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Abstract
Recently, we detected a new fusion transcript LMO3-BORCS5 in a patient with Ewing sarcoma within a cohort of relapsed
pediatric cancers. LMO3-BORCS5 was as highly expressed as the characteristic fusion oncogene EWS/FLI1. However, the
expression level of LMO3-BORCS5 at diagnosis was very low. Sanger sequencing depicted two LMO3-BORCS5 variants
leading to loss of the functional domain LIM2 in LMO3 gene, and disruption of BORCS5. In vitro studies showed that
LMO3-BORCS5 (i) increases proliferation, (ii) decreases expression of apoptosis-related genes and treatment sensitivity, and
(iii) downregulates genes involved in differentiation and upregulates proliferative and extracellular matrix-related pathways.
Remarkably, in vivo LMO3-BORCS5 demonstrated its high oncogenic potential by inducing tumors in mouse fibroblastic
NIH-3T3 cell line. Moreover, BORCS5 probably acts, in vivo, as a tumor-suppressor gene. In conclusion, functional studies
of fusion oncogenes at relapse are of great importance to define mechanisms involved in tumor progression and resistance to
conventional treatments.

Introduction

Fusion transcripts are responsible for 20% of global cancer
morbidity and have been recognized as major cancer drivers
[1]. They result from the juxtaposition of two genes, usually
separated, due to chromosomal rearrangements or non-
chromosomal events [2]. They can affect coding or reg-
ulatory sequences which can lead to (i) the creation of a
chimeric oncoprotein, (ii) aberrant overexpression of the

second partner involved in the fusion, or (iii) truncation of a
tumor-suppressor gene (TSG) [2].

Fusions can serve as diagnostic, prognostic, predictive
biomarkers, as well as therapeutic targets [2–10]. Apart
from the recurrent known fusion genes, the majority of
newly discovered gene fusions vary extremely in their
expression and their recurrence is much lower than other
somatic aberrations [11]. Even though it is commonly
thought that recurrence represents the first criteria to con-
sider an alteration as driver, its impact is determined by
patient and tumor’s history (e.g., genetic background, tumor
type, or treatments received) and a single nucleotide var-
iation could have different consequences on drugs sensi-
tivity depending on cancer types [12]. Hence, nonrecurrent
fusions could have a high clinical value for the individual
patient. In addition, most of studies have been performed on
patients at diagnosis while the analysis of tumors at relapse
remains one of the challenges to enrich the repertoire of
evolving driver alterations, including fusions [13].

Previously, we performed a retrospective study on RNA-
sequencing data of pediatric resistant or relapsing patients
included in the molecular profiling trial MOSCATO-01
conducted at Gustave Roussy [14, 15]. Interestingly, we
detected a new fusion transcript, LMO3-BORCS5 at diag-
nosis and at relapse in the tumor of a patient with Ewing
sarcoma (EwS) [16].
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LMO3-BORCS5 results from a deletion of 4.2 megabases
on chromosome 12 where both LMO3 and BLOC-1 Related
Complex Subunit 5 (BORCS5) are located, 12p12.3 and
12p13.2, respectively. LIM-domain-only proteins (LMO)
are characterized by the presence of two functional domains,
LIM1 and LIM2. The family of proteins is composed of four
members (LMO1–4) mediating protein–protein interactions
between transcription factors and other proteins, represent-
ing important transcription co-regulators acting on both
tumorigenesis and differentiation [17].

The oncogenic activity of LMO3 has been described in
neuroblastoma where its expression is correlated with
amplified MYCN and activation of HEN2, leading to poor
prognosis in patients [18]. Larsen et al. demonstrated the
ability of LMO3 to directly inhibit TP53, strengthening its
oncogenic status [19]. LMO3 was also related to lung car-
cinoma and gastric cancer [18, 20, 21]. LMO3 is highly
expressed in brain and acts as a regulator of neurogenesis
and controls neural-specific transcription factors, thus being
critical for cell differentiation [22].

BORCS5, also named LOH12CR1, belongs to the BORC
complex involved in the regulation of cell migration and
lysosomal trafficking as well as in axonal transport of
synaptic vesicles [23–25]. Its chromosome locus contains
several TSGs for which loss of heterozygosity has fre-
quently been observed in various neoplasms [26]. Yet, no
study has described the different roles of BORC subunits or
the possible role of BORCS5 loss on tumorigenicity.

The use of fusions as personalized medicine tools in
clinics is often limited due to the absence of functional
studies [27, 28]. Therefore, the aim of our study was to
understand the role and function of LMO3-BORCS5 in the
development and/or resistance of tumors and to evaluate the
effects of BORCS5 knockout. Taking together, our results
suggest that LMO3-BORCS5 fusion oncogene plays an
essential role in tumorigenesis and treatment sensitivity and
could be a potential therapeutic target. Characterization of
BORCS5 showed pro-oncogenic effects on proliferation
and treatment sensitivity in vitro, and could act as a gene
in vivo by inhibiting tumor invasiveness.

Results

LMO3-BORCS5 detected in a patient at relapse with
EwS is highly coexpressed with EWS/FLI1

At relapse, LMO3-BORCS5 was highly coexpressed with the
characteristic fusion oncogene of Ewing sarcoma EWS-FLI1
(Ct: 23 and 22.4 at diagnosis and relapse respectively). RT-
qPCR followed by migration in gel electrophoresis detected
two variant forms of the LMO3-BORCS5 fusion transcript in
the EwS tumor sample at relapse (LMO3-BORCS5 v1

corresponding to an amplicon size of 264 pb and LMO3-
BORCS5 v2 at 205 pb), while it was hardly detectable at
diagnosis (Ct: 22.6 vs 39.7) (Fig. 1a). This particular sequence
comprised a lot of (N) bases after Sanger sequencing results,
probably due to the low expression level of the fusion
nevertheless the fusion point was identical to LMO3-BORCS5
v1 sequence (Fig. 1b). Sanger sequencing of both amplicons
showed that LMO3-BORCS5 v2 corresponds to a deletion of
59 bp at the 3′-end of LMO3 exon 3 compared with LMO3-
BORCS5 v1. In both cases, the breakpoint in BORCS5 remains
identical and is situated at the beginning of exon 3 (Fig. 1b, c).

At the protein level on the N-terminal part, variant 1 is
predicted to produce a protein with complete conservation
of LIM1 and loss of LIM2 domains of LMO3, while 24
amino-acids at the end of LIM1 domain are lost in variant 2
(Fig. 1d). In both cases on the C-terminal part, the fusion
transcripts lead to a frameshift in the BORCS5 sequence
giving a putative truncated out-of-frame BORCS5 protein
with the creation of 43 amino-acids associated with
unknown protein domain/function (Fig. 1d, in dark red).

In order to have a representative model of LMO3-
BORCS5, 27 cancer cell lines representing different pedia-
tric tumors were screened for this fusion (Fig. S1A). It was
detected at a very low level (Ct~39) in one of the five EwS
cell lines (STA-ET1). As in the EwS patient’s tumor at
relapse, STA-ET1 showed two variant forms after sequen-
cing (Fig. S1A in bold). Eleven of the remaining 22 cell
lines depicted ct by RT-qPCR but none of them showed a
sufficient LMO3-BORCS5 expression (Ct > 35) impeding
the use of these cell lines as models for further studies.

Among the 27 cell lines previously tested for LMO3-
BORCS5 fusion, the relative mRNA expression of LMO3
and BORCS5 wild type has been assessed by RT-qPCR by
using primers designed within regions not involved in the
fusion (Table S1, Fig. S1B, C). The expression varied
among the different cell lines; a high expression of LMO3
was found in neuroblastoma cell lines IGR-NB8, IGR-N91
and SH-SY5Y and the EwS cell lines STA-ET-1, TC71,
and A673 (Fig. S1B). Expression of BORCS5 was present
in all 27 cell lines tested with the highest expression in
medulloblastoma cell line D283MED, followed by EwS
(EW7 and SK-N-MC) and osteosarcoma (HOS-143B, IOR/
OS18 and SAOS2) cell lines (Fig. S1C).

Due to the absence of representative model of LMO3-
BORCS5 fusion transcript allowing experimental char-
acterization of its biological relevance, we cloned both
variants and tested their effects in vitro and in vivo.

LMO3-BORCS5 variant 1 displays functional
relevance

For the human EwS cell line A673, two clones (C1 and C2)
were obtained containing the empty vector (Fig. 2a, well 1),
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two clones (C1 and C2) containing LMO3-BORCS5 v1
(Fig. 2a, well 2), and two clones (C1 and C2) containing
LMO3-BORCS5 v2 (Fig. 2a, well 3). Then, we investigated
(i) the proliferation rate of the two clones (C1 and C2)
containing LMO3-BORCS5 v1 derived from A673, (ii)
their doubling time and the repartition of cells within the
cell cycle, as well as (iii) their transcriptome profile. As
shown in Fig. 2b, each two clones derived from the same
transfection showed similar doubling time, and almost the
same cell-cycle repartition (Fig. 2c). Due to their similar
profile, we selected clone 1 for further studies.

Studies on variant 2 did not reveal any significant dif-
ference in doubling time (Fig. 2b, conditions 5–6), and cell
cycle repartition between A673+ empty vector and
A673+ LMO3-BORCS5 v2 (C1 or C2) (Fig. 2c, conditions
5–6); therefore, A673+ LMO3-BORCS5 variant 2 function
was not further investigated.

For the non-tumorigenic mouse fibroblast cell line NIH-
3T3, one clone containing empty vector and one clone
containing pcDNA3.1-LMO3-BORCS5 v1 were obtained
(Fig. 2a, wells 4 and 5, respectively). One clone derived

from NIH-3T3 containing pcDNA3.1-LMO3-BORCS5 v2
was obtained (Fig. 2a, well 6); however, the cells did not
expand in vitro, precluding further studies.

Introduction of LMO3-BORCS5 v1 in either A673 or
NIH-3T3 cell lines increased proliferation by reducing the
doubling time around 20% as compared with cells expres-
sing the empty vector (Fig. 2d, f). In A673, this was asso-
ciated with a shift from G0/G1 to the G2/M phase (Fig. 2e)
as compared with NIH-3T3 (Fig. 2g). No effect of LMO3-
BORCS5 expression on cell migration in both A673 and
NIH-3T3 was detected (not shown).

LMO3-BORCS5 v1 increases or induces
tumorigenicity respectively in A673 and NIH-3T3
cells

After subcutaneous injection of A673 clones, acceleration
of tumor growth was observed in xenografts expressing
LMO3-BORCS5 compared with the empty vector (Fig. 3a).
Hematoxylin–eosin–safranin (HES) staining showed an
increase of mitotic cells (yellow arrows), and tumor

Fig. 1 Detection of LMO3-BORCS5 fusion transcripts in a patient with
Ewing sarcoma, at diagnosis and relapse and reconstitution of the
different LMO3-BORCS5 variants at mRNA and protein levels. a The
presence of LMO3-BORCS5 and EwS-FLI1 was tested in the mRNA
obtained from tumor samples at diagnosis and at relapse of a patient
with EWS. After mRNA extraction and reverse transcription (RT), the
presence of LMO3-BORCS5 was assessed by real-time PCR (qPCR)
followed by migration of PCR products on gel. b Sanger sequencing of
LMO3-BORCS5 v1 and v2, and graphical reconstitution at mRNA
level: LMO3 sequence (blue), BORCS5 sequence (gray), and primers
(yellow) used to precisely amplify the junction sequence. The red

arrow indicates the fusion point for the variant 1 (v1), the green arrow
indicates the fusion point for the variant 2 (v2). Sequencing of bac-
terially cloned v1 and v2 PCR product confirmed the correct sequence
(not shown). c Graphical reconstitution of LMO3-BORCS5 v1 and
LMO3-BORCS5 v2 caused by an interstitial deletion of 4.2 MB on
chromosome 12. This fuses exons 1, 2, 3 of LMO3 to exons 3 and 4 of
BORCS5 for LMO3-BORCS5 v1, while a part of exon 3 is lost for the
LMO3-BORCS5 v2. d Graphical reconstitution of LMO3-BORCS5
v1 and LMO3-BORCS5 v2 protein showing that the fusion disrupts
differently the regulation domain of LMO3, and loss of BORCS5 in
both variants
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infiltration in adipose (green arrows) and muscular (red
arrows) tissues in the presence of LMO3-BORCS5-expres-
sing tumors compared with controls (empty vector) (Fig.
3b, upper and lower panels). Remarkably, LMO3-
BORCS5 expression in NIH-3T3 led to tumor develop-
ment (Fig. 3c); HES analysis showed a high number of
mitotic cells in these tumors (Fig. 3d). Of note, the presence
of LMO3-BORCS5 fusion transcript was confirmed by RT-
qPCR in both A673+ LMO3-BORCS5 and NIH-3T3+
LMO3-BORCS5 tumors (Ct≈22 and 27, respectively).

LMO3-BORCS5 decreases sensitivity to
antineoplastic agents and apoptosis

The effect of LMO3-BORCS5 on drug sensitivities of 11
anticancer drugs was screened, including five received by
the patient (listed in the “Materials and methods” section).
Vincristine and SN-38 showed an increase of IC50 values in
A673+ LMO3-BORCS (Fig. 4a). Vincristine and SN-38

treatment showed a reduced fraction of cells in early
apoptosis (delta between treated and non-treated cells of
28.8% for A673+ empty vector vs 13.7% for A673+
LMO3-BORCS5) (Fig. 4b). The same tendency, albeit not
statistically significant, was observed after treatment with
SN-38 (delta of 31.1% for A673+ empty vector vs 23.5%
for A673+ LMO3-BORCS5) (Fig. 4b). Late apoptosis after
vincristine or SN-38 treatment appeared to be unchanged in
presence or absence of LMO3-BORCS5.

The inducible decrease in sensitivity to vincristine and
SN-38 led us to hypothesis that the inhibition of apoptotic
gene expressions involved in cancerogenesis could favor
resistance to cell death. Therefore, the expression of can-
didate genes (BAX, NOXA, TP53, and P21) was assessed by
RT-qPCR (Fig. 4c). In A673+ LMO3-BORCS5, all genes
except TP53 were significantly lower expressed compared
with A673+ empty vector (Fig. 4c, upper panels). In NIH-
3T3+ LMO3-BORCS5, decreased P21 expression was
observed (Fig. 4c, lower panels). As the strongest impact

Fig. 2 Effects of LMO3-BORCS5 on cell proliferation, cell cycle, and
tumorigenicity in A673 and NIH-3T3 cell lines. Empty vector
pcDNA3.1, pcDNA3.1 containing LMO3-BORCS5 v1, and pcDNA3.1
containing LMO3-BORCS5 v2 were stably transfected into A673
(human EWS cell line) or NIH-3T3 (non-tumorigenic mouse fibro-
blasts cell line). a Presence of LMO3-BORCS5 in the clones was
verified by RT-qPCR of each cell line followed by migration of the
products. b Doubling time of the different clones obtained after
transfection of A673 cells with empty vector (clone 1 and 2), LMO3-
BORCS5 v1 (clone 1 and 2), and LMO3-BORCS5 v2 (clone 1 and 2).
Cells was calculated according to an exponential regression equation,
given as: y= axebx, via the formula: t1/2= ln(2)/b. The results are
presented as mean ± SD in hours of at least two independent

experiments. c Cell-cycle repartition was obtained after DNA staining
with propidium iodide-containing buffer followed by FACS analysis.
The results are presented as mean ± SD in % of cells in each cell cycle
phase of thre independent experiments. *p > 0.05, **p > 0.01; ***p >
0.001 compared with A673 empty vector C1. A673 (left) and NIH-
3T3 (right) were stably transfected with the empty vector pcDNA3.1
or with pcDNA3.1 LMO3-BORCS5. Proliferation of A673 (d) or NIH-
3T3 (f) cells using the IncuCyte™ video microscopy system was
assessed. Doubling time of cells was calculated as previously descri-
bed. Results are presented as mean ± SD in hours of three independent
experiments. Cell-cycle repartition in A673 (e) or NIH-3T3 (g) cells.
The results are the mean of at least three independent experiments
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was seen on P21, these results further support the pre-
viously obtained results on proliferation and cell cycle.

LMO3-BORCS5 downregulates genes associated
with cell differentiation pathways

Microarray analysis was performed on two clones of
A673+ LMO3-BORCS5 and compared with A673 empty
vector. A total of 295 genes were differentially expressed
[−2 < log2 (fold change > 2]. The volcano plot showed that
more than 80% of differentially expressed genes were
downregulated (243 genes downregulated vs 52 genes
upregulated).

Using ToppGene Suite, the 12 most significantly enri-
ched pathways of genes being upregulated can be
grouped into three different cellular functions: metabolism,
extracellular matrix synthesis, and proliferative signaling
(Table 1, upper panel). Seven of the twelve most sig-
nificantly enriched pathways in downregulated genes were
related to cell differentiation, more precisely, to neural (e.g.,
“DCC signaling”, “NCAM1 interactions”, “TRKA signal-
ing”), cardiac (e.g., “cardiac conduction signaling”, “muscle

contraction pathway”) or renal differentiation (“aldosterone-
regulated sodium reabsorption”) as well as cell pluripotency
(transcriptional regulation of pluripotent stem cells path-
way). Finally, apoptosis-related genes BAX, NOXA, and
P21, found differentially expressed between A673+ empty
vector and A673+ LMO3-BORCS5 by RT-qPCR were
confirmed to be downregulated in microarray results [log2
(FC) equal to −0.4, −0.6, and −1.1, respectively]. The
microarray data related to the study have been submitted to
the Array Express data repository at the European Bioin-
formatics Institute (http://www.ebi.ac.uk/arrayexpress/),
under the accession number: E-MTAB-7021.

Then, we chose to validate 18 genes highly linked to
cancer pathways by RT-qPCR that have been found to be
differentially expressed by microarray analysis. All tested
genes except ABCC3 were validated, accounting of 95% of
reliability (Table 2). The majority of tested genes were
found to be downregulated in the presence of LMO3-
BORCS5, except Fyn-related kinase (FRK) which was
upregulated. They represent genes regulating cell fate
determination (FGF1 and WNT6), genes linked to neural
differentiation (ALK, CUX2, FGF13, NTRK1, PAX7, and

Fig. 3 LMO3-BORCS5 increases tumor growth in A673 cells and
induced tumorigenicity in NIH-3T3. Tumor growth was monitored
after inoculation of 10 × 106 A673 cells (a) or NIH-3T3 cells (c) in
nude mice (n= 5/group). Tumors were measured until reaching a size
of 1000 m3. Results are presented as the tumor volume mean+ SD in
mm3 function of days. b Comparison of HES images in tumors
obtained from A673 empty vector or A673+ LMO3-BORCS5 cell
lines at ×50 (upper panel) or ×400 (lower panel) magnification.

Histology revealed an increase of tumor infiltration in adipose (green
arrows) and muscular (red arrows) tissues in presence of LMO3-
BORCS5 in A673 cells (upper panel). Increase of mitosis was also
observed in presence of the fusion (yellow arrows) in A673 cells
(lower panel). d HES of tumors obtained from NIH-3T3+ LMO3-
BORCS5 ×400 magnification showing cells in mitotic division (yellow
arrows)
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SEMA3C), IGF2, MYOD1, and RHOJ for muscle cell dif-
ferentiation and NRP1 regulating cardiac differentiation as
well as genes linked to cell proliferation or migration (P21,
PRKCA, MMP10, and LZTS1; Table 2).

Both KO BORCS5 clones show comparable
expression and cellular profiles

In order to characterize the role of BORCS5 on oncogenesis
and tumorigenicity, BORCS5 gene was depleted using the
CRISPR/Cas9 system in A673 cells. We compared the two
derived clones obtained after KO of BORCS5 by
CRISPR–Cas9 system. Both C1 and C2 did not expressed
BORCS5 protein testifying the knockdown outcome (Fig.
5a), and showed the quasi same doubling time (Fig. 5b) as
well as identical repartition of cells within the cell cycle
(Fig. 5c). Therefore, only KO BORCS5 C1 was used for
further studies, named “A673 KO BORCS5”. After Sanger
sequencing a homozygous KO BORCS5 clone was identi-
fied with a compound heterozygosity leading to a deletion
of 950 bp in exon four on one allele, and insertion leading to

a frameshift on the other (Fig. 5d, e). The corresponding
protein loss was proved by western blot (Fig. 5f).

BORCS5 disruption decreases cell migration and
resistance in vitro but increases tumorigenicity

Then, the A673 WT was compared with the A673 KO
BORCS5 regarding proliferation, migration, sensitivity to
anticancer drugs, and tumorigenicity. Significant inhibition
of migration was noticed in A673 KO BORCS5 compared
with A673 WT (Fig. 6a).

The consequence of BORCS5 loss on drug sensitivities
using the previous panel of 11 anticancer drugs was tested.
A significant decrease of IC50 values (60% vincristine and
40% for both SN-38 and mafosfamide) was observed in
A673 KO BORCS5 compared with WT (Fig. 6b). Effects of
vincristine and SN-38 on early and late apoptosis comprised
a significant increase of cells in late apoptosis after vin-
cristine treatment in A673 KO BORCS5 cells compared
with A673 WT (Fig. 6c). The same tendency was observed
after SN-38 treatment but did not reach significance while

Fig. 4 Effects of LMO3-BORCS5 expression on the expression sen-
sitivity to anticancer agents and of apoptosis-related genes. a The IC50

was determined by linear regression model after MTT assay of
A673 stably transfected with pcDNA3.1 (A673+ empty vector) or
with pcDNA3.1 LMO3-BORCS5 (A673+ LMO3-BORCS5) cells
treated with vincristine (Vinc) and SN-38. b Early and late apoptosis
detection by flow cytometry in A673 stably transfected with A673+
empty vector or with A673+ LMO3-BORCS5 cells after treatment
with Vinc or SN-38. The delta represents the difference between the

percentage of cells in early or late apoptosis in cells treated with Vinc
or SN-38, and the percentage of cells in early or late apoptosis in
nontreated cells. c Relative mRNA expression of apoptosis-related
genes BAX, NOXA, TP53, and P21 by RT-qPCR in A673 and NIH-
3T3 cells stably transfected with empty vector pcDNA3.1 or with
pcDNA3.1 LMO3-BORCS5. *p < 0.05: by using Mann–Whitney test,
a statistical difference was found for Vinc treatment between A673+
empty vector and A673+ LMO3-BORCS5 clones
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early apoptosis in A673 was not affected by the KO
BORCS5 (Fig. 6c).

Interestingly, after xenografting of A673 WT and A673
KO BORCS5 cells, a tumor growth delay was observed for
A673 KO BORCS5 (Fig. 6d). HES revealed a similar
general architecture of collected tumors and no difference in
mitosis frequency. (Fig. 6e, lower panel, yellow arrows).
However, increased invasion into striated muscle fibers was
seen in A673 KO BORCS5 tumors (Fig. 6e, upper panel,
red arrows).

Discussion

This is the first study that reports the oncogenic function of
a newly described fusion transcript LMO3-BORCS5.

Identified in a patient with EWS/FLI1-positive EwS at
relapse, this fusion transcript was already detectable at
diagnosis. According to cBioPortal cancer database, LMO3
and BORCS5 are altered in 1.5% of total cancers, and
fusions represent the third and second alteration type,
respectively (Fig. S2). This is probably underestimated as it
comprises both adult and childhood cancers and several
studies do not assess the presence of fusion genes.

Both LMO3 and BORCS5 genes are situated in the short
arm of chromosome 12p13.2. LMO3-BORCS5 sequence
exhibited a 4.2-MB deletion within the short arm of chro-
mosome 12 leading to the loss of the functional domain
LIM2 in LMO3 gene and the disruption of the reading
frame of BORCS5. LMO3-BORCS5 was detected in two
variant forms (v1 and v2) both leading to a loss of the LIM2
domain after translation. Interestingly, the loss of interaction

Fig. 5 Knockout of BORCS5 in A673 wild-type cells and comparison
of the two clones obtained after KO of BORCS5 in A673 cells using
CRIPR-Cas9 system. BORCS5 gene was inactivated using the
CRISPR/Cas9 system targeting the last exon which contains the
functional domain. a Western blot of BORCS5 protein in A673 KO
BORCS5 clone 1 (C1) and A673 KO BORCS5 clone 2 (C2). b
Doubling time was calculated as described previously. The results are
presented as mean ± SD in hours of at least two independent experi-
ments. c Cell-cycle repartition FACS analysis. Results are presented as
mean ± SD in % of cells in each cell cycle phase of at least two

independent experiments. d Deletion of the target sequence was tested
by PCR which resulted in a 950-bp smaller band in KO cells compared
with WT cells. e KO was confirmed by Sanger sequencing which
shows an insertion of one nucleotide on one allele (upper sequence),
and a 957-bp deletion on the other allele (lower sequence) between
two protospacer-adjacent motifs (PAM). f Knockout of BORCS5 was
further confirmed by western blot on the total protein extracts of A673
WT and A673 KO BORCS5 cells. By using an anti-BORCS5 anti-
body, no BORCS5 protein was detected in the KO cells
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domains in fusions has been shown to be a sign of onco-
genicity [29, 30]. Variant 1 of the fusion transcript LMO3-
BORCS5 was abundant at relapse and barely detected at
diagnosis, suggesting that the fusion transcript was not
induced by prior anticancer treatments but probably selected
during disease progression. Whether v1 and v2 are
expressed within the same cell or in different cells, could
have been investigated by a single-cell sequencing
approach, but as the probability for fusion events to occur
on both alleles is low, the two variants should be the pro-
duct of an alternative splicing. Even if most of the cell lines
tested derived from pediatric cancer types, the positive ones
were of diverse histological origins. However, the expres-
sion level of LMO3-BORCS5 in these cell lines was

relatively low as previously observed for other chimeras
[31]. This could suggest that, a second event might be
required for LMO3-BORCS5 oncogenicity as reported for
several fusions [32, 33].

When assessing the expression of wild-type LMO3 and
BORCS5 across 27 different tumor cell lines, LMO3 was
mainly expressed in neuroblastoma and EwS [18, 34]. This
result was concordant, as LMO3 is a brain-specific gene and
both pathologies are thought to arise from precursors of the
neural crest or neuroectoderm [33, 35]. BORCS5 was
expressed in all cell lines tested. The highest expression was
found in cells of EwS and osteosarcoma bone tumors, as well
as medulloblastoma. Therefore, LMO3 and BORCS5 should
be explored in tumors derived from neural or bone precursors.

Fig. 6 Impact of BORCS5 knockout on A673 cells in vitro and
in vivo. a Effects of BORCS5 disruption on A673 cell migration by
using scratch wound test to compare A673 WT and A673 KO
BORCS5. Cells in monolayer were seeded in Matrigel™ (BD) then the
monolayer was scratched using a 96-pin wound maker and wound
confluence was monitored every 4 h IncuCyte™. Images (×10)
representative of one experiment, taken by the Incucyte™ system of
A673 WT or A673 KO BORCS5 cell migration after 15 h of incu-
bation at 37 °C and 5% CO2. Results are presented as the mean time to
completely close the wound per cell line of three independent
experiments. b IC50 obtained by MTT assay of A673 WT and A673
KO BORCS5 cells treated with vincristine, SN-38 and mafosfamide. c
Early and late apoptosis detection by flow cytometry in A673 WT and
A673 KO BORCS5 cells after treatment with vincristine or SN-38.

The delta represents the difference between the percentage of cells in
early or late apoptosis in treated versus non-treated cells. d A total of
10 × 106 cells of A673 WT and A673 KO BORCS5 cells were injected
subcutaneously in nude mice in order to monitor tumor growth and test
the influence of BORCS5 disruption on tumorigenicity (n= 5/group).
Results are presented as the tumor volume mean in mm3. e Compar-
ison of tumors obtained from A673 WT or A673 KO BORCS5 cell
lines at ×50 (upper panel) or ×400 (lower panel) magnification. His-
tology of tumors revealed a slight increase of tumor infiltration in
muscular tissues (red arrows) in absence of BORCS5 in A673 cells
(upper panel). No difference regarding the number of cells in mitosis
was observed between A673 WT and A673 KO BORCS5 cells (yel-
low arrows; lower panel)
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Our first aim was to investigate the function of LMO3-
BORCS5 on oncogenesis. We showed that LMO3-BORCS5
v1 plays a key role in oncogenesis: it increased proliferation
in both cell lines (A673 and NIH-3T3) and increased or
induced tumor growth and invasiveness in the A673 EwS
and the non-tumorigenic NIH-3T3, respectively. This was
strengthened by microarray analysis where LMO3-BORCS5
led to downregulation of genes involved mainly in differ-
entiation. In fact, the LIM2 domain was shown to be critical
for erythropoietic differentiation in LMO2 protein, high-
lighting the importance of LIM2 in cell differentiation [36].
The absence of oncogenic effects for LMO3-BORCS5 v2
suggesting that the complete conservation of LIM1 domain
is required for oncogenicity.

Loss of LIM2 within LMO3-BORCS5 could be a factor
of the dedifferentiation and consequently the oncogenic
effects observed. Dedifferentiation is considered as one of
the main characteristics of cancer cells, which are blocked at
early stages of differentiation resulting in an over-
proliferative state [37]. This was also supported by a shift
of cells toward the mitosis phase in presence of LMO3-
BORCS5 observed by FACS and tumor histological study.

In addition, decreased sensitivity to two antineoplastic
agents (vincristine and SN-38) was observed in A673 cells
expressing LMO3-BORCS5 which was related to inhibition
of gene expression involved in apoptosis

Gene upregulation in microarray in presence of LMO3-
BORCS5 affected proliferative signaling, consistent with
results obtained in vitro. Some of these genes can be related
to extracellular matrix synthesis, supported by our findings
that in vivo as tumors with LMO3-BORCS5 were more
invasive, although migration in vitro was not enhanced.
This could reflect the limits of the scratch test used in vitro,
a model of study that could be inadequate to our cells.

Our team previously showed that the inhibition of fusion
transcripts responsible for tumor progression in thyroid or
prostate cancers by injection of vectorized siRNA in vivo led
to a decrease of tumor growth [38, 39]. Therefore, the use of
LMO3-BORCS5 as a therapeutic target could be considered in
light of our results. Since no LMO3 inhibitor exists, vector-
ized siRNAs could be one of the solutions to target this
oncogene. Also, given the expression and the oncogenic role
of LMO3 in neuroblastomas and gastric cancer, it would be of
interest to test the impact of certain antineoplastic molecules
used in the treatment of these pathologies. Of note, the FRK
was upregulated in the presence of LMO3-BORCS5. This
non-receptor tyrosine kinase leads to an activation of STAT3
pathway and inhibition of TP53, and is highly expressed in
sarcomas [40]. However, sensitivity to dasatinib with or
without LMO3-BORCS5 showed no difference to treatment as
described for hepatocellular carcinoma cell lines [40].

As LMO3-BORCS5 fusion leads to a frameshift of
BORCS5 with the putative formation of 43 new amino

acids, we further aimed to characterize the effects of
BORCS5 loss on tumorigenicity. It could be demonstrated
that the disruption of BORCS5 in A673 cells had both pro-
or anti-tumorigenic effects, which could depend on the
tumor type and microenvironment context. In vivo results
favor of a tumor-suppressor role of BORCS5, consistent
with the loss observed in the formation of LMO3-BORCS5
fusion. The disruption of BORCS5 in LMO3-BORCS5
could have two roles (i) its loss on one allele could serve as
“second hit” or (ii) the 43 new amino-acids created in the C-
terminal part of the fusion protein after LIM1 domain could
enable the stabilization of the new smaller LMO3 protein,
preventing from its degradation [27].

Several studies previously reported that only in-frame
transcripts need to be considered as drivers [41, 42]; however,
we have demonstrated the highly oncogenic properties of an
out-of-frame fusion. These results lead to a paradigm shift of
nonrecurrent alterations, which are commonly classified as
passenger events [27, 43]. As fusions appeared to be segre-
gated according tumor type and given the low incidence of
EwS, the statistical power of our cohort might be insufficient
to detect recurrence [27, 1]. In addition, it is possible that
LMO3-BORCS5 was present in other patients but below the
detection limit of RNA sequencing, or filtered out [27]. It is
also noteworthy that previous studies, which have aimed at
detecting fusion in EwS, were not focused on relapsed patients
and/or used whole-genome sequencing, with a lower coverage
than RNA-seq [44–46]. This could represent a major deter-
minant for not recurrently detecting this fusion because rear-
rangements loops arise in an early EwS clone from which both
the primary tumor and the lethal relapse emerged, and then
evolved in parallel until clinically detected [47].

In conclusion, we discovered a new fusion oncogene
LMO3-BORCS5 which emphasizes the critical role of
fusion transcripts not only in tumor initiation but also in
progression and resistance even in the individual patient.
Their deep study could explain some consequences missed
by traditional analyses. This suggests that cancer treatment
should include the consideration of individual alterations
next to looking for universality. Fusion transcripts being
one of the most remarkable tools used in personalized
medicine should be systematically integrated and investi-
gated to new genome-based clinical trials.

Materials and methods

Patient’s history, detection, and sequencing of
LMO3-BORCS5 fusion transcript

Using the primers described in Table S1, LMO3-BORCS5
was identified together with the characteristic fusion onco-
gene of Ewing sarcoma EWS-FLI1 after in silico RNA-seq
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analysis of a 20-year-old male EwS patient, included in the
cohort of pediatric MOSCATO-01 (ClinicalTrials.gov:
NCT01566019) patients that we previously analyzed [16].
He had relapsed 3.4 years after initial diagnosis treated with
chemotherapy (vincristine, ifosfamide, doxorubicin, etopo-
side, dactinomycin, and cyclophosphamide). The presence
of LMO3-BORCS5 fusion transcript was confirmed by RT-
qPCR in tumor samples at diagnosis and relapse. The pro-
ducts were sequenced by Sanger technique (Eurofins,
Cochin Institute, Paris, France).

Cell lines and cell culture

To assess the presence of LMO3-BORCS5 fusion transcript,
27 cell lines of pediatric tumors including 5 EwS cell lines
and 22 from various histological origins were used. They
were provided from the Innovative Therapies for Children
with Cancer in Europe consortium cell line panel [48] (Table
S2), which was responsible for cell lines authentication. For
functional studies, A673 EwS cell line and the mouse
embryonic fibroblast cells NIH-3T3 were used. NIH-3T3 cell
line was previously purchased from ATCC collection and not
retested for authentication. DMEM or RPMI medium were
supplemented with penicillin (100U/ml), streptomycin
(10 μg/ml) and 10% fetal calf serum (Life Technologies™,
Saint Aubin, France) for all cell lines or 10% new born calf
serum for NIH-3T3. Cell cultures were maintained at 37 °C in
an atmosphere of 5% CO2 and 95% humidity and were sys-
tematically tested by PCR analysis to be free of mycoplasma.

Construction and establishment of cell lines stably
expressing LMO3-BORCS5

The sequences of LMO3-BORCS5 v1 or LMO3-BORCS5 v2
were obtained after reverse transcription of the patient’s
tumor RNA into cDNA followed by PCR amplification using
the following primers: Forward: 5′-GCAACCGAAAGAT
CAAGG-3′ and Reverse: 5′-CATTTGTTGGGGAAGTC
TG-3′. After purification of the amplicons, the sequences
were cloned under the control of the CMV promoter into the
pcDNA3.1 expression vector. Two plasmids were obtained:
pcDNA3.1-LMO3-BORCS5 v1 and pcDNA3.1-LMO3-
BORCS5 v2.

Then, A673 and NIH-3T3 cells were transfected with
empty vector (pcDNA3.1) or with either pcDNA3.1-LMO3-
BORCS5 v1 or pcDNA3.1-LMO3-BORCS5 v2 to obtain
stable clones as previously described and selected with
neomycine [49].

CRISPR/Cas9 knockout of BORCS5

BORCS5 gene was inactivated using the CRISPR/
Cas9 system targeting the last exon containing the

functional domain [50]. Using CRISPOR software v4.2
[51], two couples of 20-base pairs targeting sequences were
designed and synthetized (Eurofins Genomics, Ebensburg,
Germany). Each guide from a pair was respectively inserted
into pLentiCRISPR V2 (Addgene 52961) containing either
GFP or CFP instead of Puromycine [pLentiCRISPR V2-
GFP and pLentiCRISPR V2-CFP, provided by Julie Rivière
(INSERM U1170, Gustave Roussy)].

A673 cells were co-transfected with both plasmids, from
each pair (2 co-transfections). After 27 h, GFP and CFP-
positive cells were selected using FACSAria™ Fusion cell
sorter (BD Biosciences, Le Pont de Claix, France) and
reseeded at a concentration of one cell/well to allow single
colony formation. After 10 days, genomic DNA was
extracted from individual colonies using QuickExtract™
DNA Extraction solution (Lucigen, Middleton, USA). A
total of 12 clones were obtained for the first pair of guides,
and six clones for the second pair. After PCR testing for
deletion of the target sequence using the following primers:
Forward 5′-GAGCTGTTTTCTCCTGGCCT-3′ and
Reverse 5′-TTCATGCTGAAGGGCTCCAG-3′, two posi-
tive clones were obtained only for one pair of guides with
the following sequences: guide 1: 5′-AGAGAGACCGC
CATCGTGTT-3′ and guide 2: 5′-CTGGATCTGCTCGGC
ATACT-3′.

Reverse transcription-quantitative PCR (RT-qPCR)

RNA extraction, reverse transcription, and real-time PCR
(qPCR) were performed as previously described [49]. Pri-
mers were either purchased from Invitrogen or Eurofins
Genomics (Ebersberg, Germany) listed in Tables S1 and S3,
or included in a personalized Human qPCR SignArrays®

[52] from AnyGenes (Paris, France).
RT-qPCR was performed for LMO3-BORCS5 and the

LMO3 and BORCS5 wild-type genes in (i) patient’s tumor
sample at diagnosis and relapse, (ii) the 27 various cell lines
(Table S2), and (iii) A673 or NIH-3T3 stably transfected
with pcDNA3.1 (empty vector) or pcDNA3.1-LMO3-
BORCS5 v1 (referred to as “+LMO3-BORCS5”). For
LMO3-BORCS5, the amplicon size was verified by elec-
trophoresis in 2% agarose gel. PCR products were purified
with DNA extraction with NucleoSpin® Gel and PCR clean-
up extraction kit (Macherey-Nagel, Dueren, Germany) and
sequenced by Sanger technique (Eurofins, Cochin Institute,
Paris, France).

Genes involved in apoptosis BAX; NOXA; P21; TP53 in
A673 and those sorted out from microarray analysis for vali-
dation (ABCC3; FGF1; IGF2; PAX7; PRKCA; WNT6; ALK;
CUX2; FGF13; FRK; LZTS1; MMP10; MYOD1; NRP1;
NTRK1; RHOJ; SEMA3C) were also assessed (Table S3).

For all experiments, gene expression was determined by
quantification-comparative 2−ΔΔCt method [53] and
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normalized to GAPDH levels. The results are expressed as
relative mRNA levels and represent at least three indepen-
dent experiments.

Doubling time and cell-cycle analysis

Cell-cycle analysis by flow cytometry and doubling time of
the different clones were assessed as previously described
[49]. All samples were tested in triplicates and at least n= 3
experiments are represented.

Cell migration assays

Scratch test was performed to evaluate cell migration
capacity as previously described [49]. The results are pre-
sented as wound closure time in hours per cell line. All
samples were tested in triplicates and n= 3 experiments
were performed.

Cell survival assays

Cell line A673 was seeded in 96-well plates at 25,000 cells/
well. After 72 h of incubation with increased concentrations
from 0 to 10 µM of vincristine, cyclophosphamide, mafos-
famide, etoposide, actinomycin, dasatinib, SN-38, doxor-
ubicin, bortezomib, pazopanib, or everolimus, MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]
test was performed as previously described [39]. The half
maximal inhibitory concentration (IC50) of cell viability was
determined by linear regression model. Results are the
mean ± SD of at least two independent experiments con-
taining three replicates for each condition.

Annexin V apoptosis assay

Apoptosis was determined by flow cytometry using
Annexin V apoptosis detection kit (BD Biosciences, Le
Pont de Claix, France) according to the manufacturer’s
instructions. Each cell line was seeded in 6-well plates (3 ×
105 cells/well) and treated with vincristine (10 nM) or SN-
38 (20 µM). After 48 h, cells were collected and analyzed as
previously described [49]. n= 3 experiments were per-
formed in triplicate and data represent the percentage of
apoptotic cells compared with non-treated cells.

Microarray analysis

The comparison of gene expressions between the two
clones (C1 and C2) obtained from A673+ empty vector
and A673+ LMO3-BORCS5 was assessed by microarray
analysis as described previously [39]. Four independent
RNA extractions were performed for each clone using

RNeasy mini-kit (Qiagen, Courtaboeuf, France) following
the manufacturer’s instructions.

The mRNA was labeled using fluorescent low-input
linear amplification kit (Agilent Technologies, Massy,
France). Briefly, reverse transcription was performed using
M-MLV reverse transcriptase. Then, cyanine 3-labeled
cDNAs were generated using the one-color Agilent labeling
kit (Low-Input Quick Amp Labeling Kit 5190–2306)
adapted for small amount of total RNA (100 ng total RNA
per reaction). Hybridization was then performed on micro-
array using 800 ng of linearly amplified cRNA labeled,
following the manufacturer protocol (Agilent SureHyb
Chamber; 800 ng of labeled extract; duration of hybridiza-
tion of 17 h; 40 µL per array; Temperature of 65 °C) on
Agilent® SurePrint G3 Human GE 8 × 60 K Microarray
(Agilent Technologies, AMADID 39494). After washing in
acetonitrile, slides were scanned by using an Agilent G2565
C DNA microarray scanner with defaults parameters (100°
PMT, 3 µm resolution, at 20 °C in free ozone concentration
environment. Microarray images were analyzed by using
Feature Extraction software version (10.7.3.1) from Agilent
technologies. Defaults settings were used.

The microarray data have been submitted to the Array
Express data repository at the European Bioinformatics
Institute (http://www.ebi.ac.uk/arrayexpress/), under the
accession number: E-MTAB-7021.

The “Linear Model for Microarray” (Lima) methodology
was used for the analysis [54]. P-values were adjusted using
Benjamin and Hochberg procedure to control the false
discovery rate [55]. We defined up- or down-regulation as
ratios greater than twofold between A673+ empty vector
and A673+ LMO3-BORCS5, and an adjusted p-value
(FDR) < 0.05. To interpret the biological meaning genomic
data, we used the ToppGene Suite (https://toppgene.cchmc.
org/enrichment.jsp) and Ingenuity (www.ingenuity.com)
software.

Immunoblotting

Total proteins were extracted from A673 WT and A673 KO
BORCS5 cell lines as previously described [49]. The fol-
lowing primary antibodies were used: monoclonal rabbit
BORCS5 (1:1000, PAS-5821, Invitrogen, Carlsbad, CA,
USAs) and GAPDH-HRP as internal control (1:1,000;
Sigma-Aldrich Chemicals Co., Saint Quentin Fallavier,
France). Blots were washed and incubated with corre-
sponding secondary antibodies: anti-rabbit-HRP (1:3,000;
Cell Signaling technology, Saint Quentin en Yvelines,
France). Bands were revealed by enhanced chemilumines-
cence reagent (HRP system, Clarity™; Bio-Rad Labora-
tories, Marnes-la-Coquette, France) using ChemiDoc™
Imaging System (Bio-Rad, Hercules, CA, USA).
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Animal studies and tumorigenicity tests

All animal experiments were carried out according to
French laws (Directive 2010/63/UE) and approved by the
institutional Ethics Committee of Animal Experimentation
(CEEA): authorization number CEEA IRCIV/IGR no. 26:
94–226, no. 2011–09.

Six-week-old nude nu/nu female mice were used to test
the tumorigenicity of (i) A673 empty vector versus A673+
LMO3-BORCS5 v1; (ii) NIH-3T3+ empty vector versus
NIH-3T3+ LMO3-BORCS5 v1; (iii) A673 WT versus
A673 KO BORCS5.

All cell lines were diluted in 100 μl of PBS and injected
subcutaneously into the flank of mice (n= 5/group) at a rate
of 10 × 106 cells/mouse. Groups of mice were randomly
selected for the different injections. Mice were monitored
(unblinded test) for tumor growth and sacrificed when
tumors reached a volume of ~1000 mm3. Half of each tumor
was immediately frozen in liquid nitrogen for RT-qPCR, the
other half was conserved in FineFix Formalin-Free Fixative
(Fisher Scientific, Illkirch, France) for histochemistry ana-
lysis. For this latter analysis, n= 2 tumor tissues per group
were embedded in paraffin, sections (4-μm thick) were
prepared and stained with HES. Sections were examined
with Zeiss-Axiophot microscope (Microscopy and Imaging
center, Texas, USA).

Statistical analysis

Data are presented as mean ± SD.
For in vitro studies, the experiments have been repeated

at least three times and each experiment was done in
duplicate or triplicate.

For animal experimentation, analysis of sample size
against power indicated that we would have needed at least
five mice per group to reach an acceptable power of 0.9
(analysis performed by Statistica V12). Therefore, we
included five animals per group, thanks to the small
intragroup variations.

By using GraphPad Prism 4 software, Mann–Whitney
test was used to compare two groups of treatments and
Kruskal–Wallis test followed by Dunn’s test for multiple
treatments. Data meet the assumptions of the tests. The
estimate of variation within each group of data was <10%
and the variance was similar between the groups statistically
compared. Doubling time was calculated according to an
exponential regression equation, given as: y= axebx, via the
formula: t1/2= ln(2)/b. p < 0.05 was considered as statisti-
cally significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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