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Abstract

Our understanding of genomic heterogeneity in lung cancer is largely based on the analysis of early-stage surgical specimens. Here
we used endoscopic sampling of paired primary and intrathoracic metastatic tumors from 11 lung cancer patients to map genomic
heterogeneity inoperable lung cancer with deep whole-genome sequencing. Intra-patient heterogeneity in driver or targetable
mutations was predominantly in the form of copy number gain. Private mutation signatures, including patterns consistent with
defects in homologous recombination, were highly variable both within and between patients. Irrespective of histotype, we
observed a smaller than expected number of private mutations, suggesting that ancestral clones accumulated large mutation burdens
immediately prior to metastasis. Single-region whole-genome sequencing of from 20 patients showed that tumors in ever-smokers
with the strongest tobacco signatures were associated with germline variants in genes implicated in the repair of cigarette-induced
DNA damage. Our results suggest that lung cancer precursors in ever-smokers accumulate large numbers of mutations prior to the
formation of frank malignancy followed by rapid metastatic spread. In advanced lung cancer, germline variants in DNA repair
genes may interact with the airway environment to influence the pattern of founder mutations, whereas similar interactions with the
tumor microenvironment may play a role in the acquisition of mutations following metastasis.

Introduction therapy, and immunotherapy in the treatment of cancer [1].
The advent of multi-region sequencing has led to the
identification of a previously unknown degree of com-
plexity and genomic heterogeneity in solid tumors [2].
These landmark findings have major implications for the
understanding of tumor initiation and evolution, particularly
with respect to the development of metastasis [3]. Further-

more, they illustrate how analyzing multiple tumor sites

Genomic heterogeneity is now recognized as a major
challenge to the success of conventional therapy, targeted
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from a relatively small number of cases can reveal the
complexities of genomic evolution that cannot be resolved
by single-site sequencing of large cohorts [1].

Although conclusions vary in different tumor systems,
the use of genomic data to model tumor phylogenies sug-
gests that metastasis can occur early in the life of the pri-
mary tumor [4]. There is also debate as to whether the
emergence of private mutations in metastatic disease drives
metastasis from rare clones present in the primary tumor,
are the result of local environmental pressures unique to
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each metastatic site, or are random passenger events [5].
The propensity of lung cancer to spread to local and
regional lymph nodes or beyond is reflected in the small
numbers of patients eligible for curative surgery, and the
lack of success in treating inoperable, locally advanced
tumors with radical chemo-radiotherapy. Lung cancer
represents a major challenge with respect to mapping
genomic heterogeneity, in that most patients are inoperable
at diagnosis [6]. Since surgical specimens offer high-quality
tissue samples, early-stage lung cancers have largely formed
the basis of large-scale sequencing projects in lung cancer
[7-9], a better understanding of genomic heterogeneity in
advanced lung cancer may inform the successful deploy-
ment of targeted therapy and immunotherapy.

Reflecting these technical barriers, multi-region sequen-
cing analysis of lung cancer has been largely limited to
surgically resected specimens [10, 11]. In this regard, access
to high-quality specimens from metastatic lymph nodes in
surgical cases is limited, since the entire node is required for
accurate diagnosis and staging rather than research. There-
fore, the degree to which genomic heterogeneity might
contribute to the pathogenesis of treatment-naive, metastatic
lung cancer remains an open question. To address this
uncertainty, we combined two approaches that cir-
cumvented the need to rely on surgical specimens. First, we
obtained samples from newly diagnosed lung cancer
patients undergoing endobronchial ultrasound-guided
transbronchial needle aspiration (EBUS-TBNA), a mini-
mally invasive technique that yields high-quality samples
from both the primary tumor and intrathoracic lymph nodes
in the same patient [12]. Second, we analyzed these speci-
mens using high-depth whole-genome sequencing (WGS),
which provides advantages over whole-exome sequencing
(WES) in cancer specimens with respect to uniformity of
coverage, high-resolution detection of copy number varia-
tion (CNV) and structural variation (SV) [13, 14], as well as
genome-wide, unbiased assessment of somatic mutation
signatures [15]. Here we apply the principles of multi-
region sequencing to metastatic lung adenocarcinoma
(LUAD), squamous cell carcinoma (LUSC), and small cell
lung cancer (SCLC), the three commonest forms of the
disease.

Results

Intra-patient heterogeneity in metastatic lung
cancer

A total of 30 primary and metastatic samples from 11
patients undergoing EBUS-TBNA for the diagnosis and/or
staging of lung cancer were deemed informative based on
tumor cellularity estimates of cytology smears and DNA

SPRINGER NATURE

quality (Fig. 1). Except for one sample, all were analyzed
with WGS to an average depth of 150 x, including two
cases in which two samples were obtained from the primary
tumor in addition to the metastases. Peripheral blood
mononuclear cells were used as a germline control
sequenced to an average depth of 30—40 x . In addition, a
further nine patients yielded informative samples from a
single site and were sequenced to an average WGS depth of
60 x (Supplementary Figure S1).

When comparing primary with metastatic tumors,
mutations in known lung cancer driver genes (Supplemen-
tary Data File S1) such as TP53, KRAS, FATI, PTEN, and
RBI, as well as homozygous deletions in CDKN2A and
RBI, were conserved across all samples in individual
patients (Fig. 1; Supplementary Data File S3). Exceptions
included events private to the primary tumor (SETD2 and
ARIDIA in LUAD6; NOTCH?2 in SCLC1) (Fig. 1), or pri-
vate to metastases (SMARCA4 in LUADS; ARIDIA in
LUAD?7) (Fig. 1). Heterogeneity was more prevalent with
respect to copy number gain, with private amplification
events in driver genes including MYC, CCND3, FGFRI,
and TP63 (Fig. 1; Supplementary Data File S3). Several of
these amplification events were private to the primary
tumor, rather than the associated metastasis (Fig. 1). This
pattern of heterogeneity was similar when considering a
broader list of pan-cancer driver genes (Supplementary Data
File S1), with private amplification events seen in ERBB3,
RHEB, SOS1, SOS2, and EZH?2 (Supplementary Figure S2).

We observed mutations in several important pan-cancer
drivers not normally associated with lung cancer, including
TSCI1 in LUADI1 and LUSCS, and WT! in LUAD6 and
LUADI12. (Supplementary Figure S3). In addition, we
detected medium and high-impact missense mutations
associated with somatic loss-of-heterozygosity (LOH) in
several novel genes with potential functional significance
(Supplementary Table S1; Supplementary Figure S3).
These included loss-of-function (LOF) variants in the Wil-
son’s disease copper exporter ATP7B (LUADI1), the Toll-
like receptor TLR4 (LUADI13), and in ERAP2 (LUADI),
whose gene product promotes the presentation of endo-
genous cellular peptides by major histocompatibility com-
plex class I molecules (Supplementary Table S1). Two
potential gain-of-function (GOF) variants were also identi-
fied, one in the kinase domain of JAK2 in LUAD4, the other
in the growth factor receptor domain of ERBB4 in LUSC4
(Supplementary Figure S3b).

Overall, these data are in keeping with similar results in
metastatic pancreatic cancer [16], and suggest that there is
limited heterogeneity in metastatic lung cancer with respect
to mutations in key driver genes, and are consistent with a
model in which these critical events are required for both
the initiation and progression of the primary tumor prior to
metastasis.
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Fig. 1 Overview of cases analyzed with multi-region whole-genome
sequencing. Oncoprint data depicting single-nucleotide variants,
insertion/deletions, and copy number events in known lung cancer
driver genes for each sample are shown with heterogeneous mutations

labeled. LUAD lung adenocarcinoma, LUSC lung squamous cell
carcinoma, SCLC small cell lung cancer, P primary tumor, IP intra-
pulmonary, Pl pleural. Metastases are otherwise indicated by lymph
node station
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Fig. 2 Novel fusion events. a Circos plot depicting examples of novel
fusion events. Each case is represented by one color. Intergenic
regions are indicted by colored circles. b Examples of candidate loss-
of-function fusion events in the tumor-suppressor genes PTEN and

Novel fusions

Fusions are now recognized as important GOF driver events
in solid tumors, including well-described targetable events
in genes such as ALK, ROSI, and NTRKI in LUAD [17].
However, LOF fusion events in solid tumors are less well
characterized. In the 20 cases analyzed, we detected three
fusion events in known cancer driver genes (ATM in
LUSC2; PTEN in LUSC1; WHSCI in LUSC1), and a fur-
ther seven events in candidate tumor-suppressor genes,
including BODI, DLG2, MBD2, and RBLI (Fig. 2a,b;
Supplementary Figure S4; Supplementary Table S2). In
each case, the predicted transcript resulted in truncated or
nonsense gene products (Supplementary Table S2). In
addition, we identified two candidate GOF fusion events
(Fig. 2a,c; Supplementary Table S2; Supplementary Data
File S3). In SCLC1, we detected a candidate fusion of the N
terminus of the arginyltransferase ATEI! to the pointed
(PNT), DNA binding and transactivation domains of ERG,
an ETS-family transcription factor subject to frequent GOF
fusion events in prostate cancer [18]. In LUAD7, we
detected a candidate fusion event involving the N terminus
of the DEAH-Box Helicase DHX57 with the catalytic C
terminus domain of the RAS guanine nucleotide exchange
factor SOS1 (Fig. 2a,c). The detection of 12 novel fusions
in only 20 cases of advanced lung cancer reflects the
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ATM. ¢ Models of candidate gain-of-function fusion events depicted at
genome and protein level. Protein domains are labeled according to
Pfam convention. Exons in each fusion partner are numbered

sensitivity of WGS in detecting such events, and suggests
that pathogenic fusions may be much more common in
advanced lung cancer than previously appreciated. The
potential for fusions to inactivate critical tumor-suppressor
genes is supported by the recent description of LOF rear-
rangements in 7P53 in osteosarcoma [19], and suggests that
such events may add to mutation, deletion, and epigenetic
gene silencing as an important path of tumor-suppressor
inactivation.

Somatic mutation signatures and germline variants
in DNA repair genes

We compared the mutation burden and somatic signatures
shared by all tumor samples in each multi-region case, and
in the informative samples of single-site cases, with
smoking history (Fig. 3a). As expected, tumors in the 4
current smokers, each with over 20 pack-years exposure,
were hypermutated (> 10 variants/Mb), and were domi-
nated by a strong tobacco-related somatic signature (Fig.
3a). In keeping with published work, we also observed low
mutation burdens in the tumors of the 3 never-smokers,
which were dominated by Apolipoprotein B MRNA Editing
Enzyme Catalytic Subunit 3G (APOBEC) and 5-methyl-
cytosine (5-mC) deamination patterns typically associated
with age or inflammation [20] (Fig. 3a). Tumors in the 13
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(Fig. 3a). With the caveat that this observation is based on a
small number of cases, this variation in mutation burden

smoking was puzzling given the
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Fig. 3 Germline and somatic mutations in DNA repair genes and
somatic mutation signatures. a Cases are listed according to smoking
status, then by the fraction of the somatic mutation burden attributable
to smoking. Pack-year (PY) exposure and mutations per Mb are
indicated. Variants in DNA repair genes are depicted in oncoprint
format. b Examples of germline mutations in DNA repair genes
associated with tumor loss-of-heterozygosity. Needle plots generated
by IntOGen depict somatic mutations in cancer. Protein domains are
indicated using Pfam nomenclature. ¢ Quantification of smoking sig-
nature and tumor mutation burden in tumors from patients with wild
type (WT, n = 6) or germline mutations (Mutant, n = 10) in the DNA
repair genes shown in Fig. 3a. Welch’s #-test, two tailed. df degrees of
freedom, NS not significant, LUAD lung adenocarcinoma, LUSC lung
squamous cell carcinoma, SCLC small cell lung cancer

overwhelming evidence of a correlation between pack-year
exposure and a smoking-related somatic signature in lung
cancer [20]. Given the genotoxic effects of smoking on
airway epithelial cells, and the importance of components of
the DNA repair machinery in repairing this damage [21], we
hypothesized that the degree of smoking-related DNA
damage in each tumor may be related to germline variants
in DNA repair genes.

We separately analyzed the germline WGS data from all
20 patients in the study without reference to the somatic
mutations detected in the corresponding tumor samples. In
16 cases, we identified 30 potentially significant germline
variants in DNA repair genes (Supplementary Table S3;
Supplementary Data File S4). A subset of these genes is
associated with repair of DNA damage induced by smok-
ing, including ERCC5, ERCCS, LIG4, MUTYH, NEILI,
POLB, RECQLA, REVI, and TDG [21-23] (Fig. 3b; Sup-
plementary Table S3). Although smoking can induce a
range of genotoxic effects, these genes are of interest
because they have been implicated in the repair of tobacco
carcinogen adducts or oxidation-induced single-strand
breaks. As shown in Fig. 3a, tumors with the strongest
tobacco mutation signature occurred in patients with
germline variants in these genes associated with somatic
LOH. In addition, two hypermutated tumors with strong
tobacco signatures harbored somatic mutations in LIG4
(LUADS) and ERCC5 (LUSC3) (Fig. 3a). Considering all
17 ever-smokers as a group, the presence of a mutation in
one or more of these genes was associated with a greater
fraction of the somatic signature attributable to smoking (P
<0.05) but not overall mutation burden (Fig. 3c).

To validate this observation, we analyzed 576 non-SCLC
cases in TCGA dataset without oncogenic mutations in
EGFR or EMIA4-ALK rearrangements in which pack-year
cigarette exposure was available (Supplementary Data File
S5). Neither somatic mutation burden, smoking somatic
signature percentage, or the number of variants potentially
caused by smoking correlated with smoking history (Sup-
plementary Figure S5). Analysis of heterozygous germline
events in 48 DNA repair genes likely to be associated with
smoking-induced DNA damage (Supplementary Data File

SPRINGER NATURE

S2) identified 393 variants in 262 patients. Comparison of
the estimated number of smoking-related variants per pack-
year with these germline variants identified a group of
patients with minimal smoking histories and large somatic
tobacco mutation burdens with germline events in genes
identified in our EBUS-TBNA cohort (ERCC5, NEILI,
REV3L, REVI), as well as the NEILI ortholog NEIL3
(Fig. 4). In the patient with the highest tobacco mutation
burden per pack-year, we detected variants in four genes,
ERCCI, NEILI, NEIL3, and REV3L (Fig. 4). By contrast,
we did not detect germline variants in a group of patients
with very low somatic smoking burdens, despite a heavy
smoking history (Fig. 4a, b). Consistent with our data in the
EBUS-TBNA cohort, patients with one or more germline
variants in this gene list had tumors with increased numbers
of smoking variants per pack-year, and a higher percentage
of somatic smoking signature (Fig. 4c). Rather than directly
contributing to the risk of lung cancer, these data suggest
that the smoking mutation signature may be the result of an
interaction between damaging germline variants in specific
DNA repair genes and cigarette exposure.

Phylogenetic models of lung cancer metastasis

We prioritized resolving the degree of heterogeneity by
focussing on comparisons between primary tumors and
their matched metastases in 27 samples from 10 cases
sequenced at an average depth of 150 x (Fig. 5a). Additional
data from cases analyzed with single-region sequencing are
shown in Supplementary Figure S6. By combining genome-
wide analysis of private and shared single nucleotide
variants (SNVs) and insertions/deletions (Indels) with
manually curated variants in known cancer driver genes
(Supplementary Data File S2), we generated phylogenetic
reconstructions for each patient (Fig. 5). In all cases, this
analysis revealed that the last common ancestor accumu-
lated a very large number of mutations, regardless of his-
totype or smoking history, when compared with private
variants in the corresponding primary tumor and its deri-
vative metastases (Fig. 5a). Although single-site sampling
of all but two of the primary tumors in our study means that
we cannot comprehensively model intratumor hetero-
geneity, these data suggest that metastatic lesions are not
highly divergent from the primary tumor.

In a parallel analysis, we considered the degree of het-
erogeneity based on shared and private copy number events
(Fig. 5b). Consistent with prior observations [10, 11],
considerable heterogeneity in CNV was observed, sug-
gesting that ongoing chromosomal instability is important
in generating clonal diversity within primary tumors, and
between primary tumors and their derivative metastases [2].
However, diversity based on CNV was not universal, with
three cases (LUAD3, LUADG6, and SCLC2) exhibiting
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Fig. 4 Analysis of somatic mutation patterns and germline variants of
TCGA non-small cell lung cancer data. a Somatic mutation burden
in cases arranged by the number of smoking signature variants per
pack-year (PY) exposure. Matched data for each case indicating total
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b Heterozygous germline variants in DNA repair genes potentially

remarkable similarity between primary and metastatic
tumors (Fig. 5b). These data support the idea that genomic
heterogeneity in lung cancer is largely driven by CNV, but
it may not be a universal mechanism for generating clonal
diversity.

030 60 Germline Variants

linked to the repair of smoking-induced DNA damage arranged in the
same order as above. Genes identified in the EBUS-TBNA cohort are
labeled with an arrow. ¢ Comparison of somatic mutation patterns
between cases without germline variants (n = 314), or cases with one
or more variants (n = 262). Mean + SEM, unpaired #-test, two tailed. df
degrees of freedom, NS not significant

Somatic signatures in private mutations
In early-stage lung cancer, mutational diversity following
the establishment of the last common ancestor has been

associated with a somatic signature consistent with the
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Fig. 5 Progression model of lung cancers reconstructed from the
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right, heat maps depict heterogeneity in copy number variation
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between samples in each case. P primary tumor; metastases are indi-
cated by lymph node station except for Pl (pleura) and IP (intra-
pulmonary). LUAD lung adenocarcinoma, LUSC lung squamous cell
carcinoma, SCLC small cell lung cancer
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Fig. 7 Circos plots from samples analyzed by multi-region and single-
region WGS with patterns of structural variants consistent with
unstable, locally rearranged, scatted and stable genomic signatures. P

activation of APOBEC enzymes [10, 11], an endogenous
mutagenic process thought to be driven by inflammation
[24]. To determine whether this process was seen in meta-
static lung cancer, we analyzed somatic signatures in events
private to both primary and metastatic tumors from the 11
patients with informative multi-region samples. Although
we observed a strong APOBEC signature in private events
in three LUAD cases (LUADI, 2, 6; Fig. 6), private events
in the remaining cases exhibited marked diversity in
somatic signatures between patients, and between sampling
sites within the same patient (Fig. 6). Excluding variants
driven by as yet unknown mechanisms, private events in the
remaining cases were dominated by patterns consistent with
deamination of 5-mC (LUAD?2; Fig. 6), Polymerase Eta
(Poln) (LUADS3, 4; Fig. 6), or defects in homologous
recombination (HR) (LUAD7, LUSCI, 2; Fig. 6). Unex-
pectedly, we also observed heterogeneity in private somatic
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for PI (pleura) and IP (intrapulmonary). LUAD lung adenocarcinoma,
LUSC lung squamous cell carcinoma, SCLC small cell lung cancer

signatures between samples within individual patients
(Fig. 6), suggesting that the acquisition of SNV/Indels
during progression from a common ancestor may also
diverge along different paths.

To explain these results, we first scrutinized our mutation
and CNV data to determine if private driver mutations or
copy number events in genes relevant to each somatic sig-
nature could be identified. In each case, we could not
identify a somatic mutation private to one or more sampling
regions that might explain the wide spectrum of private
somatic signatures we observed. This result raises the pos-
sibility that variants established in the common ancestor
might influence the pattern of private mutations through
interactions with intrinsic or extrinsic factors unique to each
subclonal population. To test this idea, we considered
truncal somatic events, as well as the germline variants in
DNA repair genes identified in our germline analysis as
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potential mechanisms. In LUAD2, private mutations
dominated by a signature for deamination of 5-mC (Fig. 6)
were associated with germline variants in two genes func-
tionally implicated in the repair of these mutations, MDB4
[25] and RPAI [26] (Fig. 6; Supplementary Table S3).
Private events in two cases of LUSC were dominated by a
signature suggestive of a defect in HR DNA repair (Fig. 6)
and in both cases, germline variants with somatic LOH were
detected in HR DNA repair genes FANCA in LUSC1 and
RAD50 in LUSC2. (Fig. 6; Supplementary Table S3; Sup-
plementary Data File S4). Although we could not make
such an association in cases with private event signatures
dominated by APOBEC (Fig. 6; Supplementary Figure S5)
or Poln (Figs. 6, 7), these data suggest that germline var-
iants in a different subset of DNA repair genes may influ-
ence the acquisition of private somatic mutations during
lung cancer progression, distinct from those associated with
mutation burden in the founding clone.

SVs and chromosomal instability

The extent and complexity of somatic SVs in cancer can be
associated with chromosomal instability, an important driver
of tumor progression and genomic heterogeneity [27].
Moreover, SV patterns identified by WGS can distinguish
tumors with transient periods of instability leading to focal
chromosomal rearrangements from those with ongoing,
genome-wide instability [13]. Most samples in our cohort
demonstrated an SV pattern associated with highly unstable
genomes that was shared between primary and metastatic
tumors (Fig. 7; Supplementary Figure. S7). In all but three of
these cases, we detected potentially deleterious germline
variants in at least one DNA repair gene known to participate
in the maintenance of chromosomal stability (CHEKI,
FANCL, ATM, RAD51B, RADS50; Fig. 7; Supplementary
Table S3). LUAD4 exhibited a distinct focal rearrangement
pattern that diverged between primary and metastasis,
also associated with germline variants in ATR and FANCA
(Fig. 7). In the primary tumor, a prominent chromothriptic
pattern was seen in chromosome 8, whereas a distinct event
was seen in chromosome 1 in both metastases (Fig. 7).
With the exception of LUSC2, which harbored a somatic
LOF fusion in ATM (Figs. 2, 7; Supplementary Table S2),
and SCLC1, which contained a somatic event in BRCA2,
we did not detect shared or private events in genes asso-
ciated with chromosomal instability. Additional Circos
plots, along with an overview of additional genomic data
for each case is shown in Supplementary Figure S8. In
keeping with our somatic signature analysis, these data
suggest that germline variants in DNA repair genes may
also play a role in the progression of metastatic lung cancer
through the generation of chromosomal instability.

Discussion

The propensity of lung cancer to spread within the chest
prior to diagnosis is a major barrier to the delivery of
curative therapy [28]. This long-standing clinical problem is
likely to be driven by multiple factors, including the chal-
lenges associated with early screening, and the biological
virulence of lung cancer. In addition, lung cancers have
ready access to an abundant blood supply and complex
lymphatic system that can promote metastasis at a very
early-stage of tumor development [29]. Using EBUS-
TBNA sampling and high-depth WGS, we have demon-
strated the genomic complexity and heterogeneity under-
lying the process of lung cancer metastasis in the chest. As
part of this analysis, we detected mutations in tumor-
suppressor genes not normally associated with lung cancer,
novel LOF fusion events in critical tumor suppressors
including PTEN and ATM, and passenger mutations in non-
driver genes such as ATP7B, ERAP2, and TLR2 that may
have functional and/or therapeutic significance. The degree
to which these findings differentiate early from late-stage
lung cancer will require a comprehensive genomic evalua-
tion in a large number of patients with metastatic disease.

The large number of variants identified through WGS
allowed us to accurately map somatic signatures in our
sample set. The degree of variation in the smoking signature
of tumors in ever-smokers was surprising given the sub-
stantial pack-year exposure in most cases, and the high
somatic mutation burden even in cases in which the somatic
smoking signature was less dominant. Several potential
explanations for this result can be considered. First, it is
possible that inflammation caused by smoking, and its
associated mutagenic effects, may predominate in some
patients [30]. This idea is supported by the dominant
APOBEC signature seen in three former-smokers. Second,
it is possible that environmental effects other than smoking
that drive lung cancer initiation in both former-smokers and
never-smokers may be important, and that the interpretation
of somatic signatures with respect to carcinogens such as
second-hand smoke, radon, indoor air pollution, and occu-
pational exposures [31] may need to be evaluated. Third, it
is possible that germline variants contribute to the effect of
smoking on the pattern of lung cancer mutations. Our data
strongly suggest that germline variants in genes implicated
in the repair of smoking-induced DNA damage may con-
tribute to the somatic signatures observed in tumors from
current- and former-smokers. If this assertion can be sub-
stantiated in larger prospective studies, it would suggest that
such variants may only be penetrant in the setting of
cigarette exposure, and may contribute to lung cancer risk
only in smokers.
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Several studies have strongly implicated APOBEC acti-
vation as a driver of mutagenesis in lung cancer progression
[10, 11], although this seems to be less prevalent in EGFR
mutant LUAD in Asians [32]. With respect to mutations
associated with metastatic lung cancer progression, our data
suggest that this process is heterogeneous both within and
between patients, with private somatic signatures of HR
deficiency or deamination of 5-mC present in addition to
APOBEC signatures. In three cases, we identified germline
variants that could be functionally associated with these
signatures. Similarly, we observed a striking association
between highly rearranged somatic genomes and germline
variants in genes such as ATM, ATR, FANCA, and RAD51B.
These results suggest that extrinsic factors unique to the
environment of each metastasis may interact with germline
variants to influence the mutation spectrum in metastatic
disease. Large-scale prospective studies are needed to fur-
ther validate these results in patients with distant metastatic
disease. Given the connection between tumor mutation
burden and the immune response [33], our data suggest that
clinical trials in which the genomic heterogeneity in meta-
static lung cancer in compared with the response to
immunotherapy would be highly informative.

Given the poor prognosis of metastatic lung cancer,
insights into the genomic evolution of this disease are
urgently needed. In a recently published study, Um and
colleagues used EBUS-TBNA sampling to perform multi-
region exon capture and RNAseq analysis on six cases of
advanced lung cancer [34]. In keeping with our results,
mutations in critical genes, such as TP53 and RBI, were
shared across all sites in individual patients. They also
observed variability in the degree of mutational hetero-
geneity, suggesting distinct models of clonal evolution in
which metastatic spread occurs early or late during tumor
progression. Although our results are consistent with pre-
vious observations that primary lung cancers are highly
heterogeneous [10, 11], we find that mutational hetero-
geneity in metastatic disease is far more limited with respect
to both driver and passenger genes, in keeping with a recent
WGS study in four cases of metastatic pancreatic cancer
[16]. Also in keeping with previous reports of multi-region
sequencing in early-stage lung cancer, we found that
metastatic heterogeneity is largely driven by CNV [10, 11].

Our data are consistent with two models of tumor evo-
lution in metastatic lung cancer. In the first model, a slowly
growing primary tumor progressively acquires a very large
number of SNVs and Indels, followed much later by the
establishment of metastases. However, such a model seems
at odds with the clinical and biological behavior of lung
cancer. Alternatively, our results could be explained by
prolonged exposure of the airway to carcinogens, followed
by rapid progression associated with chromosomal
instability, accelerated growth, and metastasis. The airway
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epithelium is a low turnover cell population continuously
exposed to environmental toxins, bacteria, viruses, and
oxidative stress [35]. In addition, oncogenic mutations have
been observed in the normal airway epithelium of ever-
smokers [36, 37], suggesting that mutant airway epithelial
clones can persist for decades. Given the lack of ready
access to well-defined precursor lesions in lung cancer
research [38], detailed genomic analysis of normal airway
epithelium in ever-smokers with lung cancer may provide
critical insights into the early events driving the establish-
ment and progression of lung cancer. More detailed pro-
spective studies will be needed to address whether the
histologic subtypes of lung cancer, particularly adeno-
carcinoma, relate to environmental exposure, smoking, and
germline variants. Finally, our results suggest that gene-by-
environment interactions in the DNA repair pathway may
influence the mutational pathogenesis of lung cancer during
tumor initiation, progression and metastasis.

Materials and methods
Subject cohort and sample processing

Patients undergoing EBUS-TBNA for diagnosis and/or
staging gave prospective written informed consent to par-
ticipate in this study. The study was approved by the St
Vincent’s Hospital human research ethics committee pro-
tocol number SVH14-256. Once the on-site cytologist
confirmed the diagnostic material had been obtained for
clinical purposes, an extra sample was taken for research
purposes, suspended in sterile saline, and placed on ice.

In the laboratory, each sample was disaggregated, cen-
trifuged, and re-suspended in 450 pl of PBS. Next, a 50 ul
aliquot was removed to generate a cytology smear to
determine tumor cellularity of the research specimen. The
cytology specimen was stained with DiffQuik, and then
reviewed by a cytopathologist to estimate the fraction of the
sample made up of tumor cells, as well as sample quality.
Samples containing >20% tumor cells were then processed
for DNA extraction from the frozen cell suspension using
the Qiagen (Hilden, Germany) DNEasy kit as per the
manufacturer’s instructions, and then checked for quality,
purity, and integrity in preparation for WGS. Germline
DNA was obtained using the same methodology from
peripheral blood mononuclear cells.

WGS

Sequencing was carried out on the Illumina (San Diego,
CA, USA) HiSeq X Ten platform with a paired-end read
length of 150 bases. We sequenced all germline (peripheral
blood buffy coat) samples to a minimum mean coverage of
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30 x and all tumor samples to a minimum mean coverage of
60 x . In cases where multi-region samples were available,
samples with an inferred cellularity of >15% were
sequenced to an additional minimum mean coverage of
90 x, giving a total of at least 150 x.

Bioinformatics

The analysis pipeline was conducted using the Seave plat-
form [39]. Somatic SNVs and Indels were called using
Strelka v2.0.17.strelkal [40] and the GATK Best Practices
workflow [41]. Final variants were annotated for their
impact on the genome using Variant Effect Predictor v87
[42]. Variants were filtered using a CADD [42] scaled score
of >2 (if available) and a maximum allele frequency of 1%
for somatic variants and 2% for germline variants in each of
ExAC [43]. Somatic variant filtration was performed using
two parallel approaches. First, we generated a consensus
cancer gene driver list that includes pan-cancer driver genes
[44], and putative lung cancer driver genes [7-9] (Supple-
mentary Data File S1). Candidates were then identified by
filtering on Strelka QSS/QSI> 15, impact severity, and
PolyPhen/PROVEAN/SIFT prediction, and then annotated
using PubMed, IntOGen [45] and Varsome (www.varsome.
com). In the second approach, we queried all genes and
identified additional LOF candidates by filtering using the
same filtration approach with the added criteria of evidence
for somatic LOH. Candidates were then manually annotated
by searching for evidence of a potential link between cancer
pathogenesis or therapeutic responses using PubMed.

Germline variants were analyzed using a consensus list
of DNA repair genes generated by searching the Gene
Ontology database [46] (Supplementary Data File S2).
Missense variants were further filtered according to the
following criteria: (ClinVar annotation pathogenic or likely
pathogenic) OR (variant in a Pfam domain AND defined as
damaging by PROVEAN OR SIFT or PolyPhen) OR
(defined as damaging in at least two of either PROVEAN,
SIFT or PolyPhen). LOH events were confirmed by com-
paring the variant allele frequency (VAF) in germline and
tumor samples with inferred tumor cellularity. Somatic
signatures were analyzed using the SomaticSignatures R
package (v2.6.0) [47]. Somatic signatures for TCGA LUAD
and LUSC data were determined using somatic variants
called by MuTect2 and obtained from TCGA. Variant call
files (VCFs) were subset to autosomal chromosomes and
PASS variants were used only, all other analysis was
identical to the EBUS-TBNA data.

Somatic CNVs were identified using Sequenza v2.1.0
[48] using a bin size of 200 and a minimum total depth of
20. Candidate CNV events were identified by filtering for
estimated copy number 0 or>6 and segment size > 20 kb.
Events were then verified by identifying a corresponding

event using Manta v0.27.1 [49], and manually with IGV.
Candidates were then annotated by searching the PubMed,
COSMIC [50], and CBioPortal [51]. SV calling and fusion
analysis was performed with Manta v0.27.1 [49] and
Oncofuse v1.0.9b2 [52]. Further details of describing the
bioinformatic analysis are presented in Supplementary
Information. Sequencing data are available at the European
Nucleotide Archive (https://www.ebi.ac.uk/ena) under
accession number PRJEB28616.
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