
ARTICLE OPEN

DNA methylation and gene expression analysis in adipose
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BACKGROUND: Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance,
and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone—
epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and
gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity.
METHODS: We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without
(OND= 9) or with T2D (OD= 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery
rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups
were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation
on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also
tested.
RESULTS: We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic
alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings
were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs
(n= 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these,
16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels.
CONCLUSIONS: Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show
perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to
discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.
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INTRODUCTION
Obesity is a complex multifactorial disease characterized by an
imbalance in energy intake and expenditure that results in
adipose tissue expansion [1]. This sustained imbalance compro-
mises the capacity of adipose tissue to store lipids, which leads to
ectopic fat accumulation followed by an array of metabolic
derangements such as insulin resistance and type 2 diabetes (T2D)
[2]. In fact, obesity is a major risk factor for T2D. Furthermore,
accumulations of visceral adipose tissue (VAT) contribute more to
T2D than accumulations of subcutaneous fat [3]. Although these
associations are widely recognized at the population level,
individuals differ in their susceptibility to the expected obesity
comorbidities. The mechanisms underlying these differences have
been difficult to explain on the basis of factors related to lifestyle,
environment, and genetic predisposition [4].

An additional mechanism underlying the link between obesity
and T2D might involve epigenetic factors, which have been linked
to interactions between genetic backgrounds and environmental
exposures [5]. Several studies have identified genes with
alterations in DNA methylation in patients with obesity. Some of
those genes were also associated with T2D or glucose home-
ostasis [6–8]. Thus, it has been suggested that alterations in DNA
methylation might drive T2D development. DNA methylation
alterations should correlate with changes in the expression of T2D
driver genes. However, the interplay between DNA methylation
and gene expression is complex, because different genomic
regions can exert a variety of influences on a given gene [9]. Some
studies have addressed this issue, but studies that have paired
DNA methylation and gene expression analyses in the context of
T2D are scarce [10–16]. In this study, we aimed to extend our
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understanding of the pathogenesis of T2D in obesity by
investigating DNA methylation differences between VAT samples
from obese individuals with and without T2D. Additionally, we
examined correlations between these differences in DNA methy-
lation and changes in gene expression profiles, as well as their
relationship to T2D-related traits.

SUBJECTS AND METHODS
Subjects and sample collection
Female adults with a body mass index ≥35 kg/m2 were recruited prior to
bariatric surgery in the Comprehensive Surgery Clinics for Obesity and
Metabolic Diseases at Tláhuac General Hospital in Mexico City. To minimize
confounding factors, only females were included in the study. We excluded
subjects with other known endocrine diseases or dysregulated hyperten-
sion. A total of 19 participants with obesity were enrolled in this study,
including nine individuals without diabetes (OND group), who were
classified as controls, and 10 individuals with obesity and T2D (OD group).
All patients in the OD group fulfilled the American Diabetes Association
criteria for a T2D diagnosis. We collected data on clinical, biochemical, and
anthropometric characteristics at the time of surgery (Supplementary Table
S1). From the OD patients, nine were under T2D medication: four were
treated with both metformin and insulin, four received metformin
treatment only, and one was treated only with insulin. One of the OND
patients received metformin treatment. VAT biopsies were acquired during
bariatric surgery procedures, then immediately stored in RNAlater (Qiagen,
Hilden, Germany) at −70 °C until DNA and RNA extraction. The study was
conducted according to the guidelines of the Declaration of Helsinki and
approved by the Institutional Ethics and Research Committees of Instituto
Nacional de Medicina Genómica (C1_29/2011). A written informed consent
was obtained from all subjects before their participation.

DNA methylation analysis
DNA was extracted from 50mg of VAT with a QIAamp DNA Mini kit
(Qiagen, Valencia, CA, USA). DNA quality and quantity were confirmed by
the samples having A260/A280 and A260/A230 ratios >1.8, measured with a
NanoDrop ND-1000 Spectrophotometer v3.5.2 (NanoDrop Technologies
Inc., Wilmington, DE, USA). Integrity was verified by electrophoresis in a 1%
agarose gel. Methylation analysis was performed with Infinium Human
Methylation EPIC BeadChip Arrays (850 K) according to the manufacturer’s
protocol (Illumina, San Diego, CA, USA). Raw data were extracted with
GenomeStudio software (V2011.1, Illumina), and all samples passed
standard quality controls.

Gene expression analysis
Total RNA extraction was performed from ~150mg of VAT with the RNeasy
Lipid Tissue Mini Kit (Qiagen, Valencia, CA, USA), according to the
manufacturer’s protocol. RNA quality and quantity were assessed using a
Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA), with all samples having an
acceptable RIN score >8. Global gene expression was analyzed with a
Clariom S Human Microarray (Affymetrix, Santa Clara, CA, USA).

Microarray data analysis
All computational and statistical analyses were performed with R, v4.0 [17].
For DNA methylation analyses, Idat files were processed following the Chip
Analysis Methylation Pipeline (ChAMP) package [18]. The raw datasets
generated were deposited in the Array Express repository, ID no. E-MTAB-
11037. Raw β-methylation scores were calculated as the ratio of the
methylated probe intensity to the overall intensity, where overall intensity
was the sum of methylated and unmethylated probe intensities.
β-methylation values ranged from 0 (unmethylated) to 1 (completely
methylated) [19]. Filtering of probes was according to ChAMP default
parameters, where probes with <3 beads in at least 5% of samples, non-
CpG probes, multi-hit probes, and SNP-related probes (list compiled by
Zhou’s Nucleic Acids Research paper in 2016) were removed. In addition,
as it was a female cohort, all Y chromosome probes were filtered out,
yielding 781 385 probes for subsequent analyses. Data were normalized
with the beta-mixture quantile normalization method [20]. To assess for
sources of variation in our dataset we applied ChAMP singular value
decomposition function (SVD) including as covariates age, batch, and
treatment (metformin and/or insulin). After SVD analysis, we implemented
ChAMP ComBat method to adjust only for significant covariables (age and

microarray batch effects). Probe annotations were based on the
HumanMethylationEPIC v1.0 B5 Manifest File. A promoter region was
defined when a given CpG was located at TSS1500 (1500–200 bp upstream
of the transcriptional start site [TSS]), TSS200 (200 bp upstream of the TSS),
in the 5’UTR, or in the first exon, while the gene body encompassed the
Body, exon-bound and 3′ UTR [21]. To assess differences in methylation
between groups, the mean β value for each CpG site was calculated in
each patient group. The difference between groups was defined as the
delta β, calculated as the mean OND β value minus the mean OD β value.
Differential methylation was identified using Limma [22], and p values
were adjusted for multiple testing using the Benjamini and Hochberg
method [23]. CpG sites with a false discovery rate <0.05 were considered
differentially methylated CpGs (DMCs). To identify differentially methylated
regions (DMRs) (p value area <0.05), we used the Bumphunter algorithm
from ChAMP with the default parameters, which creates clusters with a
minimum of 7 probes and a maximum separation gap of 300 bp to identify
DMRs. Next, to estimate gene expression, CEL files generated from
Affymetrix Clariom S human arrays were preprocessed, implementing the
oligo Bioconductor package [24]. Raw expression datasets obtained were
deposited in the Array Express repository, ID no. E-MTAB-11841. Then, to
improve the normalization, we processed them with available blood-
sample data [25] obtained from the same array. We applied the robust
multi-array average algorithm to adjust the raw intensities. After normal-
ization, we corrected batch effects and age by implementing ComBat.
Gene probes encoded in the Y chromosome were removed to obtain
expression data for 19,872 probe sets for subsequent analyses. Annota-
tions were obtained from the manufacturer´s website. The differences in
gene expression between OND and OD were examined using Limma [22].
Results were listed as log fold change (logFC) with the p values adjusted for
multiple testing. Benjamini-Hochberg correction yielded no significantly
differentially expressed genes (DEGs); therefore, for subsequent analyses,
uncorrected p values <0.05 were used and, to increase stringency, an
additional threshold based on the mean differences between groups with
a minimum |logFC|>0.5 was applied.

Correlation analysis
To evaluate relationships between DMCs or DMRs with their corresponding
gene expression (DMC-DEG), as well as their relationship to T2D-related
traits (fasting glucose and HbA1c), a Pearson’s correlation was evaluated
with a bootstrap analysis, provided in the Boot package, to select only
robust associations (R= 1000) [26, 27]. In both DMC-DEG and DMC-T2D-
related trait correlations, a p value <0.05 was considered statistically
significant.

Biological pathway analysis
We analyzed gene overrepresentation with the WEB-based Gene SeT
AnaLysis Toolkit (WebGestalt) [28]. Gene symbols that corresponded to
DMCs, DMRs, and DEGs were evaluated with the Kyoto Encyclopedia of
Genes and Genomes pathways identification analysis. All p values were
Benjamini-Hochberg adjusted.

Support of methylation effects
Additional independent DNA methylation data from VAT of 14 Chinese
(OND= 8 and OD= 6) and 7 German (OND= 3 and OD= 4) women
obtained by EPIC microarray were included to support our methylation
findings. We selected all female individuals with data contained in the
GSE162166 and E-MTAB-10999 database repositories [13, 14]. Both
datasets were combined due to the small size, thus the validation cohort
comprised 11 OND and 10 OD subjects. Considering only the CpGs from
those DMCs obtained in our initial study, we assessed differential
methylation between OND and OD in the combined dataset. To gain
statistical power, an additional extended analysis was performed by
merging the datasets contained in both public repositories with ours,
which yielded a total of 20 OND and 20 OD individuals. Genome-wide DNA
methylation profiles were examined following the previously mentioned
strategy.

RESULTS
Participant characteristics
Clinical characteristics of the participants are detailed in Supple-
mentary Table S1. Body mass index, blood pressure, and lipid
serum levels did not differ significantly between the OD and OND
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groups. As expected, the OD group had significantly (p value
<0.05) higher HbA1c (6.3 ± 1% vs. 5.4 ± 0.2%) and serum glucose
levels (7.49 ± 4.3 mmol/l vs 4.53 ± 0.52 mmol/l) compared with the
OND group.

Differential methylation between OD and OND groups
To identify DNA methylation differences between the OD and
OND groups, we compared VAT methylation profiles obtained
with Illumina EPIC microarrays. We found DMCs in all chromo-
somes. The highest and longest density of epigenomic alterations
was observed on chromosome 6, with 132 DMCs encompassing
70 genes at the Major Histocompatibility Complex (MHC). Other
regions showing high densities of alterations were located on
chromosomes 4 and 11 (Supplementary Fig. S1). In the OD group,
we found 11 120 DMCs (5880 genes), of which 48.4% were
hypomethylated and 51.6% were hypermethylated compared to
the OND group (Fig. 1, Supplementary Table S2). An unsupervised
hierarchical cluster analysis and multi-dimensional scaling of the
DMCs showed a clear methylation profile for each patient group
(Fig. 1b, Supplementary Fig. S2).
Notably, DMCs that showed the highest delta β values (>20%)

were associated with genes that were newly related to T2D
(TRANK1, TEX2, SH2D3C, ATAD1, ANKEF1, MIR138-2, OR10A5,
SIM1, PRRC2C, TECRL, ZDHHC14, PHTF1, C11orf66, SH3TC2,
MRGPRX1, RNF212, and FLJ16171) or previously related to T2D
(FSD1L, NSF, SLIT3, PTPRN2, PSMD10, MAD1L1, MIR572, ATM,
LCLAT1, and TNFRSF8) (Supplementary Table S13). Among the 11
120 DMCs, 71% were intragenic, including 39.6% that were mainly
distributed in the gene body and 31.4% that were in promoter
regions, upstream of the TSS (Fig. 1c). Most DMCs were found in

regions with low CpG content, like the shore (17.6%), shelf (7.1%),
and open sea regions (58.5%), compared with CpG islands (16.8%;
Fig. 1d).
Using the Bumphunter algorithm, we found 96 DMRs that were

mainly hypermethylated (74%) in the OD compared to the OND
group. Most of these DMRs had overlapping CpG-rich regions
(CpG islands; Supplementary Table S3). Furthermore, 92 of the 96
DMRs were located within gene regions. Of these DMRs, 80 were
in the vicinity of a TSS, including some that extended into the
gene body, and 12 were confined to gene bodies. Additionally,
overlaps between DMCs and DMRs were observed in 54 genes,
the most significant being in BLCAP, SLC25A24, PM20D1, PAX8, and
LCLAT1 (Fig. 2a and Supplementary Table S13).
Among the genes with DMCs, the enrichment analysis mainly

identified pathways related to fatty acid metabolism, aldosterone
synthesis and secretion, the oxytocin signaling pathway, GABAer-
gic synapse, and dopaminergic synapse, among others (Fig. 1e
and Supplementary Table S4). After FDR correction, enrichment
analysis of genes with DMRs was not able to identify any
significantly enriched pathways.

Overlapping changes between DNA methylation and gene
expression (DMC-DEG)
Gene expression analysis identified 252 DEGs between the OD and
OND, with 55.6% being overexpressed and 44.4% underexpressed
in the OD (Supplementary Fig. S3 and Supplementary Table S5).
Overlap between altered expression and methylation was
observed with DMCs, but not with DMRs (Fig. 2a and Supple-
mentary Table S6). Out of the 252 DEGs, 68 (DMCs= 88) showed
altered methylation (DMC-DEG); in 35 it was located in the

Fig. 1 Comparison of visceral adipose tissue DNA methylation profiles between patients with obesity but without diabetes (OND) and
patients with obesity and diabetes (OD). a Volcano plot shows differences in methylation. Points represent all analyzed CpGs, and blue
points indicate DMCs (FDR < 0.05): lighter blue hypomethylated and darker blue hypermethylated in OD, and gray points non-significant.
b Heat map of DMCs showing DNA methylation levels for each CpG (row) by patient (columns), after applying an unsupervised hierarchical
clustering analysis. c Distribution of the DMCs among the different genomic locations. d Distributions of DMCs across the CGI, the shore (2 kb
from the CGI), the shelf (2–4 kb from the CGI), and the open sea (the remaining genome) regions. e Gene set enrichment analysis of DMCs
(Affinity propagation). Kyoto Encyclopedia of Genes and Genomes pathway enrichments associated with genes with DMCs. X axis: FDR (false
discovery rate) value. DMCs differentially methylated CpGs, TSS1500 1500–200 bp upstream of the transcriptional start site (TSS), TSS200
200 bp upstream of the TSS, IGR intergenic regions, UTR untranslated region, CGI CpG island.
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promoter region, and in 53 it was in the gene body. Among those
genes with promoter DMCs, 12 were hypomethylated (8 over-
expressed and 4 underexpressed) and 23 were hypermethylated
(12 overexpressed and 11 underexpressed). In addition, among
the genes with DMCs in the gene body, 25 were hypomethylated
(8 overexpressed and 17 underexpressed) and 28 hypermethy-
lated (16 overexpressed and 12 underexpressed). Enrichment
analysis of the 68 overlapping genes did not reveal any significant
pathways at FDR < 0.05. However, with a nominal p value (<0.05),
we found important enriched pathways such as PPARG and Hippo
signaling (Fig. 2b and Supplementary Table S7). Other important
pathways were synthesis and degradation of ketone bodies;
butonate metabolism; valine, leucine, and isoleucine degradation;
and fatty acid metabolism, among others.

Correlation between methylation and gene expression
To investigate correlation between expression and methylation,
we matched the β-methylation values and expression levels of the
DMC-DEG. Among the 88 DMCs (68 genes), we observed 26 (24
genes) with a significant DMC-DEG correlation (Supplementary
Table S6). The top five correlations were observed in the genes
ATP11A, LPL, PRRX1, ABCC9, and EHD2 (Fig. 3 and Supplementary
Table S13).

Identification of correlations between differential methylation
and T2D-related traits
To identify the potential relationships of DNA methylation with
HbA1c and fasting glucose, we performed Pearson’s correlation
analysis using CpG β-methylation values on genes showing DMC-

Fig. 3 Correlations between differentially methylated CpGs, gene expression, and T2D-related traits. a Plot displaying only the DMCs with
significant Pearson correlation (p value <0.05) between DNA methylation levels and corresponding gene expression, fasting glucose, and
HbA1c levels; blue squares indicate those with significant p values. b–d ATP11A: Pearson’s correlation for two of its representative DMCs with
expression levels. Red dots represent OD patients, purple represents OND; the size of the dot depends on the value of each T2D-related trait. X
axis: β-methylation; Y axis: ATP11A expression levels. b cg25043602-ATP11A expression: r= –0.533, p= 0.037; cg25043602-HbA1c: r= 0.686,
p= 0.002. c cg25043602-Glucose: r= 0.539, p= 0.031; d cg16762784-ATP11A expression: r=−0.766, p= 0.003; cg16762784-HbA1c: r= 0.548,
p= 0.038.

Fig. 2 Overlap of differential methylation and gene expression. a Venn diagram showing overlap between genes with DMCs or DMRs and
the DEGs. b Gene set enrichment analysis of overlapping DMC-DEG genes. Kyoto Encyclopedia of Genes and Genomes pathway enrichments
associated with genes with DMCs. X axis: p value. DMCs differentially methylated CpGs, DMRs differentially methylated regions, DEGs
differentially expressed genes.
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DEG. From 88 DMCs, we found 38 (35 genes) significant
correlations with HbA1c (p value <0.05), of which 11 were also
correlated with fasting glucose (Supplementary Table S6). Notably,
from the 24 genes with DMC-DEG correlation, the methylation of
16 genes, including ATP11A, LPL, EHD2, ACVR1C, and MAP4, was
also significantly correlated with T2D-related traits (Fig. 3 and
Supplementary Table S13).

Support of methylation analyses: validation and extended
analyses
To support the methylation findings, we performed a validation
analysis of the DMCs combining two female public datasets (11
OND and 10 OD) [13, 14]. When CpGs from the DMCs obtained in
our initial study were contrasted between OND and OD included
in the validation dataset, we observed 233 CpGs showing the
same effect directions of differential methylation, at a nominal p
value (<0.05) (Supplementary Table S8). These genes also enriched
the glutamatergic synapse, long-term depression, and Hippo
signaling pathways (Supplementary Table S9), similar to those
observed in our sample.
Additionally, to gain statistical power in our findings, we

performed a multi-ethnic extended analysis, combining the
datasets contained in both public repositories with our own.
When we compared the OD (n= 20) and the OND (n= 20) groups
of the extended cohort, we found 9 648 DMCs in 5 135 genes
(Supplementary Fig. S4 and Supplementary Table S10). Out of
these, 2 092 genes and 945 DMCs were also found when our
cohort was independently analyzed (Supplementary Table S2). All
of the shared DMCs showed consistent directionality in both
analyses, except for cg25140607 at TFAP2A (Supplementary Table
S13). Similar to what was observed in our group of Mexican
patients, in the multi-ethnic extended cohort the unsupervised
hierarchical cluster analysis of the DMCs was able to separate OND
and OD patients independently of their ethnic background
(Supplementary Fig. S4b). Again, LCLAT1 displayed multiple DMCs
and showed the highest delta β values (>25%), together with
GSTTP2/GSTT1 (Supplementary Table S13). Furthermore, the
enrichment analysis revealed 26 pathways shared between the
two analyses, including oxytocin signaling, GABAergic synapse,
glutamatergic synapse, Hippo signaling pathway, MAPK signaling
pathway, circadian entrainment, aldosterone synthesis, and
secretion, among others (Supplementary Table S11). In addition,
32 DMRs (GALR1, LCLAT1, SLC25A24, SLC1A2, GRIK2, TDRD12,
MIR886, GSTO2, LRCOL1, etc.) were found in the same genes as the
DMRs observed in our cohort (Supplementary Tables S12, S13).

DISCUSSION
Obesity constitutes a serious health issue because it increases the
risk of developing T2D and other comorbidities [29]. A growing
body of evidence has shown that perturbations in DNA
methylation patterns can contribute to dysfunctional adipose
tissue in obesity by inducing changes in gene expression,
although the exact mechanisms remain to be understood [8]. A
more comprehensive picture of the functional consequences of
altered DNA methylation may provide insight into new biological
mechanisms underlying tissue dysfunction and lead to improved
methods for identifying which individuals with obesity are at risk
of progressing to diabetes. In this study, we examined VAT DNA
methylation and expression profiles in patients with obesity and
compared these profiles between groups with and without T2D.
We also documented the correlation of altered methylation with
T2D traits.
We found 11 120 DMCs and 96 DMRs between OD and OND

individuals. These numbers are higher than those reported in
previous studies [11, 13, 14, 30, 31]. Most differential alterations
were in regions of low CpG density, like shores and shelves, where
methylation has been shown to be relatively dynamic [32, 33]. The

DMCs within genes were mainly located in the gene body, and the
DMRs were mostly found upstream of the TSS.
Some DMCs and DMRs with the highest delta β values occurred

in genes that were previously shown to be altered in T2D. These
genes have been involved in insulin resistance and secretion (ATM,
PTPRN2, PSMD10, and NSF), adipogenesis (SLC25A24 and PAX8),
inflammatory processes (TNFRSF8 and SLIT3), and mitochondrial
processes (PM20D1 and LCLAT1). Others such as FSD1L have been
associated with T2D in GWAS studies, although the underlying
mechanism remains unclear. On the other hand, herein we also
report a subset of new genes with altered methylation in OD
patients, when compared with OND individuals. Even though their
alteration has not been well documented in T2D, some of them
have been involved in T2D-related processes such as mitochon-
drial quality control (ATAD1), lipid metabolism (TEX2 and TECRL),
inflammation (TRANK1) and stress granule assembly (PRRC2C), as
well as neuronal cells development in the hypothalamus (SIM1). In
addition, other genes have been involved in cancer processes,
such as interference with innate immune system (SH2D3C),
apoptosis (BLCAP), crossing-over regulation during meiosis
(RNF212), and tumor suppression (ZDHHC14, MIR138-2, and PHTF1).
Finally, another group of genes whose function remains to be
further characterized was also found (ANKEF1, OR10A5, C11orf66,
SH3TC2, MRGPRX1, and FLJ16171) (Supplementary Table S13).
Additionally, the OND and OD groups showed differential DNA

methylation along all chromosomes. Although there is little
evidence that epigenetic changes in the MHC locus might be
involved in T2D [5, 11, 31], in the present study this region showed
the greatest and longest density of epigenomic alterations,
including in our extended multi-ethnic analysis. Multiple altera-
tions were found in the human leukocyte antigen (HLA) region.
Remarkably, similar findings were observed during adipogenesis
in vitro from mesenchymal stem cells isolated from the same
biopsies analyzed in the present study, suggesting that our
observations are derived from the adipocytes and not from the
infiltrating inflammatory cells whose numbers are increased in
obesity [16]. In addition, a recent study compiling methylation
data from adipose tissue found the most altered methylation at
HLA in metabolically unhealthy patients with obesity [6]. Together,
these findings increase the evidence that the most important
genetic region in inflammation and innate immunity, the MHC
locus, could be involved in the physiopathology of T2D in patients
with obesity, due to epigenetic impairment. As reported in other
studies, here the pairing of altered methylation and expression at
the MHC locus was difficult to demonstrate. Further exhaustive
studies might be required in order to better understand the role of
epigenetic regulation in this locus, considering the complexity of
its regulatory system due to its high SNV frequency.
Another notable region was the LCLAT1 locus, which harbors

one of the top DMRs and displays multiple DMCs with the highest
delta β. Hypomethylation at LCLAT1 was also found in our
validation and multi-ethnic extended study, as well as in other
studies, such as the previously mentioned adipogenesis study and
that published by Jin-N et al. [13], where the same hypomethy-
lated DMR was documented in T2D patients. Although we did not
find any significant relationship between DMC-DEG, there is
evidence showing that LCLAT1 upregulation by oxidative stress
and diet-induced obesity in mice reduces insulin-stimulated Akt
phosphorylation, leading to insulin resistance and hyperglycemia
[34]. This might shed light on the role this gene plays in T2D
development.
It is noteworthy that some of the loci with the largest changes

in methylation, like the MHC region and LCLAT1, and others such
as BLCAP, SLC25A24, PM20D1, TRANK1, FSD1L, and TEX2, did not
show significant changes in their expression. Multiple studies have
shown that only a small percentage of transcriptional regulation is
dependent on methylation changes [35, 36]. Our findings support
this notion, as only a small subset of the genes with DMCs were
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DEGs. These DMC-DEG were enriched in pathways involved in T2D
development, such as PPARG signaling and multiple metabolism-
related pathways that promote adipocyte differentiation and
mediate insulin sensitization [37–39].
Furthermore, significant correlations were found between multiple

DMC-DEG. Notably, the ATP11A, LPL, and EHD2 genes displayed the
highest methylation-expression correlation. These genes also showed
a significant correlation between altered methylation and T2D-
related traits. ATP11A belongs to a family of 14 P4 ATPases which
actively flip phospholipids across cell membranes [40]. Methylation of
this gene has been suggested to be involved in colorectal cancer and
Crohn’s disease [41, 42]. Even though ATP11A’s involvement in
obesity and T2D is unknown, there is evidence that deficient
expression of some P4 ATPase family members, such as ATP10C and
ATP10A, affects insulin-stimulated mobilization of GLUT4 vesicles to
the plasma membrane or the regulation of insulin signaling [43].
Here, ATP11A hypermethylation correlated significantly with
decreased expression levels and increased fasting glucose and
HbA1c levels, suggesting that, similar to ATP10, its decreased
expression could be related to impaired glucose metabolism.
On other hand, LPL encodes lipoprotein lipase, an insulin-

dependent rate-limiting enzyme for the hydrolysis of fatty acids. In
a previous study, a DMC in the LPL promoter was found in VAT from
individuals with metabolic syndrome and was positively associated
with a worse metabolic profile [44]. Another study documented the
most significant signals of association between LPL methylation
levels in white blood cells and insulin sensitivity measurements [45].
Here, hypermethylation of the LPL promoter correlated significantly
with an increased HbA1c. Thus, we have provided more evidence
that LPL hypermethylation can predispose to metabolic diseases
like T2D. Similarly, EHD2, the EH domain-containing 2, is a known
obesity-associated gene implicated in GLUT4 endocytosis and in
the maintenance of intracellular lipid metabolism in adipocytes
[46, 47]. Its methylation has only been found as altered in
epididymal adipocytes of mice with obesity [48]. In our study, a
DMC located at EHD2 body had a significant correlation with its
overexpression, and notably, with fasting glucose and HbA1c levels.
In summary, our findings have increased the repertoire of

candidate genes involved in mechanisms underlying T2D
pathophysiology in patients with obesity, through the analysis
of the methylome and its correlation with the transcriptome of
adipose tissue and T2D-related traits. Our results suggest that
even though the expected correlation between methylation and
expression was not observed in multiple genes, methylation
impairment is still important for T2D development. Likewise, our
findings also support the idea that DNA methylation is a better
biomarker than gene expression, since gene clustering analysis
was able to discriminate the OND group from the OD group by
methylation profiles, but not by expression profiles. Nevertheless,
future studies analyzing male samples might strengthen our
findings. Even more, some of these marks (MHC region and
LCLAT1) were shared across individuals with different ethnic
backgrounds, as shown by our validation and extended analysis,
although some others such as ATP11A, LPL, BLCAP, etc., were found
only in our population. Our findings support the notion that
methylation profiles are partially shared between different
ethnicities, perhaps due to genetic or environmental differences
among populations that significantly contribute to shaping the
epigenomic susceptibility to disease [49].
Follow-up functional studies will be needed to characterize the

pathogenic influence of these alterations and how they contribute
to diabetic phenotypes.
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