firm correct mapping prior to experimentation.

FISH and FISH-SCE

FISH and FISH-SCE studies were performed on metaphase
cells using probes described (Supplementary Table 5). A
total of 200 ng of each probe were hybridized to target DNA
and blocked with ~15-fold excess of human COT DNA
(Roche, 11581074001) and salmon sperm DNA (Ambion,
AM9680). Prior to hybridization, slides were briefly heated
over an open flame, denaturing DNA for BrdU detection.
Slides were pretreated at 72 °C in 2 × SSC for 2 min,
washed in 1 × PBS at room temperature (RT) for 5 min,
post-fixed in 1% formaldehyde at RT for 5 min, and washed
in 1 × PBS at RT for 5 min. Slides were dehydrated in
ethanol (75, 85, and 100%) at RT for 2 min each and air-
dried. Cells and probes were co-denatured at 75 °C for
3 min and incubated overnight at 37 °C in a humid chamber.
Slides were washed post-hybridization in 0.4 × SSC/0.3%
NP-40 at 72 °C (2 min), then 2 × SSC/0.1% NP-40 at RT
(2 min). Slides were probed with 0.25 μM telomere probe
(PNA Bio, F1002) for 2 h at RT. Slides were then washed in
1 × PBST (1X PBS, 0.5% Triton-X-100) three times for
5 min at 37 °C. BrdU detection: the primary mouse-anti-
BrdU (BD, 347580; 1:200) and secondary Cy5 goat-anti-
mouse antibodies (Invitrogen, A10524; 1:200) were used,
then washed in 1 × PBST (1X PBS, 0.5% Triton-X-100)
three times for 5 min at 37 °C. Slides were counterstained
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with Vectashield mounting medium containing DAPI
(Vector laboratories Inc., H-1200).

Microscopy and analysis

B cells were isolated and cultured from a separate mouse for
each experiment. A minimum of 50 metaphases were ana-
lyzed for each experiment. Metaphases images were
acquired using an epifluorescent Nikon microscope with
NIS Elements AR4.40.00 software (Nikon). Downstream
analysis used ImageJ32 software (NIH).

Statistics

Statistical significance of differences was estimated by
Student’s-criterion. To determine if distinct sites have sig-
nificantly different SCE or break frequencies, we compared
individual loci using pairwise analysis. To estimate the
correlation between co-occurrence of ERFS and CFS in
individual cells, the Cochran–Mantel–Haenszel test
was used.

TUNEL

TUNEL assay was performed using the In Situ Cell Death
Detection Kit (Roche, 11684795910). At least 100 nuclei
per experiment were analyzed by microscopy. At least three
independent experiments were performed for each data set.
The statistical significance of differences was estimated by
Student’s-criterion.

Viability assay

Live cells were rinsed twice in 1× Hanks’ Balanced Salt
Solution (HBSS) (Gibco, 14065-056), then incubated in
1xHBSS supplemented with 2 mg/ml propidium iodide
(Invitrogen, P1304MP) for 10 min at RT. Fluorescence-
activated cell sorting (FACS) analysis was carried out on a
Becton Dickinson CantoII flow cytometer (BD Bios-
ciences). Up to 20,000 live cells were analyzed for each
condition, and data analysis was performed using FlowJo
8.8.32 software.

Retroviral preparation and B cell infection

Viral supernatants were produced by co-infection of
HEK293T cells with MIGR1 (a gift from Warren Pear
(Addgene plasmid #27490) and pCL-ECO (a gift from
Inder Verma (Addgene plasmid #12371) 72 h before
infection. B cell infection was performed as described in
[52]. Viral supernatant supplemented with polybrene
(2.5 μg/ml) and HEPES (20 mM) was added to cells at 24

and 48 h post-stimulation with RP105/LPS/IL-4. Cells were
spinoculated at 2500 RPM for 90 minutes. After 4 h at 37 C,
viral supernatant was replaced with B cell media with
RP105/LPS/IL-4. At 96 h, GFP + cells were collected by
flow cytometry, then harvested for FISH.
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