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Common variants on 6q16.2, 12q24.31 and 16p13.3 are
associated with major depressive disorder
Xiaoyan Li1,2, Zhenwu Luo3, Chunjie Gu1, Lynsey S. Hall4, Andrew M. McIntosh 4, Yanni Zeng4,5, David J Porteous6, Caroline Hayward5,
Ming Li 1,8, Yong-Gang Yao1,8, Chen Zhang9 and Xiong-Jian Luo 1,10 the 23andMe Research Team7

Accumulating evidence suggests that genetic factors have a role in major depressive disorder (MDD). However, only limited MDD
risk loci have been identified so far. Here we perform a meta-analysis (a total of 90,150 MDD cases and 246,603 controls) through
combing three genome-wide association studies of MDD, including 23andMe (cases were self-reported with a clinical diagnosis or
treatment of depression), CONVERGE (cases were diagnosed using the Composite International Diagnostic Interview) and PGC
(cases were diagnosed using direct structured diagnostic interview (by trained interviewers) or clinician-administered DSM-IV
checklists). Genetic variants from two previously unreported loci (rs10457592 on 6q16.2 and rs2004910 on 12q24.31) showed
significant associations with MDD (P < 5 × 10−8) in a total of 336,753 subjects. SNPs (a total of 171) with a P < 1 × 10−7 in the meta-
analysis were further replicated in an independent sample (GS:SFHS, 2,659 MDD cases (diagnosed with DSM-IV) and 17,237
controls) and one additional risk locus (rs3785234 on 16p13.3, P= 1.57 × 10−8) was identified in the combined samples (a total of
92,809 cases and 263,840 controls). Risk variants on the identified risk loci were associated with gene expression in human brain
tissues and mRNA expression analysis showed that FBXL4 and RSRC1 were significantly upregulated in brains of MDD cases
compared with controls, suggesting that genetic variants may confer risk of MDD through regulating the expression of these
two genes. Our study identified three novel risk loci (6q16.2, 12q24.31, and 16p13.3) for MDD and suggested that FBXL4 and RSRC1
may play a role in MDD. Further functional characterization of the identified risk genes may provide new insights for MDD
pathogenesis.

Neuropsychopharmacology (2018) 43:2146–2153; https://doi.org/10.1038/s41386-018-0078-9

INTRODUCTION
Major depressive disorder (MDD) is a complex mental disorder
with the highest prevalence (the lifetime prevalence of MDD is
about 15% [1, 2]) among the psychiatric disorders [3]. In addition
to high prevalence, MDD is also associated with substantial
morbidity and mortality [4–6], which makes it the second leading
cause of disability worldwide [7]. Despite the fact that MDD
imposes great economic burden on society [7, 8], currently the
pathogenesis of MDD remains largely unknown. The heritability of
MDD is estimated to be around 30–40% [9, 10], indicating that
genetic factors have a pivotal role in MDD. Though great effort has
been made to investigate the genetic underpinnings of MDD, only
limited risk variants and genes have been identified by genetic
linkage and association studies [11–15]. The advent of GWAS
provides an opportunity to explore the genetic basis of MDD. In
2015, the CONVERGE consortium successfully identified two
genome-wide significant risk loci for MDD through using recurrent
MDD cases [16]. In 2016, Hyde et al.[17] identified 15 genetic loci

associated with risk of MDD through using a large cohort of MDD
samples. Recently, Wray et al. conducted the largest GWAS meta-
analysis of MDD so far and identified 44 risk loci [18].
To further identify novel risk variants for MDD, we performed a

meta-analysis (a total of 336,753 subjects) through combining
three independent GWAS of MDD (23andMe, Inc., a personal
genetics company [17], the Major Depressive Disorder Working
Group of the Psychiatric GWAS Consortium (PGC) [20], and the
CONVERGE consortium [16]). Novel genetic variants from ten
independent loci showed significant association with MDD
at genome-wide significance level (P < 5 × 10−8). SNPs with a
P < 1 × 10−7 in the meta-analysis were further replicated in an
independent sample, the Generation Scotland: Scottish Family
Health Study (GS:SFHS), comprising 2659 MDD cases and 17,237
controls. We also performed eQTL analysis to explore the potential
influence of the identified risk variants on gene expression. Our
study identified three novel genetic loci (6q16.2, 12q24.31, and
16p13.3) associated with risk of MDD.
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MATERIALS AND METHODS
GWAS datasets
We used three independent GWASs of MDD in this study. The first
GWAS of MDD was obtained from a recent large-scale study
conducted by Hyde et al.[17], which identified 15 genome-wide
significant loci [17]. MDD cases and controls were ascertained
from 23andMe and subjects who reported a history of clinical
diagnosis (or treatment) of depression were included as MDD
cases. Participants provided informed consent and participated in
the research online, under a protocol approved by the external
AAHRPP-accredited IRB, Ethical & Independent Review Services
(E&I Review). SNPs were primarily genotyped with the Illumina
HumanHap550+ BeadChip and the Illumina OmniExpress+
BeadChip. In addition, custom arrays were also used. Logistic
regression (additive allelic effects model) was used to test the
association of SNPs with MDD. In brief, genome-wide association
results from 75,607 MDD cases and 231,747 controls were used in
this study. More detailed information about sample collection, SNP
genotyping, quality control, and statistical analysis can be found in
the original paper [17]. The second GWAS dataset is from the
Major Depressive Disorder Working Group of the Psychiatric GWAS
Consortium [20]. This dataset contains genome-wide association
results from 9240 MDD cases and 9519 controls. Cases were
diagnosed with DSM-IV lifetime MDD using direct structured
diagnostic interview (by trained interviewers) or clinician-
administered DSM-IV checklists, and most of cases were from
clinical sources [15]. Most of the controls were selected from the
general population randomly and screened for lifetime history of
MDD. All subjects were genotyped with Illumina or Affymetrix SNP
arrays. Logistic regression was used to test the association
between the SNPs and MDD (under an additive model). More
detailed information about sample collection, diagnosis, genotyp-
ing, statistical analyses, and quality control can be found in the
original paper [20]. The third GWAS dataset is from the CONVERGE
consortium [16]. To reduce the phenotypic heterogeneity of MDD,
CONVERGE consortium only used female MDD cases recruited
from China. Briefly, 5303 female recurrent MDD cases and 5337
controls were included in this study and low-coverage whole-
genome sequencing was used to genotype all of the subjects. The
Composite International Diagnostic Interview (CIDI) (which used
DSM-IV criteria) was used for MDD diagnosis. Linear mixed model
was utilized to perform the genetic association analysis. More
detailed information about sample recruitment, ascertainment,
sequencing, genotype calling, quality control, and statistical
analysis can be found in the original publication [16].

Meta-analysis
Genome-wide association results from 23andMe [17], PGC [20]
and CONVERGE [16] (totaling 90,150 MDD cases and 246,603)
were used to perform meta-analysis with the program PLINK (v1.9)
[21]. Ancestry determination was performed and subjects who had
>97% European ancestry were included in 23andMe study [17].
Genotype data of 23andMe were imputed (minimac2 software
[22]) using the reference haplotypes from the 1000 Genomes
project [23] (2013 September release). MDD cases and controls
used in PGC study [20] were European ancestry and genotype
data were imputed with Beagle (v3.0.4) [24] (the phased
haplotypes of CEU+ TSI from HapMap3 data were used as
reference). Subjects used in CONVERGE study [16] were Han
Chinese and whole-genome sequencing was used to genotype
the samples. The number of SNPs used as input for the meta-
analysis was as follows: 23andMe: 15,607,353 SNPs; CONVERGE:
5,992,772 SNPs; PGC 1,235,109 SNPs. We first performed a
conversion so each SNP has the same effect allele in each GWAS
study. Meta-analysis was then conducted (based on the same
effect allele) using summary statistics (including odds ratio,
P-value, standard error of odds ratio) from each GWAS. SNPs that
were presented in at least two GWAS were included in the final

meta-analysis. As described in most GWAS meta-analysis [20, 25],
we used the fixed-effect model in this study. The fixed-effect
model assumes that the effect of each SNP is the same across
different studies. Compared with the random effect model, the
fixed-effect model is more powerful for detecting association [25,
26]. I2 was used to quantify the heterogeneity of the meta-analysis
[27]. We restricted our analysis on autosomal SNPs and we also
validated our meta-analysis results using METAL software [28],
which utilizes an inverse-weighted fixed-effects model.

Replication in GS:SFHS
Through combining samples from the 23andMe, CONVERGE and
PGC, we identified 213 previously unreported SNPs that reached
genome-wide significance level (P < 5 × 10−8). In addition, we also
identified 171 SNPs that showed suggestive association (i.e.,
P < 1 × 10−7) in the meta-analysis (including 23andMe, CONVERGE,
and PGC). To further explore if these 171 SNPs were associated
with MDD in an independent sample, we tried to replicate these
171 SNPs in GS:SFHS, a family- and population-based Scottish
cohort [29]. Due to that 43 SNPs were not available in GS:SFHS, a
total of 128 SNPs (with a P < 1 × 10−7) were successfully
interrogated in GS:SFHS finally. Briefly, 2659 MDD cases and
17,237 controls were included in GS:SFHS. All of the subjects were
recruited from the United Kingdom and structured clinical
interviews were applied for the diagnosis of MDD using DSM-IV
criteria. The Illumina Human OmniExpressExome -8- v1.0 array was
used for genotyping. More detailed information about sample
collection, genotyping, quality control, and statistical analysis can
be found in the original paper [29].

Linkage disequilibrium analysis
Linkage disequilibrium (LD) values (r2) among the studied SNPs
were calculated using genotype data of 99 European subjects
(Utah residents with northern and western European ancestry,
CEU) from the 1000 Genomes project [23] (http://www.
internationalgenome.org/). As the major MDD GWAS (including
23andMe [17], PGC [20], and GS:SFHS [29]) were from populations
of European ancestry, we only calculated LD among the studied
SNPs in Europeans. Haploview [30] was used to plot the LD pattern
among the studied SNPs. LD block was defined with the
confidence interval method as described by Gabriel et al. [31].

Frequency distribution of the risk variants in world populations
The frequency of the identified risk variants in different
geographic populations was plotted using data from the 1000
Genomes project [32] and the Human Genome Diversity Project
(HGDP) [33].

Prioritization of the potential functional variants
To pinpoint the potential functional SNPs at each identified risk
loci, we conducted functional prioritization using LINSIGHT [34].
LINSIGHT predicts the functional consequence of the genetic
variants using functional and population genomic data, including
evolutional conservation (e.g., phyloP score and phastCons
element), binding site (e.g., transcription binding site, miRNA
binding site and splicing site), and regional annotation data (e.g.,
ChIP-seq peak of transcription factor, DNase-I hypersensitive site
and histone modification). LINSIGHT combines these features
using a linear model and scores each variant. The score of
LINSIGHT ranges from 0 to 1 and a larger LINSIGHT score
represents higher probability that this SNP is functional.

Functional fine-mapping using Probabilistic Annotation Integrator
(PAINTOR)
In addition to LINSIGHT, we also used PAINTOR [35] to prioritize
the possible causal variant (s) at each risk loci. PAINTOR prioritizes
plausible causal variants through integrating genetic association
signals (from GWAS) and functional annotation data (such as
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DNase hypersensitivity sites, enhancer, promoter, and etc.). For
each input variant, PAINTOR calculates the probability that the
variant is causal. The SNP with the smallest P-value at each
identified risk loci was defined as index SNP, and SNPs that were
in linkage disequilibrium with the index SNP (r2 > 0.7) were
extracted using SNiPA (http://snipa.helmholtz-muenchen.de/
snipa/index.php?task=about_snipa) [36]. European populations
(CEU) from the 1000 Genomes project [23] were used to calculate
the linkage disequilibrium values (r2). The index SNP and SNPs that
were in linkage disequilibrium with the index SNP (r2 > 0.7) were
used as input for functional fine-mapping. A higher PAINTOR score
indicates a higher probability that the SNP is causal.

Pathway analysis
To explore if certain specific gene ontology (GO) categories or
pathways were enriched in the identified MDD risk genes, we
carried out pathway analysis. Briefly, we first performed LD
analysis and SNPs linked with the identified risk SNPs (r2 > 0.3)
were extracted. For each loci, the most significant SNP was
defined as index SNP. We utilized PLINK (v1.09) [21] to calculate
the LD values between the index SNP and nearby SNPs using
genotype data of European populations (CEU, Phase I data) from
the 1000 Genomes Project [23]. Genes covered by these extracted
SNPs were then used for pathway analysis with DAVID [37].

Expression quantitative trait locus (eQTL) analysis
To explore if the identified SNPs are associated with the
expression level of nearby genes, we performed eQTL analysis
using the LIBD eQTL browser (http://eqtl.brainseq.org/phase1/
eqtl/) [38, 39]. The LIBD eQTL browser included brain tissues (the
dorsolateral prefrontal cortex, DLPFC) of 412 subjects (including
175 schizophrenia patients, and 237 controls). Gene expression
was measured with RNA sequencing and an additive genetic
effect model was used to test the association of genotyped SNPs
with gene expression. We queried the most significant SNP (i.e.,
SNPs in Table 1 and Table 2) at each locus using LIBD eQTL
browser and genes whose expression is associated with the query
SNP were extracted. The P-values were extracted directly from the
LIBD eQTL browser and were not corrected for multiple testing.
Only significant associations with a P-value less than 1.0 × 10−4

and false discovery rate (FDR) <0.01 were retained. More detailed

information about LIBD eQTL database can be found at http://eqtl.
brainseq.org/phase1/eqtl/ [38, 39].

Expression analysis of risk genes in MDD cases and controls
To explore whether nearby genes of the identified risk SNPs were
dysregulated in MDD cases, we compared the expression of these
genes in MDD cases with controls using expression data
(GSE102556) from a recent study of Labonte et al. [40]. Briefly,
six brain regions (including the dorsolateral PFC, ventromedial
prefrontal cortex, orbitofrontal cortex, ventral subiculum, nucleus
accumbens, and anterior insula) of 26 MDD cases (13 males and 13
females) and 22 controls (13 males and 9 females) were collected
and genome-wide gene expression was measured with RNA
sequencing method. In addition to human subjects, Labonte et al.
[40] also established a stressed mice model (using chronic variable
stress (CVS)) and measured the gene expression in brains of
stressed mice (n= 10) and control mice (n= 10). As chronic stress
is a well-characterized risk factor for depression, several rodent
models (including chronic social defeat stress and chronic variable
stress) have been introduced to uncover the role and mechanism
of chronic stress in depression [41, 42]. Among these models, CVS
has been proved to be a reliable paradigm and animals exposed
to CVS exhibited symptoms parallel to human depression,
including anxiety, depression-like behavior, and neurobiological
alterations [43]. Labonte et al.[40] exposed the mice to CVS for
21 days and they showed that the stressed mice exhibited
depression-and anxiety-like behaviors. Two representative brain
regions (i.e., ventromedial prefrontal cortex (vmPFC) and nucleus
accumbens (NAc)) implicated in stress responses in rodent models
[44] were examined in stressed mice in the Labonte study. To
assess if the expression of the identified risk genes was
significantly different in MDD cases compared with controls, we
extracted the P-values (uncorrected for multiple testing) of MDD
risk genes directly from the study of Labonte et al. [40]. Labonte
et al. [40] analyzed the males and females separately, and
differentially expressed genes in female MDD cases (compared
with healthy female controls) and male MDD cases (compared
with healthy male controls) were identified separately. More
detailed information about the human and mice subjects, RNA
extraction, gene expression measurement, statistical analysis can
be found in the original study of Labonte et al. [40].

Fig. 1 Meta-analysis results of three MDD GWAS. Novel genetic variants from ten independent loci (1p31.1, 2p16.1, 3q25.32, 5q14.3, 5q34,
6q16.2, 12q24.31, 13q14.3, 13q21.32, and 15q14) showed significant association with MDD (P < 5 × 10−8) in a total of 90,150 MDD cases and
246,603 controls. Two novel risk loci (6q16.2 and 12q24.31) showed significant association with MDD
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RESULTS
Meta-analysis identified two novel genetic loci associated with
MDD
Genome-wide meta-analysis of 90,150 MDD cases and 246,603
controls (from 23andMe, PGC and CONVERGE) identified 213
previously unreported SNPs that showed significant association
with MDD at genome-wide significance level (P < 5 × 10−8) (Fig. 1
and Supplementary Table S1). Quantile–quantile plot of the GWAS
meta-analysis was shown in Supplementary Figure S1. Of note,
these SNPs did not show significant associations (P < 5 × 10−8)
with MDD in any of the three genome-wide association studies
(Supplementary Table S1). These genome-wide significant SNPs
are located in 10 independent genomic regions, including 1p31.1,
2p16.1, 3q25.32, 5q14.3, 5q34, 6q16.2, 12q24.31, 13q14.3,
13q21.32, and 15q14 (Fig. 2, Supplementary Figure S2 and S3).
Genetic variants near 8 loci (1p31.1, 2p16.1, 3q25.32, 5q14.3, 5q34,
13q14.3, 13q21.32, and 15q14) have been reported to be
associated with MDD previously [17, 45]. Nevertheless, no
previous study has showed that genetic variants on 6q16.2 and
12q24.31 were associated with MDD. Thus, our results
indicate that 6q16.2 and 12q24.31 are novel risk loci for MDD.
The most significant SNP for each of the ten risk loci are listed in
Table 1.

Replication of SNPs with a P < 1 × 10−7 in GS:SFHS identified one
additional novel risk locus for MDD
In addition to the 213 genome-wide significant SNPs (previously
unreported) (Supplementary Table S1), we also identified a total of
171 SNPs that showed suggestive association (i.e., P < 1 × 10−7)
with MDD in the meta-analysis (including 23andMe, CONVERGE
and PGC). We interrogated these 171 SNPs in GS:SFHS and found
that 128 SNPs were available in GS:SFHS. We thus performed a
meta-analysis restricted to these 128 SNPs and 28 additional
genome-wide significant SNPs (Pmeta < 5 × 10−8) were identified in
the combined samples (including 23andMe, CONVERGE, PCG, and
GS:SFHS, a total of 356,649 subjects (92,809 MDD cases and
263,840 controls)) (Supplementary Table S2). These newly
identified significant SNPs were distributed in six genomic regions
(Supplementary Table S2), including 1p31.1, 2p16.1, 13q21.32,
15q14, 16p13.3, and 22q13.2. Genetic variants near 1p31.1, 2p16.1,
13q21.32, 15q14, and 22q13.2 have been reported to be
associated with MDD previously [17]. However, no previous study
has shown the association between genetic variants on 16p13.3
and MDD. Thus, our study indicates that 16p13.3 is a novel risk
locus for MDD. The genome-wide significant SNP on 16p13.3 is
located in intron 7 of the RBFOX1 gene (Fig. 2c). The most
significant SNP for each risk loci in the replication stage (including
23andMe, PGC, CONVERGE, and GS:SFHS) was listed in Table 2.
Taken together, our study identified three novel MDD risk loci (i.e.,
6q16.2, 12q24.31, and 16p13.3).

The identified risk SNPs did not show significant heterogeneity
across studies
Considering that GWAS datasets from different populations (i.e.,
European and Chinese) were meta-analyzed with fixed-effect
model, we also performed heterogeneity analysis. Among the 16
genome-wide significant SNPs, nine SNPs did not show
heterogeneity (I2= 0) and five SNPs showed low heterogeneity
(I2 < 0.25) across studies (Tables 1 and 2). And two SNPs
(rs10457592 and rs2717046) showed moderate to high hetero-
geneity (0.5 < I2 < 0.75). These results suggest that the identified
SNPs may represent common risk variants for MDD in different
populations. However, independent replication is needed to
validate our findings.

Prioritization of potential functional SNP at each identified risk loci
and pathway analysis
Our meta-analysis identified multiple independent risk loci for
MDD (Tables 1 and 2). To further identify the possible functional
(or causal) SNPs at each identified locus, we performed functional
prediction using LINSIGHT [34]. We extracted the LINSIGHT scores
of SNPs linked with the index SNP (r2 > 0.3). We found that 8 out of
10 risk loci have SNPs with a LINSIGHT score larger than 0.9,
suggesting these SNPs may have functional consequences. The
SNP with the largest LINSIGHT score at each risk locus was listed in
Supplementary Table S3. We also performed functional fine-
mapping using PAINTOR. The SNP with the highest PAINTOR score
at each risk locus was listed in Supplementary Table S4. Of note,
four SNPs have a PAINTOR score of 1, implying these SNPs may be
functional. However, further experimental validation are needed.
Finally, we conducted pathway analysis and found no pathways
were significantly enriched in the identified risk genes.

Some of the identified risk SNPs showed significant association
with gene expression in human brain (DLPFC)
To explore whether the identified risk variants are associated with
gene expression in the DLPFC, we performed eQTL analysis. As the
identified risk SNPs on each locus are in linkage disequilibrium
(except for 1p31.1), we only selected the most significant SNP (i.e.,
SNPs in Tables 1 and 2) at each locus for eQTL analysis. SNP
rs12127789 is associated with NEGR1 expression (P= 7.63 × 10−5),
rs1193510 is associated with the expression of GFM1 (P= 5.49 ×
10−6), RSRC1 (P= 5.63 × 10−5) and RARRES1 (P= 7.62 × 10−5),
rs1501672 is associated with LINC00461 expression, rs2004910 is
associated with SPPL3 expression (P= 9.16 × 10−13), rs9623320 is
associated with the expression of L3MBTL2 (P= 1.64 × 10−7),
XPNPEP3 (P= 2.84 × 10−7) and POLR3H (P= 3.41 × 10−5), and
rs7140116 is associated with PCDH8P1 expression (P= 9.64 ×
10−5) in the DLPFC (Supplementary Table S5). SNPs on five loci
(rs4543289, rs10457592, rs9540720, rs8037781, and rs11682175)
were not associated with gene expression in the LIBD eQTL

Fig. 2 Regional association plots for the three novel genome-wide significant loci. a The significant SNP (rs10457592) on 6q16.2 were located
upstream of the FBXL4 gene. b The novel identified risk variant (rs2004910) on 12q24.32 were located in upstream of the SPPL3 gene. c The
newly identified risk variant (rs3785234) on 16p13.3 were located in intron 7 of the RBFOX1 gene
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database. These eQTL results suggest that the identified risk
variants may modulate the expression level of nearby genes in the
DLPFC.

Upregulation of FBXL4 and RSRC1 in brains of MDD cases
compared with controls
Expression quantitative trait locus analysis showed that some of
the identified risk variants were associated with gene expression
in human brains (Supplementary Table S5), suggesting that the
risk variants may confer risk of MDD through regulating gene
expression. We thus examined the expression level of genes near
the identified risk loci in MDD cases and controls using expression
data (GSE102556) from Labonte et al. [40]. Only genes nearest to
the identified risk SNP were examined. We found that NEGR1
(P= 0.038, uncorrected) was significantly downregulated in
female MDD cases compared with controls. By contrast, FBXL4
(P= 0.0072, uncorrected) and RSRC1 (P= 0.042, uncorrected) were
significantly upregulated in female MDD cases compared with
controls. Consistent with the observation in female MDD cases, we
found that Fbxl4 and Rsrc1 were also significantly upregulated in
brains of stressed female mice (P= 0.019 and P= 8.50 × 10−4,
respectively, uncorrected). The significant upregulation of FBXL4
and RSRC1 in both female MDD cases and stressed female mice
suggest that dysregulation of these two genes may have a role in
MDD.

DISCUSSION
Accumulating evidence suggests that genetic factors play pivotal
roles in MDD. However, currently the genetic basis of MDD
remains largely unknown. Identification of MDD-associated
genetic variants remains a major challenge as MDD is a
moderately heritable, clinically heterogeneous condition with a
complex genetic architecture [46]. Though previous GWAS have
identified several genome-wide significant risk variants [16, 29,
47], most of the risk loci of MDD remain to be uncovered. To
further identify new MDD-associated variants (which could not be
detected in individual GWAS due to limited power), we tried to
improve the power of this study through increasing sample size
and utilizing a relatively powerful statistical method. First,
considering that the effect size of most risk variants is relatively
small, combining samples from different studies may help to
identify new risk variants as the statistical power improves with
the increase of sample size. Second, as reported in most previous
GWAS [20, 25], we used the fixed-effect model in this study. The
fixed-effect model assumes that the effects of the genetic variants

are the same across studies, thus it is useful to identify novel risk
variants through combining different studies. Compared with
the random effect model, the fixed-effect model provides
narrower confidence intervals and it is useful for detecting
association [25, 26].
We successfully identified three novel MDD-associated loci

(6q16.2, 12q21.31, and 16p13.3). The newly identified SNP on
6q16.2 (rs10457592) is located upstream of the FBXL4 gene
(Fig. 2a), which encodes a member of the F-box protein family.
FBXL4 protein is found to be expressed in mitochondria and may
play a pivotal role in the maintenance of mitochondrial DNA
(mtDNA) [48]. Previous studies have showed that mutations in
FBXL4 resulted in mitochondrial encephalopathy [48, 49], indicat-
ing the important role of FBXL4 in maintenance of mitochondrial
function. In addition to the genetic evidence, expression analysis
also suggests that FBXL4 may be involved in MDD. Compared with
controls, FBXL4 was significantly upregulated in both female MDD
cases and female stressed mice, implying dysregulation of FBXL4
in MDD.
In addition to 6q16.2, our study also suggests that 12q21.31 and

16p13.3 are novel risk loci for MDD. It should be noted that
genetic variants near 12q21.31 and 16p13.3 showed significant
associations with MDD in the discovery stage of Hyde et al.’s study
[17]. However, they did not follow these SNPs as these SNPs were
absent in PGC (Hyde et al. performed a meta-analysis through
combining results from PGC and 23andMe, and only SNPs
presented in both PGC and 23andMe were followed for down-
stream analysis). Accordingly, these two loci were not included in
the final 15 loci reported by Hyde et al. [17].
We explored the genome-wide significant SNPs (rs12415800

and rs35936514, which located upstream of SIRT1 and intronic
region of LHPP, respectively) reported by CONVERGE in the meta-
analysis. Both rs12415800 and rs35936514 were not available in
PGC dataset. We found that rs12415800 is also significantly
associated with MDD in 23andMe (P= 0.041), with the same risk
allele (i.e., A allele) in CONVERGE and 23andMe studies
(Supplementary Table S6). In fact, SNP rs12415800 reached
genome-wide significant level (P= 1.19 × 10−8) when samples
from 23andMe and CONVERGE were combined. In addition,
heterogeneity analysis showed that there was low heterogeneity
(I2= 0.11) in 23andMe and CONVERGE for SNP rs12415800,
suggesting this SNP may represent a common risk variant in
Chinese and European populations. SNP rs35936514 is not
associated with MDD in 23andMe dataset. When samples
from 23andMe and CONVERGE were combined, rs35936514
only showed marginal association with MDD (P= 0.0196).

Fig. 3 The frequency distribution of the risk alleles of FBXL4 and RSRC1 in global populations. a Frequency distribution of the risk allele
(A allele) of rs10457592 in global populations. b Frequency distribution of the risk allele (G allele) of rs1193510 in global populations
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Heterogeneity analysis showed there was significant heterogene-
ity (I2= 0.96) for rs35936514 in 23andMe and CONVERGE
(Supplementary Table S6), implying that SNP may represent an
Asian-specific susceptibility risk variant for MDD. In fact, we noted
that the frequencies of the risk alleles of rs12415800 and
rs35936514 are different in world populations (Supplementary
Figure S4), further suggesting that population-specific risk variants
may exist. However, more work is needed to verify this.
We also explored the potential functional consequences of the

identified risk SNPs. Of note, the novel risk SNP (rs2004910) on
12q21.31 was associated with SPPL3 expression in human brain
(Supplementary Table S5). SPPL3 encodes signal peptide pepti-
dase like 3 (SPPL3), an intramembrane protease that cleaves
several types of membrane signal peptides [50, 51]. Previous
studies have showed the important functions of SPPL3 in
eukaryotes [52]. Voss et al.[52] showed that SPPL3 regulates
cellular N-glycosylation and downregulation of SPPL3 leads to a
hyperglycosylation phenotype. In addition to regulation of
glycosylation, recent studies also showed that SPPL3 is involved
in immune response, including NFAT activation [53] and regula-
tion of NK cell maturation and cytotoxicity [54]. Surprisingly, the
activation of NFAT is not dependent on the proteolytic activity of
SPPL3 [53]. A recent study also showed that genetic variant nearby
SPPL3 is associated with the levels of markers of inflammation [55],
consistent with SPPL3’s reported role in immunity and inflamma-
tion. Of note, immune dysfunction has been thought to be an
important contributor to MDD [56, 57]. Our study suggests that
SPPL3 may represent a novel risk gene for MDD.
Another interesting gene is RSRC1 (also named SRrp53). Most of

the newly identified risk SNPs on 3q25.32 are located in introns of
RSRC1, and our eQTL analysis indicated that the most significant
SNP (rs1193510) was associated with RSRC1 expression in DLPFC
of human brain (Supplementary Table S5). We further showed that
RSRC1 was significantly upregulated in brains of female MDD
cases. Intriguingly, expression of Rsrc1 was also significantly
upregulated in brains of stressed female mice. These results
suggest that RSRC1 may have a role in MDD and genetic variants
on 3q25.32 may confer risk of MDD through affecting the
expression of RSRC1. RSRC1 encodes a member of the serine
and arginine rich-related protein family that plays a pivotal role in
mRNA splicing [58]. In addition to MDD, RSRC1 was also reported
to be associated with schizophrenia [59] and height [60]. The
frequency distribution of the risk alleles of FBXL4 and RSRC1 in
global populations was shown in Figure 3.
Taken together, our study identified three novel risk loci for

MDD and our results suggest that these risk SNPs may contribute
to MDD risk through modulating gene expression. Further
verification of our findings in independent samples and functional
characterization of the identified risk genes may provide potential
targets for therapeutics and diagnostics.
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