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Aberrant triple-network connectivity patterns discriminate
biotypes of first-episode medication-naive schizophrenia
in two large independent cohorts
Sugai Liang1,2, Qiang Wang1, Andrew J. Greenshaw 3, Xiaojing Li1, Wei Deng1,2, Hongyan Ren1, Chengcheng Zhang1, Hua Yu1,
Wei Wei1, Yamin Zhang1, Mingli Li1, Liansheng Zhao1, Xiangdong Du4, Yajing Meng 1, Xiaohong Ma 1, Chao-Gan Yan5,6 and Tao Li1,2

Schizophrenia is a complex disorder associated with aberrant brain functional connectivity. This study aims to demonstrate the
relation of heterogeneous symptomatology in this disorder to distinct brain connectivity patterns within the triple-network model.
The study sample comprised 300 first-episode antipsychotic-naive patients with schizophrenia (FES) and 301 healthy controls (HCs).
At baseline, resting-state functional magnetic resonance imaging data were captured for each participant, and concomitant
neurocognitive functions were evaluated outside the scanner. Clinical information of 49 FES in the discovery dataset were
reevaluated at a 6-week follow-up. Differential features between FES and HCs were selected from triple-network connectivity
profiles. Cutting-edge unsupervised machine learning algorithms were used to define patient subtypes. Clinical and cognitive
variables were compared between patient subgroups. Two FES subgroups with differing triple-network connectivity profiles were
identified in the discovery dataset and confirmed in an independent hold-out cohort. One patient subgroup appearing to have
more severe clinical symptoms was distinguished by salience network (SN)-centered hypoconnectivity, which was associated with
greater impairments in sustained attention. The other subgroup exhibited hyperconnectivity and manifested greater deficits in
cognitive flexibility. The SN-centered hypoconnectivity subgroup had more persistent negative symptoms at the 6-week follow-up
than the hyperconnectivity subgroup. The present study illustrates that clinically relevant cognitive subtypes of schizophrenia may
be associated with distinct differences in connectivity in the triple-network model. This categorization may foster further analysis of
the effects of therapy on these network connectivity patterns, which may help to guide therapeutic choices to effectively reach
personalized treatment goals.
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INTRODUCTION
Schizophrenia is a complex mental disorder associated with
aberrant intrinsic functional coupling between large-scale neuro-
cognitive networks, especially the brain triple-network model,
which includes the default-mode network (DMN), central execu-
tive network (CEN), and salience network (SN) [1–4]. Prior evidence
has indicated aberrant interactions of the DMN and CEN with the
anterior insula aspect of the SN in schizophrenia [5]. Based on that
observation, it is possible that heterogeneous symptom presenta-
tions in schizophrenia, including varying positive and negative
symptoms and cognitive deficits, may be related to abnormal
switching between the DMN and CEN related to functional
dysconnectivity with the SN [6–8]. Additionally, enhanced inter-
connectivity between the CEN and DMN may underlie reality
distortions and cognitive processing deficits, which may lead to a
rise in psychotic perceptions of individuals at high risk for
psychosis [3]. In this context, during working memory tasks,
patients with schizophrenia exhibited abnormal activation in
nodes of the SN and CEN, in contrast to DMN deactivation [4].

Moreover, neuroanatomical evidence has suggested that reduced
surface area of this brain triple-network model (principally the SN
and DMN) may be associated with symptom burden in patients
with schizophrenia [9]. Exploration of aberrant connectivity
patterns in this triple-network model offers a powerful approach
to discover brain network-level alterations that may contribute
to identifying features of schizophrenia [1, 2, 10]. In light of
these findings, aberrant brain triple-network connectivity could
constitute a clinically relevant neurobiological marker that may
contribute to our understanding of the psychopathological
underpinnings of schizophrenia.
Schizophrenia is clinically and biologically heterogeneous which

has impeded the study of the disorder [11]. Increasing numbers of
studies have applied machine learning algorithms to characterize
the heterogeneity of schizophrenia in the search for subgroup
distinctions that may enable personalized treatment and prog-
nostic outcomes [12–18]. The neuroanatomic subtype of schizo-
phrenia patients with pervasive brain gray matter loss has a longer
illness duration and poorer premorbid functioning than those
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without such loss [13, 14]. Additionally, two distinct schizophrenia
subgroups identified by measures of cognition and electrophy-
siology had different responses to dopaminergic blockade by
antipsychotics [15]. Dysconnectivity of the brain mirror and
mentalizing networks was also used to identify subtypes of
schizophrenia accompanied by different cognitive abilities and
functional outcomes [16]. Recent studies have indicated that the
brain triple-network model as a distinctive marker can be used to
distinguish schizophrenia from psychotic bipolar disorder or major
depression, which could be helpful in clarifying the pathophysiol-
ogy underlying discrete prognostic groups [2, 6, 19]. Based
on SN-centered connectivity patterns, promising performance has
been achieved with a range of accuracy from 78 to 80% in
differentiating patients with schizophrenia from healthy controls
(HCs) [6]. It should be noted that dysfunction in large-scale brain
networks may give rise to specific symptoms of mental disorders,
and subtyping dysfunction in this way may allow us to account for
the natural heterogeneity of at least some psychiatric disorders
[20]. Few studies have yet attempted to investigate the subtypes
of schizophrenia in relation to differing connectivity patterns in
the brain triple-network model.
In the present study, we hypothesized that neurobiological

variance in characteristics of the brain triple-network model could
define distinct types of the disorder within diagnostic boundaries.
We conducted a data-driven, brain measure-based clustering
approach to analyze resting-state functional connections (FCs)
between key nodes of the triple-network model in patients with
antipsychotic-naive first-episode schizophrenia (FES), to identify
subtypes with specific brain circuit patterns. We validated the
triple-network-pattern-based FES subgroups in an independent
cohort. We also assessed the neurocognitive functions of patients
with FES and HCs to investigate whether the distinct cognitive
features were associated with potential brain-pattern-based
subtypes of schizophrenia. We reevaluated and compared the
clinical variables between patient subgroups at a 6-week follow-
up to examine subgroup-specific differences following short-term
antipsychotic treatment. Clarifying the heterogeneity in schizo-
phrenia from a brain network-level perspective to identify
biologically distinct subgroups may enhance our understanding
of the psychopathology of schizophrenia and may be potentially
helpful to achieve our goal of developing individualized treatment
strategies for patients.

MATERIALS AND METHODS
Participants
Three hundred patients with FES and 301 HCs were included in
this study. The discovery dataset (134 patients and 134 controls)
was acquired with a Signa 3.0 Tesla (T) scanner (EXCITE, General
Electric, USA) and used to select features and identify potential
brain triple-network-pattern-based subgroups of FES. The replica-
tion dataset (166 patients and 167 controls) was acquired on a
Philips 3.0 T (Achieva, TX, Best, Netherlands) scanner and used to
validate the FES subgroups. Age and sex were matched between
patients and HCs in each dataset. All participants were right-
handed Chinese. The demographic characteristics of the partici-
pants in the discovery and replication datasets are displayed in
Table S1. The severity of symptoms was assessed using the
Positive and Negative Syndrome Scale (PANSS) [21]. The severity
of illness was assessed using the global assessment of functioning
scale (GAF). See details in the Supplementary Information. At the
baseline assessment, neurocognitive function of the patients with
FES and HCs was evaluated by using the short version of the
Wechsler Adult Intelligence Scale—revised in China (WAIS-RC) and
the computerized Cambridge Neurocognitive Test Automated
Battery (CANTAB) as we have previously reported [22]. The
neurocognitive tasks and measurements are briefly described in
Table S2.

In the discovery dataset, a subset of individuals had data
available at 6 weeks. At the 6-week follow-up assessment, 49
patients were reevaluated using the PANSS. Side effects of
second-generation antipsychotics were assessed via the Treat-
ment Emergent Symptom Scale (TESS), and antipsychotic
medication exposure was expressed in chlorpromazine equiva-
lents [23]. This study was approved by the ethics committee of
West China Hospital, Sichuan University, in accordance with the
Declaration of Helsinki, and all participants provided a priori
written informed consent.

Image acquisition and data preprocessing
Resting-state functional magnetic resonance imaging (fMRI) and
high-resolution T1 imaging data were acquired from each
participant. Scanning parameters are listed in the Supplementary
information.
Neuroimaging data were processed using FSL tools (FMRIB’s

Software Library) [24]. fMRI volumes were registered to the
individual’s structural scan and standard space images using
FMRIB’s Linear Image Registration Tool. Subjects with framewise
displacement values larger than 0.3 mm were excluded from all
analyses [25]. After quality control, the discovery and replication
datasets had 127 controls and 130 patients, and 162 controls and
156 patients, respectively.

Seed-based analysis for the brain triple-network model
After preprocessing, Nilearn (https://nilearn.github.io/) was imple-
mented to create masks and extract time series in 6-mm radius
spheres around coordinates of eight nodes in this brain triple-
network model as defined in prior studies (see Table S3) [2, 26].
The brain nodes included the ventromedial prefrontal cortex
(vMPFC), posterior cingulate cortex (PCC), bilateral fronto-insular
cortex (FIC), anterior cingulate cortex (ACC), dorsolateral prefrontal
cortex (DLPFC), and bilateral posterior parietal cortex (PPC). At the
individual level, Fisher’s r-to-z transformation was conducted to
compute the temporal correlation coefficients between the brain
regions prior to further analyses.

Cluster analysis
Feature selection. Two-sample t-tests were used to identify
distinct FCs that discriminated the patients with FES from HCs.
Using a relatively loose threshold of Puncorr < 0.05, 15 FCs with
significant differences were retained. The selected FCs are shown
in Table S4. The flowchart in Fig. S1 illustrates the data analysis
strategy for this study.

Unsupervised machine learning algorithms. Using the identified
FCs representing the brain triple-network model, spectral cluster-
ing was conducted for class formation. The algorithm is
computationally efficient and works well for a small number of
clusters [27]. It often outperforms traditional clustering methods
such as k-means. To estimate clustering validity, we used the
Calinski–Harabasz (CH) score and silhouette score to identify the
most reliable cluster number [28, 29]. These validity measures are
used in combination with the Euclidean distance, leading to a
strong preference for spherical clustering [30]. Finally, dimension-
ality reduction techniques, including principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE),
were used to visualize the clustering of patient subgroups.

Independent dataset validation. To estimate the robustness of
brain-pattern-based FES subgroups defined in the discovery
dataset, identified FCs of the brain triple-network model were
extracted from the replication dataset—an independent (unseen)
cohort. We then applied cluster analysis and cluster validation as
described above to the replication dataset to investigate
patient subgroups with distinct triple-network patterns. We also
computed the correlations across connectivity values, averaged
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across subjects, between-patient subgroups in the discovery and
replication datasets.

Statistical significance of clustering. We used a SigClust approach
to assess the significance of clustering [31]. Here, we applied the R
package SigClust to compute the empirical P-value and Gaussian
fit P-value to test the statistical significance. We also tested the
significance of clustering using the bootstrapping method. See
Supplementary Information for more details.

Statistical analysis
We compared demographic characteristics between patient
subgroups and HCs using analysis of variance (ANOVA)
for continuous variables and χ2 tests for categorical variables
(sex, marriage status, and family history). Nonparametric
Mann–Whitney U tests were used to compare the duration of
illness (DUI) between patient subgroups. Baseline differences in
clinical symptom severity (PANSS total scores and PANSS
subscale scores) between patient subgroups were estimated
using analysis of covariance with DUI as a covariate. Two-sample
t-tests were used to compare GAF scores, follow-up reassessed
PANSS scores, and reduction in PANSS total scores [32]. ANOVA
was used to compare intelligence quotient (IQ) scores, and
nonparametric Kruskal–Wallis tests were applied to analyze
cognitive variables from the tasks in the CANTAB between
patient subgroups and HCs. All statistical test results were
considered significant with false discovery rate (FDR) correction:

PFDR < 0.05. Effect size (ES) and statistical power were calculated
for PANSS scores and FCs between patient subgroups.

RESULTS
FES subgroups with differing triple-network patterns identified in
discovery dataset
In the discovery dataset, based on the selected FCs of the brain
triple-network model, when the optimal cluster number was equal
to two, the cluster results yielded the maximum CH score and
maximum silhouette score (see Fig. S2a, b). The results of the
SigClust and bootstrapping methods indicated that the two
subgroups represented the most appropriate data structure (see
Figs. S3a and S4). Clustering subgroups were also visualized by
PCA and t-SNE (see Fig. 1a, b). Subsequent analyses mainly
focused on these two patient subgroups with different triple-
network patterns. In the discovery dataset, subgroup 1 had 69
patients (53.08%) and subgroup 2 had 61 patients (46.92%).
Relative to the HC group, subgroup 1 was characterized by SN-
centered decreased FCs between key nodes of the triple-network
model, while subgroup 2 exhibited relatively increased FCs,
especially between the vMPFC, ACC, and right PPC (see Fig. 2a,
b). Compared to subgroup 1, subgroup 2 showed SN-centered
hyperconnectivity that was dominant between nodes of the brain
triple-network model (see Fig. 1c–e and Table S5). The ES and
statistical power of the FCs for the patient subgroups versus the
HC group are described in Table S6.

Fig. 1 Triple-network pattern-based FES subgroups in the discovery dataset. a Clusters are plotted using PCA in the discovery dataset.
Two-dimensional principal subspace for patient subgroups. The X-axis represents the value of the first principal component that accounts for
the largest possible variance in the dataset. The Y-axis represents the value of the second principal component. b Clusters are plotted using
t-SNE. Two-dimensional embedded subspace for patient subgroups. The X-axis represents the value of the first embedded space by t-SNE. The
Y-axis represents the value of the second embedded space. c Subgroup 1. d Subgroup 2. e Healthy controls. L left, R, right. The colorbar
represents FC values. ACC anterior cingulate cortex, FIC fronto-insular cortex, DLPFC dorsolateral prefrontal cortex, PPC posterior parietal
cortex, vMPFC ventromedial prefrontal cortex, PCC posterior cingulate cortex.
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Although not significant at the FDR-corrected level, subgroup 1
tended to suffer more severe clinical symptoms with higher
PANSS total scores (ES= 0.29, power= 0.39) and scores on the
PANSS general psychopathology scale (ES= 0.36, power= 0.56)
than subgroup 2. No significant differences were observed in
demographic and clinical variables between patient subgroups
(see Table 1).
Both patient subgroups had lower IQ and worse performance in

the cognitive tasks than the HC group. Subgroup 1 had more false
alarms in block 5 of the Rapid Visual Information Processing (RVP)
task than the HC group (H2, 121=−3.41, PFDR= 0.006), which
suggested that subgroup 1 had greater deficits in sustained
attention and information processing. Subgroup 2 had more
errors in block 7 of the Intra/Extra-Dimensional Set Shift (IED) task
than the HC group (H2, 116=−3.14, PFDR= 0.006), which indicated
that subgroup 2 had greater impairments in cognitive flexibility
and shifting. In contrast to the patient subgroup versus HC group
comparisons, no significant differences were found between the
patient subgroups across all neurocognitive tests (see Table S7).

Triple-network-pattern-based FES subtypes validated in the
replication dataset
In the replication dataset, using selected FCs of the brain triple-
network model, a cluster number of two achieved the maximum
CH score and silhouette score (see Fig. S2c, d). The results of the
SigClust and bootstrapping methods suggested that the two

subgroups were the best fit for the underlying data structure (see
Figs. S3b and S5). Patient subgroups with different brain triple-
network patterns were also visualized by PCA and t-SNE (see Fig.
S6a, b). In the replication dataset, 75 patients (48.08%) were
placed in subgroup 1 and 81 patients (51.92%) were placed in
subgroup 2. Using the FCs within the triple-network model
identified in the discovery dataset, the patient subgroups were
validated in the replication dataset—subgroup 1 was character-
ized by SN-centered hypoconnectivity within the triple-network
model and subgroup 2 was marked by increased connectivity,
especially connectivity between the vMPFC, ACC, right PPC, and
bilateral FIC (see Fig. 2c, d, Fig. S6 and Table S8). The ES and
statistical power of the FCs for the patient subgroups versus the
HC group in the replication dataset are listed in Table S9.
In the replication dataset, subgroup 1 tended to experience

higher PANSS total scores (ES= 0.20, power= 0.23), positive scale
scores (ES= 0.20, power= 0.23), and negative scale scores (ES=
0.20, power= 0.23) than subgroup 2. However, there were no
statistically significant differences between patient subgroups in
demographic and clinical variables (see Table S10).
Similar neurocognitive results between the patient subgroups

and the HC group were found in the replication dataset (see
Table S11). Subgroup 1 had more false alarms in block 5 of the
RVP task (H2, 228=−2.91, PFDR= 0.012), while subgroup 2 had
more errors in block 7 of the IED task (H2, 221=−2.50, PFDR=
0.036) than the HC group. Again, no evident differences were

Fig. 2 FCs between the FES subgroups and HC group in discovery and replication datasets. a FDR-corrected FCs among patient subgroups and
the HC group in the discovery dataset. b FDR-corrected FCs between each pair of groups (subgroup 1, subgroup 2 and HC) in the discovery
dataset. c FDR-corrected FCs between each pair of groups (subgroup 1, subgroup 2 and HC) in the replication dataset. d FDR-corrected FCs among
patient subgroups and the HC group in the replication dataset. L left, R right, ACC anterior cingulate cortex, FIC fronto-insular cortex, DLPFC
dorsolateral prefrontal cortex, PPC posterior parietal cortex, vMPFC ventromedial prefrontal cortex, PCC posterior cingulate cortex.
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found between the patient subgroups across all neurocognitive
tests, even though we ruled out possible causes, such as the
presence of outliers, or the method of statistical analysis (see
Supplementary Results and Figs. S7–9).
Based on the mean FC values, a violin plot was used to display the

distribution for each subgroup and its probability density (Fig. 3a).
Using the mean FC values, subgroup 1 in the discovery dataset was
highly correlated with subgroup 1 in the replication dataset (r=
0.963, PFDR < 0.001). Subgroup 2 in the discovery and replication
dataset was highly correlated (r= 0.989, PFDR < 0.001) (see Fig. 3b, c).

Triple-network-pattern-based FES subtypes in the longitudinal
subset
In the longitudinal subset of the discovery dataset, subgroup 1
had 27 patients and subgroup 2 had 22 patients. Table S12
describes the FCs within the brain triple-network model between

these patient subgroups. Compared to subgroup 2, subgroup 1
exhibited SN-centered decreased connectivity within the brain
triple-network model (see Fig. 4 and Table S12). At the baseline
assessment of the longitudinal subset with DUI as a covariate,
subgroup 1 had higher scores on the PANSS negative scale (ES=
0.63, power= 0.62) and general psychopathology scale (ES= 0.42,
power= 0.33) than subgroup 2 (see Table 1). At the 6-week
follow-up, subgroup 1 tended to have more serious negative
symptoms than subgroup 2 (Puncorr= 0.037, ES= 0.69, power=
0.71). However, no significant differences were observed between
the patient subgroups in demographic and clinical variables.

DISCUSSION
In the present study, we used both hypothesis- and data-driven
approaches to different datasets and identified two FES subtypes

Table 1. Demographic and clinical characteristics of discovery dataset and longitudinal subset.

Discovery dataset Longitudinal subset baseline 6-week follow-up

HC Subgroup 1 Subgroup 2 F/T/χ2 Subgroup 1 Subgroup 2 T/χ2 Subgroup 1 Subgroup 2 T

(n= 127) (n= 69) (n= 61) (n= 27) (n= 22) (n= 27) (n= 22)

Age (years) 25.72 (7.82) 24.25 (8.11) 24.85 (7.86) 0.82 23.15 (6.80) 24.18 (8.62) −0.47 – – –

Sex (M/F) 58/69 31/38 29/32 0.10 11/16 11/11 0.42 – – –

Education (years) 13.43 (3.34) 12.07 (2.73) 12.23 (3.39) 5.12* 12.15 (3.28) 12.64 (2.61) −0.57 – – –

Marital status
(married/unmarried)

35/89 14/55 16/42 1.57 5/22 5/17 0.13 – – –

Family history (Yes/
No)

– 21/48 13/47 1.27 11/13 9/13 0.11 – – –

GAF scores – 27.72 (9.57) 28.85 (9.86) −0.63 26.42 (6.94) 29.05 (9.17) −1.11 56.32 (15.13) 54.95 (15.91) 0.29

DUI (months) – 2 3 1.19 2 5.5 1.22 – – –

Medication – – – – – – – 284.55 (129.58) 318.10 (144.48) −0.64

TESS – – – – – – – 2.00 2.50 −0.21

PANSS-TS – 93.02 (16.69) 87.02 (20.74) 2.92 98.04 (14.06) 90.55 (15.59) 1.81 67.92 (19.35) 63.32 (19.03) 0.79

PANSS-P – 24.91 (7.24) 24.55 (6.83) 0.05 26.92 (7.65) 26.85 (5.26) 0.22 13.24 (4.44) 14.63 (4.46) −1.03

PANSS-N – 19.80 (7.12) 17.93 (9.62) 3.10 20.31 (5.88) 16.15 (7.88) 3.69 17.44 (6.75) 13.42 (5.19) 2.15*

PANSS-GP – 48.31 (9.50) 44.54 (9.95) 3.74 50.81 (8.23) 47.55 (7.69) 1.30 34.48 (9.77) 32.63 (9.66) 0.63

PANSS Reduction % – – – – – – – 0.29 (0.15) 0.28 (0.14) 0.26

PANSS Positive and Negative Syndrome Scale, PANSS-TS PANSS total score, PANSS-P PANSS - positive subscale, PANSS-N PANSS - negative subscale, PANSS-GP
PANSS - psychopathological symptoms, GAF Global Assessment of Functioning Scale, TESS Treatment Emergent Symptom Scale, DUI duration of illness, Mmale,
F female. Mean (standard deviation). Medication, chlorpromazine equivalents (mg/day). *Puncorr < 0.05.
At the 6-week follow-up, subgroup 1 tended to have higher score of PANSS-N than subgroup 2 (T = 2.15, Puncorr= 0.037).

Fig. 3 Triple-network-based FES subgroups in discovery and replication datasets. a In the violin plot, the Y-axis represents the mean FC
values and the X-axis represents subgroups in the discovery dataset and replication datasets. D for the discovery dataset. R for the replication
dataset. b Pearson correlation between subgroup 1 in the discovery and replication datasets. c Pearson correlation between subgroup 2 in
these two datasets.
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with differing resting-state connectivity profiles in relation to the
brain triple-network model. Our current findings extend our
knowledge about subtypes of schizophrenia through a brain
network-level perspective. Compared to the HC group, one
patient subgroup was characterized by SN-centered decreased
connectivity within the triple-network system, exhibited greater
deficits in sustained attention and appeared to have a more
severe symptom burden. In contrast, the subgroup with hyper-
connectivity of key nodes in the triple-network model experienced
greater deficits in cognitive flexibility. Subtypes of schizophrenia
with differing brain triple-network patterns and neurocognitive
features were validated in an independent cohort. In the
longitudinal subset of the discovery dataset, at the 6-week
follow-up, the subgroup with SN-centered hypoconnectivity
within the triple-network model tended to have more severe
and persistent negative symptoms (with a medium effect size)
than the patient subgroup with hyperconnectivity. This study
provides evidence to support the hypothesis that biologically and
clinically relevant subtypes of FES exist with differing brain triple-
network patterns in the early stage of the disorder.
Consistent with prior research, the findings of the current study

confirmed that patients with schizophrenia were characterized by
altered connectivity in core large-scale neurocognitive networks
[1–3, 5]. The functionally disengaged interaction of the SN with
the CEN and DMN could be a distinct signature of brain network-
level dysfunction in schizophrenia [6, 33]. Notably, in this study,
the patient subgroup with SN-centered hypoconnectivity within
the triple-network model at baseline appeared to be associated
with more persistent negative symptoms even after short-term
antipsychotic treatment in the early course of schizophrenia.
Longitudinal studies are needed to investigate the long-term
therapeutic efficacy and prognosis for patients with different
schizophrenia subtypes. This observation is interesting in relation
to evidence suggesting that atypical antipsychotics may regulate
DMN connectivity through reduced connectivity in the PCC and
increased connectivity in the vMPFC in early-phase schizophrenia

[34, 35]. Patients with FES exposed to short-term antipsychotic
treatment may exhibit increased synchronous regional brain
function in insular and frontal-temporal areas and reduced
connectivity in temporal-parietal areas and in the network
between regions of the DMN and medial frontal areas [36].
Dysconnectivity with this brain triple-network model could be a
significant neuroimaging biomarker for tracking antipsychotic
effects in patients with schizophrenia. Additionally, it is notable
that a brain network-level perspective may be useful, in
comparison to a focus on neurotransmitter systems per se, to
model or explain the effects of antipsychotics on brain function in
schizophrenia [37]. From this perspective, our current findings
may provide new insights into the actions of antipsychotic
treatment in patients with varying subtypes of schizophrenia in
relation to differing brain circuit patterns.
In accordance with prior research [8], this study also indicated

that the subgroup of schizophrenia patients with SN-centered
hypoconnectivity within the triple-network system tended to have
more severe negative symptoms. Additionally, a subgroup of
schizophrenia patients characterized by global gray matter
volume reduction (including insular cortex, medial prefrontal
cortex, and other brain areas) was associated with longer illness
duration and poorer premorbid functioning [13, 14]. Subtypes of
FES characterized by pervasive disrupted white matter patterns
appeared to have greater negative symptoms [12]. Moreover,
patients with deficit schizophrenia enduring persistent negative
symptoms had poorer cognitive performance and broader
impaired functional segregation in brain networks than those
with nondeficit schizophrenia [38]. Patients with treatment-
resistant schizophrenia, as a complex neurobiological category,
exhibited frontal gray matter reduction, decreased fiber tract
integrity and widespread resting-state hypoconnectivity especially
in frontal, temporal, and occipital regions [39, 40]. Similarities in
functional and structural neuroimaging studies probably hint that
subtypes of schizophrenia with more prominent reductions in
brain measures are likely to correspond to greater clinical

Fig. 4 Triple-network-pattern-based FES subgroups in the longitudinal dataset. a Subgroup 1. b Subgroup 2. c Comparisons of FCs
between patient subgroups. In horizontal bars with the same color, the upper bar represents subgroup 1 and the lower bar represents
subgroup 2. The X-axis represents FC values. L left, R right, ACC anterior cingulate cortex, FIC fronto-insular cortex, DLPFC dorsolateral
prefrontal cortex, PPC posterior parietal cortex, vMPFC ventromedial prefrontal cortex, PCC posterior cingulate cortex.
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symptom burden and poorer therapeutic outcome. Subtypes of
schizophrenia with differing brain alterations may imply that these
neurobiological substrates could be the key sources of disorder
heterogeneity. Meanwhile, subtypes of patients with schizophre-
nia with distinct brain abnormalities may reflect qualitatively
distinct genetic factor influences or altered neurodevelopment in
the early-stage and long-term illness trajectories [12–14, 18].
Parsing the neurobiological heterogeneity of schizophrenia could
be useful to determine the more severe subtypes and improve
accuracy in treatment selection. Whether individuals with deficit
type or treatment-resistant schizophrenia will be clustered to the
subtype with widespread brain alterations needs future long-
itudinal studies to examine.
Schizophrenia is associated with broad neurocognitive deficits

[4, 5, 41]. Consistent with previous studies, the present study also
found that each schizophrenia subgroup had specific cognitive
impairments compared to controls. However, with a limited sample
size in the same cohort, there may not have been enough power to
use cognitive features to directly distinguish one patient subgroup
from the other. In this study, patient subgroup 2 seemed to have
similar brain connectivity patterns to those of controls, with the
exception of hyperconnectivity between the vMPFC, ACC, and PPC.
Notably, the subtype of schizophrenia marked by increased
connectivity within the triple-network model (especially the DMN
and CEN) tended to have more impairments in cognitive flexibility.
A prior study reported that hyperconnectivity of the DMN and CEN
was adversely related to cognitive performance in individuals with
an at risk mental state for psychosis [3]. Likewise, enhanced
interconnectivity of the DMN and CEN was positively correlated
with severity of psychotic symptoms in patients with schizophrenia
during the acute psychotic episode and even during a remission
period [5, 8]. Higher resting-state dynamic connectivity between
the CEN and DMN was also associated with poorer cognitive
flexibility in healthy control individuals [42]. Additionally, aberrant
hypodeactivation in the DMN in schizophrenia could be caused by
a reduction in the influence of the insula during cognitive tasks [4].
Dysfunction in the DMN may be a source of general cognitive
impairment, especially cognitive flexibility deficits for patients with
schizophrenia [7, 43]. Our current results also indicate that
schizophrenia subgroups with different dysfunctional connectivity
between the CEN and DMN might be associated with correlated
impairments in cognitive flexibility.
Concurrently, the subgroup of schizophrenia patients with

SN-centered hypoconnectivity within the triple-network model
had greater deficits in sustained attention and information
processing. Increasing evidence suggests that an aberrant or
attenuated interconnection between the SN and the CEN and
DMN may contribute to the genesis of psychotic symptoms and
cognitive deficits, especially attentional impairments in schizo-
phrenia [3, 6–8, 44]. Additionally, inflammatory processes may also
contribute to cognitive deficits in schizophrenia, as a subgroup of
patients with schizophrenia with higher plasma cytokine levels
and kynurenine/tryptophan ratio has been shown to have greater
attentional impairment and reduced gray matter volume in the
DLPFC [17]. Moreover, rare variants in the signaling of the zinc
transporter gene have been associated with a subtype of psychosis
with severe negative symptoms and global cognitive impairments
[18]. These findings may help to elucidate neural, inflammatory, and
genetic mechanisms associated with subtypes of schizophrenia with
differing brain circuits and cognitive impairments.
Several limitations should be considered. First, the longitudinal

subset sample size was relatively small and future longitudinal
studies with larger sample sizes and long-term follow-up will be
necessary to confirm the current findings and further exploit brain
triple-network-based biotypes of schizophrenia. Second, some
clinical information, including early life stress, cigarette smoking,
and comorbid conditions (depressive symptoms and obsessional
traits), was not fully recorded for each patient. These data are

important as a prior study suggested that cigarette smoking could
influence interactions between this brain triple-network system
[45]; additional clinical information will be helpful in future studies.
Third, our patient subgroups did not exhibit statistically significant
differences among our clinical and neurocognitive variables, in
contrast to the patient subgroup versus HC group comparisons.
This issue needs to be studied further in future studies with larger
and independent samples. Future studies should also focus on a
more fine-grained set of clinical features to better characterize
differences between patient subgroups with differing triple-
network-pattern profiles. Fourth, using univariate selection, less
redundant and more distinct features were identified to further
investigate the brain patterns underlying the data structure, yet
this approach might have overlooked the group-level hetero-
geneity of functional connectivity in the disorder. This should be
considered in future studies.

CONCLUSIONS
Our findings support the presence of two neurobiologically distinct
subtypes of schizophrenia based on brain triple-network patterns,
accompanied by distinct deficits in sustained attention and
cognitive flexibility and probably different symptom burdens.
Patients identified as fitting the subtype of schizophrenia marked
by SN-centered hypoconnectivity within the triple-network model
will likely have more persistent negative symptoms, an observation
that may allow more precise treatment selections and improved
prognosis. Parsing the heterogeneity of schizophrenia, from a
functional network-based perspective, may potentially facilitate the
development of effective individualized treatment strategies.
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