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with a downregulation of Arc in a Locus Coeruleus neuronal
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Clara Velazquez-Sanchez1, Leila Muresan2, Lucia Marti-Prats1 and David Belin 1✉

© The Author(s) 2023

Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement.
However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation
in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent
system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the
acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of
compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop
compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new
quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a
low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble
of tyrosine hydroxylase (TH)+, zif268− neurons. This ensemble was specifically engaged by the expression of compulsive
adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to
the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had
become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268− LC
neurons represents a signature of the tendency to develop compulsive coping behaviours.
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INTRODUCTION
Failure adaptively to regulate emotions, such as coping with
stress, has been associated with an individual vulnerability to
develop several neuropsychiatric disorders, such as anxiety,
depression, post-traumatic stress disorder, as well as Impulsive/
Compulsive Spectrum Disorders (ICSDs), including obsessive
compulsive (OCD) and substance use disorder [1–4]. The
emergence of compulsion, which characterises the excessive
and persistent nature of several ICSDs [5] has been suggested to
stem from a loss of control over coping strategies [6–15], such as
displacement behaviours, which initially aim to decrease negative
affect or stress in adverse situations but progressively become
habitual and rigid [16–18].
Across species, adjunctive behaviours [19] represent a form of

displacement activity [20, 21] in which individuals engage to
decrease stress [20, 22–24]. One such adjunctive anxiolytic
response, schedule-induced polydipsia (SIP) [20, 21, 25–28] is
manifested as a non-regulatory polydipsic water drinking in the
face of intermittent food delivery in food-restricted animals
[28–31]. Adjunctive drinking in SIP transiently decreases auto-
nomic nervous system responses to stress [32] and the plasma
levels of stress-related hormones such as corticosterone

[21, 25–27, 32–36] which are elevated by chronic exposure to
intermittent food delivery [37] and necessary for its full develop-
ment [34]. This transient decrement in plasma level of stress
hormones following exposure to SIP is not observed when
individuals do not have access to water [25].
Like in humans, the majority of individuals who engage in

displacement behaviours as a coping strategy tend, at the
population level, to maintain relative control over their adjunctive
response [18, 38–41]. Nevertheless, some vulnerable individuals,
characterised, for instance, by a high impulsivity trait [40], lose
control over their polydipsic intake, which becomes excessive and
inflexible [18, 38–43], thereby suggesting that poor impulse
control prior to the engagement in an adjunctive behaviour
facilitates the transition to compulsivity [40].
The psychological and neural basis of the individual vulner-

ability to develop such compulsive adjunctive behaviours has not
been fully elucidated. Since the demonstration that the develop-
ment of SIP is prevented by 6-OHDA lesions of the mesolimbic
system [44] and its compulsive manifestation is decreased by
selective serotonin reuptake inhibitors [for review, see 43],
research into the neural systems basis of compulsive adjunctive
behaviours has primarily focused on dopaminergic and
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serotoninergic mechanisms within the corticostriatal circuitry
[42, 43, 45]. However, increasing evidence supports a role of the
noradrenergic system in compulsive adjunctive behaviours
[41, 46] not least because of the involvement of noradrenergic
mechanisms in the regulation of glucocorticoids levels [47, 48] and
the stress-induced repetitive behaviours [49], but also because of
their role in anxiety, coping and impulse control [50–53], which all
contribute to the emergence and the severity of compulsions
[54–56].
In SIP, the emergence of compulsive adjunctive drinking is also

associated with higher levels of noradrenaline (NA) in the
amygdala and the nucleus accumbens (Nac) [57] in which
elevated levels of NA are also observed in impulsive, SIP-prone
rats [58]. In addition, in highly impulsive rats, intra-accumbens
shell (NacS) infusions of the noradrenaline reuptake inhibitor
atomoxetine decrease impulsivity similarly to its systemic admin-
istration [59], which also prevents the development of compulsive
adjunctive drinking under SIP in these animals [41].
While the NacS receives noradrenergic inputs from the A2

noradrenergic population of the Nucleus of the Solitary tract (NTS)
and the Locus Coeruleus (LC) [60], the acquisition of coping
responses has been associated with the LC-NA system [61–65]
which has also been suggested to be involved in the expression of
polydipsic adjunctive water drinking [66].
Together, these observations suggest that specific adaptations

taking place in the LC may contribute to the noradrenergic
mechanisms, especially in the NacS, that subserve impulsivity and
the associated vulnerability to develop compulsive adjunctive
behaviours. However, the high functional and cytoarchitectural
heterogeneity of the LC [67, 68] with subdivisions or particular
neuronal ensembles [69, 70] or microcircuits [71] involved in
different aspects of behaviour [71–73], including stress-related
mechanisms [74], warrants a mapping of its projections to
the NacS.
At the cellular level, the response of the LC-NA system to a

variety of stressful situations, including restraint, exposure to mild
electric shocks or social stress, has been associated with the
recruitment of immediate early genes (IEGs) [75, 76] including
activity or plasticity-related transcription factors, such as c-fos or
zif268, respectively, and effectors, such as activity-related cytos-
keleton-associated protein (Arc), which instead directly influence
cellular processes other than gene transcription [77]. Thus,
exposure to novelty, anxiogenic drugs, repeated episodes of
restraint stress or social stress results in an increase in c-fos in the
LC [78–82]. However, c-fos mRNA levels tend to decrease over
repeated exposure to stressful situations [83, 84] which precludes
its use as an ensemble marker of daily adaptive or compulsive
adjunctive responding over several weeks. This is not the case of
Arc [76], an effector of BDNF, glutamatergic, dopaminergic and

serotoninergic signalling that is involved in learning-associated
synaptic and dendritic plasticity [85, 86], and is associated with
behavioural abnormalities, including schizophrenia-like symptoms
[87]. Arc mRNA levels in the LC have been shown, using standard
in-situ hybridisation not to respond to acute stress, but instead to
situations of adaptation to chronic challenges [88].
Thus, here we investigated whether the emergence of

compulsive adjunctive behaviour was associated with the recruit-
ment of a neuronal ensemble that is characterised by a selective
engagement or Arc-dependent cellular plasticity in a territory of
the LC that projects to the region of the NacS mediating
noradrenergic influence over impulse control. Because Arc
transcription is under the control of zif268, even though their
mRNA levels do not necessarily correlate [89], we sought to
determine whether any potential Arc-dependent ensemble was
specifically engaging Arc or whether it was also reflecting the
activation of zif268. For this, we developed a new RNAscope
multiplex assay quantification method in order to investigate the
mRNA copies in genetically identified cellular ensembles in the LC
of rats with controlled or compulsive adjunctive behaviour
sacrificed 45 min after a challenge SIP session during which they
expressed their polydipsic drinking behaviour or were prevented
from doing so.

METHODS AND MATERIALS
Subjects
Two independent experiments were carried out that each involved forty-
eight male Sprague Dawley rats (Charles River, UK) weighing approxi-
mately 300 g at the start of the experiment and were single-housed under
a reversed 12 h light/dark chain (lights off at 7:00 a.m.). After a week of
habituation to the vivarium, rats were food restricted to gradually reach
80% of their theoretical free-feeding body weight before starting
behavioural training. Water was always available ad libitum. Experiments
were performed 6–7 days/week between 8 a.m. to 5 p.m. All experimental
protocols were conducted under the project license 70/8072 held by David
Belin in accordance with the regulatory requirement of the UK Animals
(Scientific Procedures) Act 1986, amendment regulations 2012, following
ethical review by the University of Cambridge Animal Welfare and Ethical
Review Body (AWERB).

Timeline of the experiments
The timeline of the experiments is illustrated in Fig. 1 and detailed in
the Supplement Online Methods SOM. Briefly, after one week of
habituation to the vivarium, rats in experiment 1 received intra-NacS
infusion of a retrograde CAV2-GFP virus under stereotaxic surgery. Then,
rats in both experiments were progressively food restricted to 80% of their
theoretical free-feeding body weight. They were accustomed to the SIP
context over two habituation sessions during which their regulatory water
intake was measured, and then trained in a SIP procedure for 21 daily
sessions. Ninety minutes after the last SIP session, rats in experiment 1
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Fig. 1 Timeline of the experiments. Two independent experiments were carried out in the present study that involved forty-eight male
Sprague Dawley rats each. After 1 week of habituation to the animal facility, rats involved in the first experiment received intra-accumbens
shell (NacS) infusion of a retrograde CAV2-GFP virus under stereotaxic surgery and were left undisturbed for at least one week. Rats from both
experiments were progressively food restricted to 80% of their theoretical free-feeding body weight. Then, following two sessions of
habituation to the SIP context during which their regulatory water intake was measured, rats were trained under a Fixed time (FT) 60s
Scheduled-Induced polydipsia (SIP) procedure for 21 1 h daily sessions. High drinkers (HD) and Low drinkers (LD) rats were selected in the
upper and lower quartile of the population, respectively, based on their average water intake during the last 3 sessions. Ninety minutes after
the last SIP session, rats from experiment 1 underwent a blood collection prior to being perfused transcardiacally in order for their brains to
be processed for immunofluorescence. In contrast, rats from experiment 2 were sacrificed forty-five minutes after a 60min challenge session
with or without the opportunity to express their adjunctive behaviour, and their fresh brains were harvested and properly stored
subsequently to be used for RNAscope assays. Exp. experiment. Cort. corticosterone.
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underwent a blood collection, in order to assess post-SIP plasma
corticosterone levels, after what they were perfused transcardiacally, and
their brains were harvested in order subsequently to map the projections
of the LC to the NacS. Rats from experiment 2 were sacrificed 45 min after
a challenge session with or without the opportunity to express their
adjunctive behaviour, and their fresh brains were harvested and
subsequently used in RNAscope assays.

Apparatus
The SIP procedure was carried out in 12 operant chambers (Med Associates
Inc., Ltd) as previously described [41, 90] and detailed in the SOM.

Schedule-induced polydipsia (SIP). The SIP procedure based on a fixed-
time 60-s schedule of food delivery was carried out as previously described
[38, 41, 43, 90] and detailed in the SOM.
Water intake over the last 3 sessions was used to identify rats in the upper

and lower quartile of the population as High drinkers (HD, n= 14) and Low
drinkers (LD, n= 14), respectively, as previously described [41, 91].
Subsequently, in order to establish whether the cellular correlates of the

tendency to develop compulsive polydipsic behaviour were attributable
specifically to the expression of the anxiolytic adjunctive response, or instead
to the distress induced by the procedure, on day 22 rats from experiment 2
underwent one 1 h challenge SIP session during which half the population
had access to the bottle of water (n= 24) and could express their adjunctive
response or had their water bottle removed (n= 24), thereby being
prevented from engaging in their well-established coping habit [18], which
we speculated should result in negative urgency [92] associated with
heightened stress and frustration [23, 93].

Experiment 1
Stereotaxic surgery and viral infusions. In order to identify which territory
of the LC projects to the area of the NacS in which infusions of
atomoxetine recapitulate the effect of its systemic administration on
impulse control [59] intra-NacS infusions of a CAV2-GFP virus were carried
out unilaterally at 4 different anteroposterior coordinates (Fig. 3) using a
stereotaxic frame (WPI Hitchin, UK) under isoflurane anaesthesia (O2: 2 L/
min; 5% for induction and 2–3% for maintenance) and analgesia
(Metacam, 1mg/kg, sc., Boehringer Ingelheim). The analgesic treatment
was continued orally for three days post-surgery. The forty-eight rats were
divided into four groups, each receiving a unilateral CAV2-Cre virus (109
vp/μl, 1 μl/side) infusion at the following stereotaxic coordinates AP:+2.76,
+2.28, +1.7 or +1.08; ML: ±1.0, ±1.0, ±0.8, ±1.0; DV:− 6.8, −7.2, −7.25,
−7.1, respectively (from the skull) [94]. Infusions were performed at a rate
of 0.15 μl/min with a 10 ul Hamilton syringe placed in a Harvard infusion
pump and connected with a polyethylene tubing to 24-gauge injectors
(Coopers needle works Ltd). Injectors were left in place for 7 min after the
infusion to allow for diffusion. Animals were sacrificed at least 2 months
after the viral infusion, so that the retrograde virus had time to travel from
the injection site to the LC.

Histology. As described in detail in the SOM each perfused brain was
harvested, cryoprotected and frozen before being processed into 30-μm-
thick coronal sections using a cryostat (Leica CM3050 S Research Cryostat)
and stored in a cryoprotectant solution at −20 °C until being processed for
immunofluorescence.

GFP immunofluorescence. Sections ranging from −9.6 to −9.96mm from
bregma, a rostrocaudal region that entirely encompasses the LC were
processed for immunofluorescence with a chicken anti-GFP (1:1000;
abcam, ab13970) primary antibody and a goat anti-chicken (AF488,
1:1000; ThermoFisher Scientific, A-11039) secondary antibody prior to
being mounted onto glass slides (Fisherbrand Superfrost Microscope
Slides), allowed to dry overnight (protected from light) and covered with a
coverslip and fluoroshield mounting medium (abcam, ab104135). See SOM
for a detailed description of the procedure.
Images were acquired with a Zeiss Axio Imager M2 equipped with an

AxioCam MRm camera (Oberkochen, Germany) using Visiopharm® soft-
ware (Medicon Valley, Denmark), either at x5 magnification and tiled to
create the whole slice images or at x10 magnification for a detailed
analysis of the region of interest, namely the LC.

Corticosterone assay. The quantification of the post-SIP plasma corticos-
terone level of HD and LD rats of experiment 1 was carried out by ELISA on

samples collected 90min after a SIP session according to the manufac-
turer’s instruction (Cayman Chemical, 501320) as detailed in the SOM.

Experiment 2
Histology. Forty-five minutes after the challenge session, the brain of
each individual was harvested fresh after decapitation, snap frozen at
−40 °C in isopentane (Sigma-Aldrich) and stored at −80 °C, as previously
described [92] and detailed in the SOM. Brains were then processed using
a cryostat (Leica Microsystems) into 12-μm-thick coronal sections collected
on Superfrost gelatine-coated slides (Fisher Scientific) and stored at −80 °C
until they were processed for multiplex RNAscope® in situ hybridisation.

RNAscope® in situ hybridisation assay. RNAscope was performed accord-
ing to the manufacturer’s instructions for fresh frozen tissue using the
RNAscope Multiplex Fluorescent Reagent Kit (Advanced Cell Diagnostics),
as detailed in the SOM.

RNAscope® in situ hybridisation imaging and quantification. Images for
quantitative RNAscope analysis were captured with a Zeiss Axio Imager M2
equipped with an AxioCam MRm camera (Oberkochen, Germany) using
Visiopharm® software (Medicon Valley, Denmark) using a 63× objective oil
immersion lens. For each rat and RNAscope assay, 8 images spanning the
entire rostrocaudal axis of the LC, ranging from −9.60 to −9.96mm AP
relative to Bregma [94], were analysed (Fig. 3C).
Although RNAscope has recently gained popularity and is now widely

used, the quantification strategy of the signal it yields has hitherto been
sub-optimal, being limited to either the measurement of the signal
intensity per channel/wavelength/probe or the quantification of mRNA
positive cells, thereby missing out on the opportunity to systematically
quantify the number of mRNA molecules on a cell or a structure.
Several methods using semi-quantitative and quantitative analysis have

been developed [95, 96], but they too often rely on algorithms that require
highly specialised coding skills, rendering them difficult to use by the many
laboratories that do not have such expertise. In addition, most of the
microscopy-based quantification methods and softwares available through
different commercial platforms are semi-quantitative approaches that do
not make full use of the single molecule quantification opportunity given
by RNAscope. Thus, in order to maximise the information generated by the
multiplex RNAscope assay, we developed a new analysis pipeline that goes
beyond a simple quantification of light intensity to assess the levels of a
target mRNA.
Our RNAscope signal analysis pipeline relies on a MATLAB (MATLAB -

R2020a, The MathWorks Inc) script combined with a machine learning
algorithm that uses ImageJ/FIJI (National Institutes of Health, Bethesda,
MD, USA) to identify a single cell-delineated region of interest (ROI) based
on a segmentation on the DAPI signal and the ensuing determination of an
area (the ROI) around it within which to count single mRNA molecules.
mRNA molecules appear in images as bright “dots”, those with intensity

exceeding chosen thresholds are considered true detections. For the
detection of single mRNA molecules corresponding to the relevant
channels 1, 2 and 4 the script enables the choice of independent
threshold parameters (th1, th2 and th4). In order to remove the
background and maximise the signal-to-noise ratio, a difference of
Gaussian filtering pre-processing step is applied. The raw image is blurred
by convolution with a small Gaussian, σ1= 0.5 pixels, to enhance signal.
The background estimated by a larger Gaussian filtering, σ2= 3 pixels, is
subsequently subtracted from the image.
Nuclei segmentation is performed on the DAPI (third) channel. The

pipeline allows the selection of a minimum area for nucleus detection. A
Gaussian filter (σ= 7 pixels) is applied to the DAPI image in order to
smooth intensity inhomogeneities. Subsequently, a multi threshold
quantisation is performed, detecting three levels of nuclei intensities,
since not all the DAPIs (or ROIs) are equally bright due to a different
location along the Z-axis. Touching nuclei are separated via a watershed
transformation (adapted to the levels of intensities detected in the image).
Additionally, and as an optional step, all the DAPI segmentations can be
manually corrected using the imageLabeler app in MATLAB.
However, watershed techniques are very susceptible to over-splitting

and become less accurate in the case of elliptical cells and can be prone to
segmentation errors if the nuclei are densely clustered together. In order to
overcome these issues, we alternatively used StarDist [97] (in ImageJ/FIJI)
for nuclei segmentation. StarDist is a segmentation method based on a
deep learning, U-Net architecture that localises cell nuclei approximated as
star-convex polygons.
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Once all the parameters have been set based on a sample image, and
the detection of the different mRNAs and cell nuclei is deemed appropriate
by the experimenter, they are kept unchanged for the entire RNAscope
assay or batch image analysis.
Finally, all the processed images pertaining to the same experiment are

analysed, mRNA molecules closer than a certain distance (10 pixels) to a
nucleus are assumed pertaining to that nucleus. The detections in each
channel corresponding to each ROI are summarised and exported in
Excel files.
The software package is available at https://gitlab.com/lemur01/

rnascopeanalysis.

Data and statistical analyses
Data presented as means ± SEM or box plots [medians ±25% (percentiles)
and Min/Max as whiskers] were analysed using STATISTICA 10 software
(Statsoft, Palo Alto). Assumptions for normal distribution, homogeneity of
variance and sphericity were confirmed using the Shapiro–Wilk, Levene,
and Mauchly sphericity tests, respectively.
The nature of the adjunctive drinking behaviour of each individual was

characterised at the end of the procedure, based on the average water
drinking behaviour across the last three sessions as being compulsive (HD
rats, upper quartile), intermediate (intermediate rats) or low (LD rats, lower
quartile). For experiment 2, differences in performance between the
individuals that would have the bottle or the bottle removed during test
were analysed independently for the HD and LD groups using a Student’s
t-test.
Water intake during the daily sessions of the SIP procedure was

analysed using a repeated-measure analysis of variance (ANOVA)
with sessions as within‐subject factor and phenotype (High and Low
drinkers; HD, LD) and Challenge (Bottle and no bottle; B, NB, only for
experiment 2) as between-subject factors. Upon confirmation of
significant main effects, differences were analysed using the Newman-
Keuls post hoc test.

Since only 20 slides can be processed in the same RNAscope assay,
considering the high signal/noise ratio and sensitivity of the technique,
only five representative individuals of the HD and LD subpopulations were
used for RNAscope. One animal belonging to the HD-B group was
removed from the zif268-TH-Arc RNAscope data due to tissue damage
during the assay so that the final samples sizes are HD-NB: n= 5, HD-B:
n= 4, LD-NB: n= 5, LD-B: n= 5.
RNAscope images data belonging to the same animal were summed

and then averaged across groups. The Kruskal-Wallis test was used to
compare the different mRNA levels in the LC from HD and LD rats.
Relationships between mRNA levels and water intake during SIP sessions
were investigated using Spearman correlations and the p values obtained
were subsequently corrected for multiple comparisons by the Benjamini-
Hochberg method [98, 99].
Differences in plasma corticosterone concentrations between HD

(n= 11) and LD (n= 7) individuals randomly selected from the upper
and lower quartile of the population were analysed using a Student’s t-test.
For all analyses, significance was set at α= 0.05. Effect sizes are reported

as partial eta squared (pη2).

RESULTS
The two cohorts exposed to a SIP procedure in experiment 1 and 2
developed a similar polydipsic adjunctive water drinking behaviour
over the course of 21 daily sessions [main effect of session:
F21,987= 28.702, p ≤ 0.001, pη2= 0.379 and F20,940= 22.65, p ≤
0.001, pη2= 0.325 for experiment 1 and 2, respectively] (Fig. 2A, B),
thereby demonstrating that the expression of a transgene in the
NacS-projecting LC neurons does not interfere with the develop-
ment of this adjunctive behaviour.
In line with previous reports [41, 91], in both cohorts, marked

individual differences were observed in the tendency to develop
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Fig. 2 Characterisation of the individual vulnerability to develop compulsive adjunctive behaviour under a Schedule-Induced Polydipsia
(SIP) procedure. The two cohorts exposed to a SIP procedure in experiment 1 (A) and 2 (B) developed a similar polydipsic adjunctive water
drinking behaviour over the course of 21 daily sessions. In both cohorts, marked individual differences were observed in the tendency to
develop compulsive adjunctive behaviour. HD rats, whose daily water drinking behaviour started to differ from that of LD rats and their own
baseline drinking after 6 and 8 sessions (for experiment 1 and 2, respectively) eventually drank, by the end of training, more than 3 times as
much water as LD rats, whose drinking behaviour never differed from baseline [main effect of phenotype: F1,26= 118.143, p > 0.001,
pη2= 0.819 and F1,16= 45.76, p ≤ 0.001, pη2= 0.74 for experiment 1 and 2, respectively] (C, D). The compulsive adjunctive behaviour shown
by HD (n= 11) rats resulted in a decrease in plasma corticosterone after a SIP session as compared to LD rats (n= 7) [t= 2.27 p= 0.036] (E).
The LD (LD-NB n= 5, LD-B n= 5) and HD individuals (HD-NB n= 5, HD-B n= 4) that were assigned to the bottle or no-bottle condition during
the challenge session in experiment 2 displayed similar levels of adjunctive drinking [t= 0.12 p= 0.90 and t=−0.22, p= 0.82, respectively]
(D). * Different from LD rats; ps ≤ 0.05. # HD rats: different from baseline; ps ≤ 0.001.
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compulsive adjunctive behaviour [main effect phenotype:
F1,26= 39.344, p ≤ 0.001, pη2= 0.602, and F1,24= 58.623, p ≤
0.001, pη2= 0.70 and phenotype x session interaction:
F21,546= 9.95, p ≤ 0.001, pη2= 0.276 and F21,504= 12.015, p ≤
0.001, pη2= 0.33, for experiment 1 and 2, respectively]. HD rats,
whose coping water drinking differed from that of LD rats and
their own baseline from sessions 6 and 8 onwards (for experiment
1 and experiment 2, respectively), eventually drank, by the end
of training, more than 3 times as much water as LD rats,
the performance of which never differed from baseline [main
effect of phenotype: F1,26= 118.143, p > 0.001, pη2= 0.819 and

F1,16= 45.76, p ≤ 0.001, pη2= 0.74 for experiment 1 and 2,
respectively] (Fig. 2C, D). At this point, the compulsive adjunctive
behaviour shown by HD rats still resulted in an acute decrease in
plasma corticosterone levels after SIP as compared to LD rats
[t= 2.27 p= 0.036] (Fig. 2E).
The LD and HD individuals that were assigned to the bottle or

no-bottle condition during the challenge session in experiment 2
displayed similar levels of adjunctive drinking [t= 0.12 p= 0.90
and t=−0.22, p= 0.82, respectively] (Fig. 2D).
Mapping of the projections to the territory of the NacS in which

noradrenergic mechanisms had been shown to influence the high

Fig. 3 The expression of compulsive adjunctive behaviour is associated with a decrease in Arc mRNA levels across the Locus Coeruleus.
A Schematic representation of the unilateral infusion sites (pink dots) of a CAV2-GFP retrograde virus into the medial NacS at four different
anteroposterior levels (relative to Bregma, coordinates shown next to each brain atlas template extracted from the Paxinos & Watson’s rat
brain atlas [94]) encompassing the target territory in which infusion of atomoxetine was shown to recapitulate the effect systemic
administration of this noradrenaline reuptake inhibitor on impulse control (blue dot). B While labelling of noradrenergic neurons in the A2
nucleus was never observed, infusions in the target territory or adjacent to it caudally, but not in other areas of the NacS resulted in GFP
immunofluorescence positive cells across the LC. C Schematic representation of the distribution of the coronal sections of the LC ranging from
−9.60 to −9.96 (relative to Bregma) that have been processed with RNAscope assays systematically to quantify the number of copies of target
mRNAs across the entire LC, as informed by the outcome of the tracing experiment (A, B). D Representative superimage of a 12μm-thick
coronal section, taken at ×40 magnification showing the LC, where cell bodies of tyrosine hydroxylase expressing cells are located, delineated
in white and a yellow outline of the edge of the fourth ventricle as anatomical reference, processed with RNAscope targeting the tyrosine
hydroxylase, zif268 and Arc mRNAs. Representative 63x images of the LC from HD (E) and LD (F) rats that had, or not, the opportunity to
express their adjunctive polydipsic behaviour during the challenge session that preceded the harvesting of the brains, with the same green,
red and magenta, fluorescent probes as in (D) targeting TH, zif268 and Arc mRNA, respectively. The white and orange arrows point the
presence of Arc and zif268 mRNA molecules, respectively. G The individual tendency to eventually express compulsive adjunctive polydipsic
drinking behaviour was associated with a lower level of Arc mRNA expression in the LC in that HD rats showed fewer ARC mRNA copies in this
monoaminergic nucleus than LD rats. Preventing these HD rats from expressing their compulsive adjunctive polydipsic drinking behaviour by
removing their bottle resulted in an increase of Arc mRNA copies in the LC, an effect not observed in LD rats. H At the population level, the
number of Arc mRNA copies in the LC was found to be correlated with the level of polydipsic drinking during the challenge session
[Spearman correlation, r=−0.692, p= 0.038]. (*p < 0.05).

C. Velazquez-Sanchez et al.

657

Neuropsychopharmacology (2023) 48:653 – 663



impulsivity trait that confers increased vulnerability to develop
compulsive adjunctive behaviour under SIP revealed no afferent
from the A2 region of the NTS but a dense innervation from the LC
(Fig. 3A). These NacS-projecting LC neurons were found to be
distributed throughout the LC with no apparent pattern alongside
any of the rostrocaudal, dorso-ventral and medio-lateral axes
(Fig. 3B). Such widespread distribution called for an investigation
of compulsivity-associated neuronal ensembles throughout the LC
in the ten individuals, representative of the HD and LD groups,
that were selected for RNAscope assays to measure the mRNA
levels of Arc-TH-Egr1/zif268 and Arc-GFAP-Egr1/zif268 (Fig. 3C–F).
The expression of compulsive adjunctive behaviour was

associated with a lower level of Arc mRNA expression in the LC.
Thus, HD rats showed fewer Arc mRNA copies in the LC than LD
rats [Kruskal Wallis H(3) = 8.185, p= 0.043; HD-B vs LD-B
p= 0.027] (Fig. 3G) and the total number of Arc mRNA copies in
the LC was negatively correlated to the intensity of polydipsic
water drinking during the challenge session [Spearman correla-
tion, r=−0.692, p= 0.038] (Fig. 3H).
This lower level of Arc mRNA copies in the LC that characterised

compulsive drinking in HD rats was specifically associated with the
behavioural expression of the compulsion to engage in an
excessive adjunctive behaviour because LC Arc mRNA levels were
higher in HD rats that were prevented from expressing their
polydipsic drinking by removal of the bottle during the challenge
session than in those that had the opportunity to express their
abnormal coping response [Kruskal Wallis H(1) = 5.07, p= 0.0.243;
HD-B vs HD-NB p= 0.027], a difference that was not observed in
LD rats [Kruskal Wallis H(1) = 1.33, p= 0.247; LD-B vs LD-NB
p= 0.25] (Fig. 3G).
Further retrospective dimensional analyses revealed that the

negative relationship observed between Arc mRNA copy number
in the LC and the intensity of polydipsic water drinking observed
during the challenge session in individuals that had access to the
water bottle actually emerged on the 8th SIP session, namely when
HD rats started to develop excessive, compulsive adjunctive
drinking leading them to differ from LD rats (Fig. 4). This negative
relationship was further shown to be primarily due to TH+ cells
that did not co-express zif268 at the time of sacrifice (Fig. 4). Thus,
the percentage of Arc+ cells that were also TH+ but zif268-
tracked the emergence of compulsive adjunctive drinking
behaviour following a pattern that was very similar, if not identical
to that of the Arc mRNA copy number (Fig. 4).
The inverse relationship between Arc activation in the LC TH+

neurons and compulsivity was not observed for the immediate
early gene zif268 or when rats did not have the opportunity to
express their adjunctive behaviour, be it compulsive or not, during
the challenge session (Fig. 4). What emerged in these individuals
was a consistent positive relationship between the levels of
drinking prior to the development of excessive adjunctive
behaviour in vulnerable rats and activation of neurons in the LC,
as shown by consistent positive correlations between water intake
on baseline and early SIP sessions and the percentage of zif268+
cells, irrespective of the co-marker they express.
Further analyses confirmed that these relationships between

polydipsic water drinking behaviour and Arc recruitment were
specific to neurons as correlations were not observed consistently
in GFAP+ cells (Fig. 4).

DISCUSSION
The results of the present study show that the development of
compulsive adjunctive behaviour under SIP is associated with a
decrease in Arc mRNA levels in the LC, and more particularly in a
LC Arc+/TH+/zif268- neuronal ensemble. This new cellular
signature of compulsive coping behaviour in the LC is in
agreement with previous evidence of the involvement of this
monoaminergic nucleus of the brainstem in stress [62] and coping

strategies [61, 64], and in which originate the neurons whose
projections to the NacS, further characterised in the present study,
contribute to the regulation of the high impulsivity trait that
confers and increased vulnerability to developing compulsive
adjunctive behaviours under SIP [40, 59].
As previously shown [43, 100], the overall population of rats

exposed to SIP progressively developed a polydipsic adjunctive
response, which is accompanied by an activation of central
dopaminergic and noradrenergic mechanisms [101]. However,
individual differences emerged from the first week of training,
with some individuals, namely HD rats, losing control over their
coping response and developing excessive polydipsic drinking,
the time course and magnitude of which is in line with that
reported in previous studies from our laboratory and others
[41, 43, 91, 102].
Like compulsions in humans with ICSDs, compulsive adjunctive

responses in these HD rats produced a transient decrease in
plasma corticosterone levels, in agreement with previous observa-
tions [21, 25, 26, 35] and those of a decrease in anxiety [40].
However this transient anxiolysis occurs in the context of a stress
surfeit, which characterises compulsive disorders [103, 104]
manifested in SIP as an overall heightened baseline level of
anxiety [40] and plasma corticosterone [37].
The expression of these transiently stress-reducing compulsive

responses was accompanied here by a decrease in Arc mRNA
levels in the LC. Prevention of the expression of compulsive
drinking at test, by removal of the water bottle, resulted in an
increase in Arc mRNA levels which reached those of LD rats. The
decrease in Arc mRNA levels that selectively accompanied the
expression of compulsivity at test tracked its development more
than 16 days beforehand, as revealed by the emergence of a
systematic negative correlation between Arc mRNA levels and
daily water intake on session 8, the time at which HD rats started
to differ from LD rats in their expression of polydipsic drinking.
Altogether these data suggest that downregulation of the activity
of the immediate early gene Arc in LC, and especially in TH+
zif268- neurons, contributes to the loss of control over adjunctive
polydipsic drinking, which underlies in HD rats the vulnerability
to develop compulsive behaviours. In light of the delicate
interplay that exists between LC function and glucocorticoids
[47, 48, 105–107], the lower level of plasticity observed in this Arc-
defined LC neuronal ensemble in HD rats may be related to the
blunted response to stress they have been shown to display [108]
akin to individuals with OCD [109].
In addition, these observations are in line with evidence for

functional alterations of the noradrenergic system in patients with
compulsive disorders including genetic polymorphisms in the
COMT gene [110–113], involved in the break-down of NA,
elevated plasma levels of NA metabolites [112] and altered
neuroendocrine responses to adrenergic drug challenges
[114, 115]. Similarly, chronic systemic administration of the NA
reuptake blocker atomoxetine prior to exposure to SIP prevents
the development of compulsive coping in highly impulsive rats
[41] whereas it exacerbates the expression of compulsivity in HD
rats when introduced after long-term exposure to SIP [116]. This
suggests that the altered noradrenergic function that underlies
impulsivity and the associated increased tendency to develop
compulsive coping behaviours, which is damped by atomoxetine
[41], mutates during the recruitment by SIP exposure of ascending
dopaminergic and monoaminergic systems [101]. A potential
mechanism is that atomoxetine, whose potentiation of extra-
cellular levels of NA decreases spontaneous activity of LC neurons
via α2-adrenoceptor stimulation in the LC [117], promotes a
further decrease in the expression of Arc in the LC Arc+/T
H+/zif268- neuronal ensemble in HD rats, thereby exacerbating
their compulsivity.
At the neural systems level, as discussed earlier, the influence of

atomoxetine on impulse control has been shown to be mediated
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by the medial portion of the NacS. Bilateral intracerebral infusions
of atomoxetine into the NacS, but not into the Nucleus
Accumbens Core replicated the effects of its systemic administra-
tion on premature responses in the 5-choice serial reaction time
task [59]. This specific region of the NacS in which atomoxetine
administration effectively reduces impulsivity receives noradre-
nergic innervation from the LC, as demonstrated in the present
study by a much higher density of LC neurons labelled after
infusions of the retrograde virus CAV2-GFP in that, as compared
to, other territories of the NacS. Future research is warranted to
determine whether the Arc+/TH+/zif268- LC neurons that display
a specific decrease in Arc mRNA levels associated with the
development of compulsive adjunctive behaviours are those that
project to this region of the NacS [60, 118]. Further investigations
are also warranted to determine whether a similar ensemble is

recruited in the development of compulsive coping behaviour in
females in whom the functional engagement of the LC in coping
behaviours has been reported to differ from that of males [61, 62].
Nevertheless, the results of the present study shed new light on

the cellular and molecular basis of the involvement of the LC in
the development of compulsion resulting from the loss of control
over coping strategies, one of the earliest evidence for which was
the demonstration that bilateral lesions of the LC decrease water
consumption in rats exposed to a SIP procedure without
influencing homoeostatic thirst [66]. Since, it has been shown
that the individual tendency to engage in active vs passive coping
responses and the ensuing differential resistance to stress
engages different adaptations in the neural circuits controlling
the LC-NA stress response system [61] in a genetically determined
manner [65].
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Fig. 4 Downregulation of Arc mRNA levels in the LC, especially in TH+ but zif268- cells tracks the development of compulsive adjunctive
polydipsic drinking behaviour. The regulation of Arc mRNA levels within the LC by the expression of polydipsic drinking was not uniform
across its different cell types and functional ensembles as shown by correlation matrices which track the relationship between the level of
polydipsic drinking and (i) the total mRNA copies of zif268 and Arc in the LC and (ii) the representativity of various cell types characterised for
their expression of the tyrosine hydroxylase, GFAP, zif268 and Arc, as well as any of their combinations. This dimensional analysis revealed that
the negative relationship observed between the number of Arc mRNA copies in the LC and polydipsic drinking only emerged from session 8
onwards, exactly at the time when HD rats started to diverge from LD rats on their route towards the development of compulsive polydipsic
drinking. This relationship was not observed for zif268, a distinction suggestive of a differential contribution of the two plasticity markers to
the development of compulsive adjunctive behaviour and supported by a very similar pattern of correlation between polydipsic drinking and
the percentage number of cells expressing Arc, but not zif268. Further analysis of these matrices revealed that the relationship between
polydipsic drinking and Arc mRNA levels was only present in neurons (no correlation was found in GFAP+ cells), more precisely in TH+
neurons and only in those that do not belong to a zif268+ ensemble. Removing the water bottle at test, which prevented rats from expressing
their adjunctive polydipsic behaviour, be it compulsive or not, disrupted the correlation with Arc mRNA levels, thereby revealing that the
downregulation of Arc in TH+ zif268- cell ensembles tracks the expression of a compulsive adjunctive response.
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The mechanisms by which downregulation of Arc in a TH+
zif268- neuronal ensemble in the LC accompanies or perhaps
underlies the expression of compulsive adjunctive behaviours in
vulnerable individuals remain unknown. Arc is broadly expressed
at low levels under resting conditions and its transcription is
rapidly and transiently induced following synaptic integration
[119, 120]. Arc expression is regulated by emotionally relevant
experiences, including stressful situations [75, 85] or alcohol
withdrawal, in a large number of brain regions; including the
basolateral amygdala [121] and the Nac in which a large increase
in Arc mRNA and protein levels is triggered by exposure to social
defeat stress [75]. Viral overexpression of Arc in the Nac of Arc-
knockdown mice is sufficient to rescue anxiety-like behaviours
[122], thereby demonstrating causally that striatal Arc contributes
to the regulation of anxiety [122], supposedly through its
influence over dendritic plasticity [85]. Indeed, Arc mRNA is
trafficked to neuronal dendrites [123] and, induced by neuronal
activity [124], translated into proteins that can promote both
synaptic strengthening and weakening [125]. In agreement with
these observations, Arc has been shown to be involved in multiple
forms of glutamatergic plasticity [126–128]. Overexpression of Arc
blocks the homoeostatic increase in AMPA-type glutamate
receptors (AMPARs), whereas its decrement results in increased
AMPAR function and a reduction of homoeostatic scaling of
AMPARs [129]. Thus, Arc is well positioned to influence glutamate-
dependent plasticity and its function in learning and memory
[130]. In agreement with other clinical and preclinical studies
having established the involvement of altered glutamatergic
function in compulsive disorders, the tendency compulsively to
express a polydipsic adjunctive behaviour under a SIP procedure
has been shown to be associated with a lower level of glutamate
in the medial prefrontal cortex [45], and reduced by glutamatergic
drugs such as memantine [131]. Together with the previous
evidence that compulsive symptoms are decreased by glutama-
tergic drugs in patients with ICSDs [132, 133], this observation
suggests that the downregulation of Arc mRNA levels in the LC
observed in vulnerable individuals when they express a compul-
sive adjunctive behaviour may be reflective of altered glutama-
tergic integration by LC neurons. Further research is warranted to
establish which circuit, if any, among the glutamatergic inputs to
the LC that include the paragigantocellularis nucleus, the lateral
habenula and prefrontal cortex [134–136], are involved in these
adaptations.
Within the LC, this study has revealed that a differential

recruitment of Arc- vs zif268- functional ensembles is associated
with resilience to the loss of control over coping strategies. Thus,
rats which expressed a compulsive polydipsic response showed a
specific downregulation of Arc mRNA in TH-positive neurons that
did not co-express zif268. In contrast, the mRNA levels of each
marker in cellular ensembles or cell types in which they were both
expressed did not correlate with polydipsic drinking when it
became compulsive. While little is known about the functional
relationship between Arc and zif268, the transcription of the
former has been shown to be under direct regulation of Egr family
of transcription factors to which the latter belongs [137], thereby
suggesting that the two factors should show converging mRNA
levels, as they do in ensembles in which their mRNA levels do not
correlate with compulsive drinking. It has indeed been shown that
exposure to nicotine, for instance, results in converging increases
in Arc and zif268 mRNA levels [88]. However, such studies relied
on classical in situ hybridisation, which did not enable a multiplex
approach necessary to determine whether the increases in mRNA
levels were occurring in the same cell type or across different
ensembles. In other studies on cortical and hippocampal neurons,
it has been shown that while most of the cells that expressed Arc
also expressed zif268, some zif268+ cells did not express Arc. This
degree of independence between the functional recruitment of
the two IEGs, which would be a prerequisite for the apparent

higher sensitivity to behavioural demands that the effector IEG Arc
shows as compared to other IEGs, including Zif268 [138] suggests
that there may be regulatory mechanisms in addition to, and
competing with, those involving zif268 in the control of Arc mRNA
levels. Transcriptional activation of Arc by zif268 is indeed
completely inhibited by coregulatory factors such as Nab2 [139].
Further research will be necessary to better understand the
molecular mechanisms that contribute to the emergence of this
Arc+/TH+/zif268- specific LC neuronal ensemble in which a
downregulation of Arc selectively characterises the expression of
compulsive adjunctive behaviour in vulnerable individuals.
Altogether, the findings of the present study identify an

ensemble in the LC characterised by a decrease in the expression
of Arc in TH+ zif268− neurons as a cellular marker of the
expression of compulsive adjunctive drinking, thereby opening
avenues for a mechanistic understanding of the role played by
specific neuronal ensembles in the LC in coping behaviours and
their compulsive manifestations.
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