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Behavioral and neurobiological mechanisms of punishment:
implications for psychiatric disorders

Philip Jean-Richard-Dit-Bressel’, Simon Killcross' and Gavan P. McNally'

Punishment involves learning about the relationship between behavior and its adverse consequences. Punishment is fundamental
to reinforcement learning, decision-making and choice, and is disrupted in psychiatric disorders such as addiction, depression, and
psychopathy. However, little is known about the brain mechanisms of punishment and much of what is known is derived from
study of superficially similar, but fundamentally distinct, forms of aversive learning such as fear conditioning and avoidance
learning. Here we outline the unique conditions that support punishment, the contents of its learning, and its behavioral
consequences. We consider evidence implicating GABA and monoamine neurotransmitter systems, as well as corticostriatal,
amygdala, and dopamine circuits in punishment. We show how maladaptive punishment processes are implicated in addictions,
impulse control disorders, psychopathy, anxiety, and depression and argue that a better understanding of the cellular, circuit, and
cognitive mechanisms of punishment will make important contributions to next generation therapeutic approaches.
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Punishment involves learning about the relationship between
behavior and its adverse consequences. It is used in different ways
in the contemporary literature. In addiction neuroscience, punish-
ment serves as a tool for assessing persistent drug-seeking in the
face of adverse consequences and as a qualitative marker of a
compulsive behavioral phenotype underlying individual differences
in development of compulsive seeking. In the decision neuros-
ciences, punishment serves as a tool for assessing the influences of
risk on decision-making and as a tool for identifying the brain
mechanisms of value and choice. In the clinical literature, sensitivity
to punishment is assessed across a variety of disorders, including
addiction, depression, psychopathy as well as eating disorders,
enabling insights into the etiology, maintenance, and treatment of
these conditions. It is unsurprising, then, that there is considerable
diversity in how punishment experiments are conducted and
interpreted. In this article, we consider key theoretical and
methodological complexities of punishment, the design choices
available, and the implications of these choices for interpretation.
We then review some of the brain bases of punishment and
psychiatric disorders with perturbations in punishment processing.

DIFFERENT FORMS OF AVERSIVE LEARNING
Learning about and responding to aversive events is fundamental
to survival. The learning and behavior that occurs in response to
aversive events depend on the relationships between the aversive
event, environmental stimuli and the animal’s behavior (Fig. 1a). In
general, we can be passive recipients of aversive events while at
other times our actions determine the events we experience. This
latter category of response-dependent aversive events can be
studied in the laboratory via punishment.

Punishment is instrumental aversive learning. It refers to the
suppressive effects of undesirable outcomes on the behaviors that

cause them (Table 1). This effect of response-dependent aversive
events is symmetrical to the response-promoting effects of
reinforcement (instrumental reward learning). Like reinforcement,
the instrumental contingency between a response and undesir-
able outcome causes formation of a response-outcome (R-0O)
association, i.e., a response—punisher association, that disincenti-
vizes punished responding.

Punishment is closely related to, but distinct from, other forms
of aversive instrumental learning—active avoidance and escape
learning (Fig. 1b; Table 1). In these, an aversive event is prevented
or halted by the performance of an action. They are examples of
negative reinforcement, as the specified behavior is increased
(reinforced) by the contingency between the response and
consequence (“negative”, as the consequence of making the
response is omission or removal of the stimulus). Active avoidance
and punishment are frequently confused, but the key learning
processes underpinning them are distinct [1-3]. A helpful way to
distinguish these is to note active avoidance involves generation
of specific behaviors that avoid or terminate the aversive event
(e.g., lever-pressing), while behaviors that allow the aversive event
to occur are unspecified and diffuse (grooming, exploring,
inactivity, etc.). This results in an R - [no O] association (and
possibly a stimulus-response association) that supports respond-
ing [4]. Conversely, in punishment the behaviors that avoid the
negative event are unspecified and diffuse, while the behavior
(e.g., lever-press) that causes the undesirable event is specific.

Punishment is also frequently confused with Pavlovian fear
conditioning (Table 1). Indeed, many experiments purporting to
study punishment actually involve response-independent delivery
of an aversive event regardless of the actions performed. This
response-independent contingency is not punishment. Rather, it is
the stimulus-outcome (S-O) contingency of Pavlovian fear
conditioning. In Pavlovian fear conditioning, a conditioned
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Fig. 1 Determinants of aversive associative learning. a Even in carefully designed studies (e.g., light — shock Pavlovian fear, or press — shock

punishment protocols [solid lines]), aversive events are inevitably embedded within multi-layered contingencies. A shock could be attributed
(dashed lines) to behavioral antecedents (e.g., lever-pressing), environmental antecedents (e.g., light), or both. The relative validity of these
antecedents determine whether a Pavlovian light — shock, instrumental press — shock, or instrumental discriminative (blue lines) light =
[press — shock]) association is formed, in turn determining what behavior is being examined. b Contingency space describing relationships
between aversive outcome (O) and behaviors (R). Upper left corner of contingency space: O is only likely to occur if the response is not made
(response reinforced by contingency). Bottom left corner of contingency space: O is only likely if the response is made (response punished by
contingency). If O is independent of responding (dashed line), only Pavlovian learning is likely to occur. DS = discriminative stimulus; O =
aversive outcome; R = specified response; p(O|R) = probability of aversive outcome, given the response was made; p(O|no R) = probability of

aversive outcome, given the response was not made

stimulus (CS) is paired with an aversive stimulus (e.g., an aversive
unconditioned stimulus [US]), imbuing the CS with aversive
motivational properties. This CS elicits conditioned responses,
which can include defensive responses such as freezing but also
non-specific suppression of reward behavior (termed conditioned
suppression). So, punishment and fear can achieve the same
behavioral outcome—suppression of ongoing behavior—via
different mechanisms. However, punishment and fear have salient
distinguishing characteristics. Punishment suppression is specific
to the punished response, whereas Pavlovian fear is not [5, 6].
Punishment causes greater response suppression than fear [7-9].
However, punishment can be more transient than fear; punished
behaviors can reappear spontaneously or due to changes in
context, and often return rapidly once the punishment con-
tingency is suspended.

WHAT KINDS OF EVENTS SERVE AS PUNISHERS?

A variety of noxious or aversive events serve as punishers when
their delivery is made contingent on behavior. The most
frequently used punishers are brief footshock, airpuff, or
contamination of a palatable solution with quinine (particularly
in rodent and non-human primate studies). In humans, the range
of punishers is broader and can include the same aversive events
(airpuff, loud noises, electrick shock) but also include social
exclusion, negative feedback on task performance, and monetary
loss. When delivered in a manner contingent on a behavior, these
are examples of primary punishers. However, Pavlovian fear CSs
can also serve as effective punishers. For example, presentations
of a fear CS contingent upon lever-pressing will instrumentally
suppress lever-pressing (a procedure known as secondary or
conditioned punishment). In these examples, behavior is modified
because it causes an adverse event to occur, so these are
examples of positive punishment. Still other classes of events can
serve as punishers. A reduction or removal of reward, or a stimulus
that signals such reductions (e.g., monetary loss, absence of a
palatable food), can serve as a punisher when made contingent on
a behavior. These kinds of events are frequently used in human
neuroimaging or primate single unit recording experiments. These
are examples of negative punishment, whereby behavior causes a
pleasant stimulus to be removed. It is important to note that

SPRINGERNATURE

reward omission is not always negative punishment. Loss of
responding during reward omission can be due to extinction as
opposed to response suppression due to punishment. In negative
punishment, the rewarding outcome is only omitted if a response
is made. In extinction, the response has no bearing on delivery of
reward.

One coherent way to treat these diverse events is to suppose
that they share a common affective quality: recruitment of an
aversive motivational system. This aversive motivational system is
able to suppress ongoing reward behavior because it inhibits
appetitive motivation. This motivational opponency has proved
popular because it provides a short-hand explanation for the
common behavioral consequences of otherwise diverse events.
There is evidence for common psychological and neurobiological
coding of aversive motivational quality [10-13]. However, this
equivalence remains poorly understood and there are differences
between positive and negative punishment as well as between
primary and secondary punishers [14, 15].

An important consideration is the intensity of the aversive event
[16]. Low intensity aversive events can be detected but do not
cause suppression. Because these events do not result in
suppression, they cannot be termed punishers. Such low intensity
events can still control behavior, but they do so via different
mechanism (see Section 3). Whereas mild to moderate punishers
partially suppress behavior, with some observations that this
suppression lessens over time (likely due to habituation). Severe
punishers result in complete and permanent suppression of
responding. A common design choice is to increment punisher
intensity across sessions. This allows greater control over rates of
suppression, and greater habituation to the punisher, reducing
overall suppression [17].

Punisher instensity is also important because it relates to
indiviudal differences in punishment. Marchant et al. [18] reported
pronounced individual differences in punisment sensitivity, across
a large population of rats, when a constant intensity punisher was
used. This work revealed a bimodal distribution of punishment
sensitive and insensitive rats. Interestingly, when punisher
intensity was increased across trials, individual differences were
less pronounced. Differences in punisher sensitivity are also
important when considering sex differences in punishment. There
has been little published work systematically examining sex
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differences in punishment. However, female rats are more
sensitive to footshock than males, and initially show greater
response suppression following footshock (see ref. [19]). Interest-
ingly, these sex differences appear to reverse when assessing
response suppression after an interval, such that female rats
exhibit poorer retention of response suppression. While these
differences have important implications for our understanding of
punishment processing, these sex differences have not been
adequately studied using explicit punishment designs. Moreover,
these differences may not extend to other species (e.g., see ref.
[20]). The cause of these differences in sensitivity to punishment,
between and within individuals, warrant further investigation.

LEARNING PROCESSES INVOLVED IN PUNISHMENT
EXPERIMENTS

Typically, the experimenter is interested in the depressive effects
of punishment on instrumental responding for reward. That is, the
formation and use of an R (lever-press)—O (shock) association.
Such associations are formed during punishment [21, 22].
However, other associations are also formed and influence
behavior in different ways. Understanding the origin and effects
of these other associations is essential.

Consider the simplest punishment experiment. Here a mouse or
rat is initially rewarded for lever-pressing (e.g., by a food pellet or
intravenous infusion of cocaine). Once responding is established,
the lever-presses now also cause delivery of footshock. The mouse
will reduce or even cease lever-pressing. This reduction in lever-
pressing is the key behavioral dependent variable. However, this
reduction in lever-pressing is not sufficient evidence for punish-
ment or use of R-O aversive knowledge. In fact, alone it tells us
little about the underlying cause of behavior change.

In any punishment experiment, subjects are influenced by both
instrumental and Pavlovian contingencies, even if these are not
intended by the experimenter. This is because, in practice,
aversive events have both environmental and behavioral ante-
cedents. Moreover, these environmental (Pavlovian) and beha-
vioral (instrumental) antecedents both suppress ongoing
behaviors, including lever-pressing for reward. Sometimes these
antecedents are well-specified by the experimenter and are
known, but in other cases these antecedents are embedded in
other features of the experiment and unknown. Whether punish-
ment or fear is controlling behavior in any given punishment
experiment is, at least initially, always ambiguous. This is
problematic when attempting to attribute effects to one of these
processes and not the other and poses significant problems when
attempting to understand the effects of brain manipulations. Is
lever-pressing reduced because of an instrumental R (lever-press)
—O (shock) association? Or does the lever and its spatial location
act as a fear CS due to the contingency between the lever and
shock, causing Pavlovian fear (S-O) and conditioned suppression?

Whether, when, and how instrumental or Pavlovian associations
control behavior in punishment designs has been the subject of
significant empirical and theoretical attention [1, 23-25]. Both
kinds of association contribute to and cause behavioral suppres-
sion in most punishment experiments and various design
choices favor one over the other. The contribution of Pavlovian
vs. instrumental aversive learning depends on the relative validity
of each association. Whether environmental stimuli or the
response is a better predictor of shock determines the strength
of the associations formed; interposing a stimulus (e.g., a tone)
between a response and response-contingent shock can
retard the acquisition of instrumental suppression because the
validity of the S-O (tone-shock) contingency interferes with
(overshadows) the formation of the R-O (press-shock) contin-
gency ([26, 27]).

Pavlovian fear tends to be greatest early in punishment training,
and, when using an appropriate experimental design, is reduced

Stimulus — aversive event (response-independent event)

Pavlovian (fear conditioning)

S-0 (CS-US)
Conditioned suppression

Pavlovian fear

Slow

Response — no aversive event (response-dependent event)
Instrumental (negative reinforcement)

(DS-)R-[no O]
Displaced by avoidance response

Active avoidance

Slow

Response — aversive event (response-dependent event)
Instrumental (punishment)
Selective reduction in punished response

Characteristics of different aversive learning paradigms
Punishment
(DS-)R-O

Rapid
DS discriminative stimulus, O aversive outcome, R response, S stimulus

Table 1.

Contingency

Learning paradigm
Associative structure

Effect on appetitive behavior
Extinction
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across extended training. Fear emerges early due to S-O
contingencies between various cues in the apparatus (the
chamber, the location of the lever, the sound of lever insertion)
and the delivery of the punisher. This fear is weakened across
punishment training due to the inevitable extinction of these
Pavlovian contingencies if response suppression results in no
aversive outcome. Regardless, behavioral suppression early in
punishment training often reflects a greater contribution of
Pavlovian fear associations than later in training [21, 28].

A similar problem occurs in stimulus control over punishment.
Both fear and punishment can be brought under stimulus control.
In punishment, such stimulus control is achieved via a discrimi-
native stimulus (DS; traditionally SP) that can be used to signal
that a punishment contingency is in effect. In fear conditioning a
discrete CS is used to signal an impending aversive US. CSs and
DSs are superficially similar but not equivalent [29, 30]; punish-
ment DSs and fear CSs differ in terms of what is learned about
them and how they control behavior.

One demonstration of these differences is through the use of
the blocking procedure [31]. In this procedure, subjects are first
trained on one association (e.g., CSA—shock). They then receive
compound training of CSA+CSB—shock. When tested for fear to
CSB, the subjects show little evidence of having learned fear. CSA
is said to have blocked fear learning to CSB. Such blocking is quite
general and robust. It shows that what is learned about one CS
signaling a shock and a second CS signaling shock is the same
because learning about one prevents learning to the other.
Blocking is also observed between DSs. For example, what is
learned about one DS that signals a period of instrumental
punishment is the same as what is learned about a second DS
signaling a period of instrumental punishment because they also
block learning to each other. However, CSs and DSs do not block
learning to each other [29]. The contents of these two different
associations are determined by whether the aversive outcome is
response-dependent (instrumental) or independent (eg.,
Pavlovian).

There are still other associations at work in punishment designs.
One relates to direct interactions between the punisher and
reinforcer. There are two issues here. The first is motivational or
affective interactions between the punisher and reward. These can
arise when delivery of the punisher occurs in close temporal
proximity to delivery of the reward that sustains responding. This
can occur if the same schedule is used for reward and punish-
ment. Under these conditions, there is an unintended contingent
relationship between the punisher and the reward. For example,
in a typical punishment design using rodents, a shock punisher is
invariably delivered immediately via grid floor while a
contingently-delivered reward is consumed after due to the
requirement of the animal to enter the magazine to consume it or
the effects of the intravenous infusion of a drug reward persisting
beyond the shock. This unintended signaling relationship, shock
— reward, enables a form of learning—counterconditioning—that
reduces the aversive value of the shock [32, 33]. The degree of
counterconditioning depends on the experimental parameters. In
particular, its impact depends on the exact temporal relationships.
When the order of events is reversed, so that delivery of reward
signals punishment (reward — shock), the effects of punishment
are different [23, 34]. The second issue concerns the signaling
properties of the punisher itself. Shocks can serve as a DS,
signaling whether or not a response will be rewarded [35]. This
means that a punisher can suppress instrumental responding for
reward, not because the punisher is aversive or noxious and the
animal has learned that responding causes shock (i.e., R—Ogyersive)s
but rather because shock signals that behavior will not be
rewarded (i.e., Sshock [R—NO Orewargl). Moreover, the reverse is also
possible: the presence of the punisher can signal that behavior will
be rewarded, thereby increasing instrumental responding for the
reward (i.e., Sshock [R—Orewaral) [36].
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Finally, punishment can be context-specificc. When rats are
trained to lever-press for reward in one context (context A) then
punished for that responding in a second context (context B),
responding returns when placed in the original training context
(ABA renewal) or in a third context (ABC renewal). Renewal of
punished responding has been observed for responding based on
food [37] and alcohol [38]. Moreover, opioid self-administration
after punishment can be reinstated by priming injections of
opioids or benzodiazepines [39, 40]. These effects are reminiscent
of the effects of extinction, leading to suggestions that punish-
ment and extinction involve similar contextual learning processes.
However, there is only partial overlap between the brain
mechanisms of contextual control of punishment and extinction
[41, 42] and there are other important behavioral [43] and
neurobiological [44] distinctions between them.

METHODOLOGICAL CONSIDERATIONS WHEN STUDYING
PUNISHMENT

Given the complexity of associations formed in punishment
experiments, and the fact that many of these associations are not
often of primary interest, the literature offers some methodolo-
gical recommendations. First, it is worth observing and measuring
the animal’s behavior in the task. The presence of species-typical
defense behavior, such as freezing for rodents, provides one
measure of Pavlovian fear that is helpful for interpreting results.
Response-punisher associations result in little autonomic distur-
bance (freezing, piloerection), and are more typically associated
with abortive responses [45].

Second, including a different, unpunished behavior in the same
task is very useful. For example, in rodent studies this could
involve rewarding two responses (e.g., two different levers) and
punishing responses on only one. Inclusion of an unpunished
behavior serves two purposes. Suppression of responding on the
unpunished lever correlates strongly with expression of defensive
behaviors such as freezing and reflects Pavlovian fear [5, 6, 28],
whereas specific suppression of the punished response is
indicative of punishment learning. Different responses on the
same manipulandum (lifting vs. pressing a lever; pushing left vs.
right on a bar) can be punished vs. unpunished [21]; this approach
controls for any fear to the spatial location of the lever. Effects
selective to one response reflect use of contingent R-O aversive
knowledge whereas effects common to both responses reflect
Pavlovian fear or S-O aversive knowledge. The additional purpose
of including an unpunished behavior is that the rewarded
alternative response supports a more stable suppression of the
punished response.

Third, a strong instrumental contingency between a response
and punisher supports stronger R-O aversive learning [21]. Ratio
schedules produce strong R-O associations [46], so if relatively
quick isolation of punishment is desired, ratio schedules are
preferable. Even so, ratio schedules still support Pavlovian fear
learning at first, thereby affecting interpretation of data from
these early sessions. This fear extinguishes in a reasonably
continuous fashion while instrumental suppression increases
across sessions [21, 28].

Fourth, careful consideration of punishment and reinforcement
schedules can avoid many of the interpretative issues associated
with direct interactions between the punisher and reward, and use
of outcomes as a DS (see above). For example, these direct
interactions are more likely to occur when the same schedule of
reinforcement is used to deliver the punisher and reward. One
way of avoiding such interactions is to deliver rewards on variable
interval schedules and the punisher on a fixed ratio schedules [21].
The variable interval schedule for reward encourages relatively
stable rates of lever pressing against which to measure punish-
ment suppression and the fixed ratio schedule for punishment
encourages strong R-O encoding of punishment. However, many
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Fig. 2 Forebrain regions implicated in punishment. Regions are shaded according to the typical effects of inactivations or lesions of that
region on response suppression within punishment protocols. Arrows show regional connectivity implicated in punishment. AcbSh nucleus
accumbens shell (ventral striatum), Al anterior insular cortex, BLA basolateral amygdala, CeA central amygdala, Cg cingulate cortex, Hipp
hippocampus, IL infralimbic cortex, OFC orbitofrontal cortex, PrL prelimbic cortex, vHipp ventral hippocampus

other schedules are possible such as separate variable interval
schedules (VI60 v VI90 for reward and punishment; [37]). The
important point is to reduce inadvertent signaling relationships
between the reward and the punisher.

Fifth, direct comparison of response-contingent vs. non-
contingent aversive events in the same experiment can be
helpful. This control could be applied in several ways, but one
method is via the use of yoking. In between-subjects yoking,
stimuli are response-dependent for one subject while yoked
(concurrently presented) to another in a response-independent
manner. This allows direct comparison of USs/punishers, which are
matched in presentation (both number and distribution) but are
embedded within differing contingencies. Yoking has inferential
limitations [47, 48] but its utility is enhanced in combination with
the other suggestions discussed here.

BRAIN MECHANISMS OF PUNISHMENT

Early anxiolytics, particularly barbiturates and benzodiazepines,
had such profound “anti-punishment” effects, especially within
conflict protocols, that anti-punishment effects were used as a
behavioral screen for anxiolytics. The anti-punishment effects of
barbiturates and benzodiazepines are well-documented in
multiple species at doses that do not affect unpunished behavior
(see [49]). They are also observed in conditioned punishment;
midazolam abolishes conditioned punishment without affecting
unpunished responding or the arousing effects of a footshock [50].
Interestingly, benzodiazepines enhance the acquisition of active
avoidance [51, 52], suggesting that benzodiazepine effects on
punishment are due to direct actions on instrumental suppression
rather than aversive motivation. GABA and benzodiazepine
antagonists block the anti-punishment effects of these drugs
[53]. Ethanol also has specific anti-punishment effects [54-56] that
appear similarly mediated by its action on GABA and the
benzodiazepine-binding site [57, 58].

Serotonin (5-HT) is strongly implicated in punishment, with
proposed roles in behavioral inhibition [59, 60] and aversive
processing [61]. It has been suggested that 5-HT inhibits the
reward-coding dopamine system, with 5-HT and dopamine being
conceived of as oppositional systems, promoting aversive and
appetitive functions respectively [62, 63]. Lesions of serotonin-
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containing terminals, systemic injections 5-HT antagonists or 5-HT
synthesis inhibitors each have anti-punishment effects (see [64]).
Acute tryptophan depletion (ATD), a dietary manipulation that
putatively impairs 5-HT transmission also appears to reduce
aversively-motivated behavior suppression [65].

Drugs that partially agonize 5-HT, 5 receptors and/or antagonize
5-HT, receptors have strong anti-punishment effects in pigeons
[66-68], although these effects are more variable in mammals [69-
71]. 5-HT,c agonizts and SSRIs reverse punishment-resistant
cocaine-seeking in rats, while serotonin depletion and 5-HT,c
antagonism increased punishment-resistant cocaine-seeking [72].

Norepinephrine and norepinephrine agonists also have strong
anti-punishment effects [73, 74], and anti-punishment anxiolytics
tend to increase norepinephrine activity and release [75, 76].
Concurrently increasing dopamine and norepinephrine transmis-
sion, which hypothetically boosts reinforcement and inhibits
punishment signals respectively, leads to an increase in dis-
advantageous choices involving timeout punishments [77].
Endogenous dopamine and norepinephrine may promote
reinforcement-sensitivity and punishment-insensitivity, driving
the return of responding following omission of an anticipated
aversive outcome.

Forebrain circuits implicated in punishment

fMRI studies using a variety of punishment approaches (monetary
loss, loss feedback, etc.) implicate human amygdala [78] and its
interactions with hippocampus [79] and ventral striatum [80] in
punishment (Fig. 2). Anxiolytic, 5-HT, and norepinephrine effects
on punishment are linked to amygdala [81-83]. This role is
dissociable from Pavlovian fear. In rodents, basolateral amygdala
(BLA) lesions and inactivations (particularly caudal portions)
attenuate punishment suppression independently from any
contributions of Pavlovian fear [28, 50, 84]. The role of central
nucleus of the amygdala (CeA) is less clear. Some studies show
that CeA mediates Pavlovian but not punishment suppression
[85], whereas others suggest a role in punishment of cocaine-
seeking [44, 86].

The prefrontal cortex (PFC) has long been implicated in
aversion, decision-making and behavioral control [87-89], and
has been argued to mediate punishment behavior [90, 91]. We
consider the major subdivisions of the rodent PFC, although
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homologous structures within the human PFC have been similarly
implicated in punishment. Within the medial PFC (mPFC),
cingulate (Cg) activity is correlated with the magnitude of
unpleasantness experienced in response to noxious stimuli [92,
93]. This has been linked to aversion learning [94-96]. Although
electrical stimulation of the Cg inhibits behavior [97], lesions of Cg
in cats only impair active avoidance, leaving passive avoidance
intact [98], suggesting Cg mediates negative reinforcement but
not punishment.

The prelimbic cortex (PrL) has been implicated in aversive
Pavlovian associations [99], learning appetitive R-O associations,
and top-down control of behavior [88, 100]. PrL hypoactivity is
associated with impaired sensitivity to punishment in cocaine
seeking [101]. Infralimbic (IL) activity is correlated with, sufficient,
and necessary for the extinction of instrumental responding [102-
105]. This role may extend to suppression of responding due to
punishment, fitting with a proposed role for IL in behavioral
inhibition [106, 107]. Activity of shock-responsive mPFC neurons is
correlated with avoidance of a punished response while stimula-
tion of these shock-responsive neurons results in response
suppression [108]. However, PrL or IL inactivations or lesions do
not affect primary punishment [109, 110]. Thus, although mPFC
activity is correlated with and sufficient for general behavioral
suppression, evidence that mPFC is necessary for punishment
remains elusive. This remains an important area for further
investigation. However, given the key role of medial PFC in
Pavlovian fear and the fact that punishment experiments always
entail the confounding influence of Pavlovian fear (see above), it

Dorsal
Rostral Caudal

Ventral

dStr

Direct Indirect
(D1r)  (D2r)

will be critical to ensure that appropriate controls for Pavlovian
learning are in place to enable correct attribution of a manipula-
tion to effects on punishment as opposed to fear (e.g., inclusion of
a second unpunished response, direct assessment of Pavlovian
fear, stimulus yoking).

In both rodents and primates, the orbitofrontal cortex (OFC) has
been thought to encode value [111, 112], as well as mediate
response inhibition and choice [113-116]. The primate OFC
contains reward and aversion-coding neurons activated by
appetitive and aversive stimuli, respectively [117]. This extends
to instrumental tasks and may be topographically partitioned with
human medial OFC linked to reinforcement and lateral OFC to
punishment [115, 118]. Humans with bilateral OFC lesions are
impaired in avoiding disadvantageous options compared to
healthy controls in the lowa Gambling Task [119, 120]. However,
in non-human animal studies, OFC inactivation has inconsistent
and conflicting effects on punishment, impairing [110], enhancing
[121, 122], or having no effect [109] on punishment. These
disparities await satisfactory resolution.

The anterior insular (Al) has been strongly implicated in
aversion. It is activated in response to, and anticipation of,
aversive stimuli [123-127]. This has been linked to pain modula-
tion [128], as well as cognitive and behavioral processes in
response to aversive stimuli [91, 129]. Al activity has also been
implicated in inhibitory control of behavior [130, 131]. However, Al
lesions or inactivations fail to affect punishment suppression [109,
110], but do affect punishment-influenced, subjectively-motivated
choice [110, 132].

™ Nigrostriatal

= Mesolimbic &

S

Mesocortical

A\

Fig. 3 Midbrain dopamine circuits implicated in punishment. Mesolimbic and nigrostriatal projections are generally reward-coding;
punishment could be encoded via pauses in DA firing and decreased DA release at projection targets. Mesocortical neurons burst fire to
aversive stimuli, ostensibly causing increased DA release within the PFC. Aversion-coding LHb neurons can exert relevant control over each of
these pathways, although its role in punishment has been disputed. The role of each of these circuits in punishment remain unclear. Acb
nucleus accumbens (ventral striatum), D1r D, receptor, D2r D, receptor, DA dopamine, dStr dorsal striatum, fr fasciculus retroflexus, LHb lateral

habenula, PFC prefrontal cortex, RMTg rostromedial tegmental nucleus
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The ventral striatum, particularly accumbens shell (AcbSh) is
also implicated in punishment. Like BLA, AcbSh inactivation
increases punished responding [84]. Both AcbSh and BLA may
determine overall levels of responding following punishment,
decreasing punished responses while increasing safe responses.
Kim et al. [108] reported that activity of shock-responsive Acb-
projecting mPFC neurons predicted suppression of punished
reward-seeking. Stimulation of shock-activated mPFC —Acb
neurons also suppressed reward-seeking, suggesting that the
mPFC —Acb pathway may mediate punishment suppression, but
there is currently no evidence that this projection is necessary for
punishment.

Finally, Gray [133, 134] hypothesized that mutually inhibitory
behavioral systems compete to guide behavior: the behavioral
inhibition (BIS) and behavioral activation (BAS) systems. Punish-
ment activates the BIS, in turn suppressing BAS-driven responding
for reward. BIS function was attributed to the septohippocampal
system and its monoaminergic afferents from the brainstem [51,
134, 135]. Electrical stimulation of the anterior septum produces
somatomotor inhibition [136], while septohippocampal-lesions
impair punishment suppression and passive avoidance, indepen-
dently of spatial learning [137]. Interestingly, septohippocampal
lesions often enhanced active avoidance and had less clear effects
on Pavlovian fear. Thus, septohippocampal manipulations speci-
fically affect behavioral suppression during punishment, and not
aversion generally. These effects mirror those of systemically
administered anxiolytics [51, 134, 138], leading to the view that
the anti-punishment effects of anxiolytics are driven by disrup-
tions of BIS function [135, 138]. In rats, this role of hippocampus in
behavioral suppression appears to be mediated by the ventral, not
dorsal, hippocampus [139]

Scales to measure individual differences in human BIS (trait
sensitivity to punishment) and BAS (trait sensitvity to reward) have
been developed [140]. Higher BIS scores are associated with
greater suppression of behaviors in response to negative out-
comes [141]. BIS scores are also associated with increased
amygdala and hippocampal gray matter volumes [142]. fMRI
studies have detected a correlation between BIS scores and
punishment-induced amygdala-hippocampus co-activation [79].
Humans with bilateral hippocampus lesions readily switch away
from a deck following monetary loss in the lowa Gambling Task,
showing normal physiological responses to punishment (unlike
those with amygdala damage), but do not show a preference for
advantageous decks (see [143]). This suggests intact aversion
processing but impaired use of experienced contingencies to
determine choice.

Midbrain dopamine circuits

Activity of midbrain dopamine (DA) neurons is necessary and
sufficient for reinforcement of behavior. Symmetrically, negative
outcomes cause pauses in VTA DA firing [11, 12, 144, 145]. It
follows that punishment could be due to inhibition of VTA DA
neurons. Certainly, inhibiting VTA DA causes conditioned place
aversion [146-148] and D; or D, dopamine receptor manipula-
tions in the ventral striatum, a major target of reward-coding VTA
DA neurons, can result in place aversion [148, 149]. However, the
role of VTA DA in punishment remains unclear (Fig. 3).

VTA DA neurons are inhibited by the lateral habenula (LHb) via
the rostromedial mesopontine tegmental nucleus (RMTg) [150,
151]. LHb neurons burst fire to unexpected aversive events and
reward omissions [11, 144], and were speculated to mediate
punishment learning and behavior [152, 153]. fMRI studies
observe habenula BOLD responses to aversive shocks, negative
feedback, and omission of anticipated positive feedback [154,
155]. Aversion-coding within LHb may stem from aversion-coding
inputs from the globus pallidus (GP; entopeduncular nucleus [EP]
in rodents) [156-158] and lateral hypothalamus [159], alongside
motivationally-pertinent VTA and 5-HT inputs [160-164].
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Optogenetic stimulation of the LHb — RMTg pathway negatively
reinforces nose-poking and suppresses acquisition of a reinforced
response [152]. However, these studies did not isolate punishment
and a variety of approaches to preventing LHb activity do not
affect punishment suppression in rats [165]. That said, the LHb
appears to play important roles in active avoidance [159] and risky
decision-making [166].

Aversive outcomes cause pauses in nigrostriatal DA neuron
firing [144, 167]. These neurons have similar inhibitory inputs from
the RMTg [168]. Stimulation of the nigrostriatal pathway is
rewarding, while inhibition of this pathway can be aversive in
real-time place aversion [169]. Increases and decreases in SNc DA
firing, and corresponding increases and decreases in striatal DA
release, may differentially recruit direct and indirect pathways of
the basal ganglia [170-172]. Optogenetic stimulation of D;R-
expressing medium spiny neurons (MSNs) is reinforcing, while
such stimulation of D,R-expressing MSNs is punishing [173]. High
concentrations of DA preferentially activate D;R-expressing direct
pathway neurons, while low levels of DA preferentially activate
D,R-expressing indirect pathway neurons. Thus, Kravitz and
Kreitzer [174] suggest LTP of the direct pathway and LTD of the
indirect pathway mediates reinforcement, whereas LTP of the
indirect pathway and LTD of the direct pathway mediates
punishment, in response to bursts and pauses in SNc firing,
respectively.

Although this model describes plasticity within striatal path-
ways that may underpin punishment learning well, it is worth
noting that the role of DA in punishment is complex. For example,
punishment and reinforcement share common features. Systemic
administration of indirect DA agonist amphetamine increases,
whereas the DA-receptor antagonist a-flupenthixol decreases,
the punishing effect of an aversive CS [85]. This finding is
important because it shows that appetitively and aversively
motivated conditioned stimuli share common dopaminergic
substrates for their influence on instrumental performance.
Moreover, some midbrain DA neurons are phasically excited by
aversive stimuli (175, 176]). This has been linked to aversion-
coding within mesocortical neurons [177-180]. Stimulation of the
mesocortical pathway, or its direct excitatory inputs from LHb, is
aversive [181], although the role of this circuit in punishment is
undetermined.

PUNISHMENT AND NEUROPSYCHIATRIC DISORDERS

The study of punishment has great potential to provide insights
into decision-making and motivational deficits in neuropsychiatric
disorders. To date, most of this research has focused on
characterizing the nature of any changes in punishment sensitivity
and describing some of the underlying neural correlates. The roles
of these alterations in punishment processing, their status as
predictors of disorder severity, duration, treatment, and relapse
are all poorly understood. Nonetheless, the potential remains to
address these deficits and restore normal decision-making to help
address the burdens of these disorders.

Risky drug use and an insensitivity to the adverse consequences
of drug taking is a diagnostic criterion for substance use disorders
[182]. Behavioral addictions, such as gambling disorder, and
impulse-control disorders [182], are also characterized by persis-
tent behaviors despite adverse consequences, along with an
apparent inability to appropriately suppress that behavior (i.e.,
impulsivity). Similar deficits have been noted for Obsessive
Compulsive Disorder (OCD; [183, 184]) and Attention Deficit
Hyperactivity Disorder (ADHD; [185]). These diverse conditions
appear to share significant overlap in psychological and neuro-
biological underpinnings [183, 186]. Thus, punishment and
conflict tasks provide important opportunities to probe loss of
behavioral control in these disorders. To date, these tasks have
been exploited to assess both motivation to seek drug rewards
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and to assay individual differences in the development of
addiction-like behavior, with particular focus on when and how
drug-seeking behavior becomes less sensitive to punishment
[187-192]. The findings from these tasks have been reviewed in
detail elsewhere [193, 194]. One important point to note about
these models is that the adverse consequence of drug seeking or
taking (i.e, punishment) tends to be immediate (footshock),
whereas in human drug users these adverse consequences (e.g., ill
health, incarceration) can be delayed. Whether the processes
involved in immediate vs. delayed punishment are the same or
different remains an important unanswered questions.

The application of punishment to understanding core deficits in
neuropsychiatric disorders extends further still. Antisocial person-
ality disorder, conduct disorder and oppositional defiant disorder
patients are each characterized by alterations in punishment
sensitivity [185, 195, 196]. Individuals with psychopathy or
psychopathic traits choose punished options more often than
matched controls and do not learn to suppress punished
responses across trials [196-198]. This impaired instrumental
suppression in psychopathy likely has complex causes but has
been attributed, in part, to disrupted prefrontal and amygdala
function. Interestingly, both heightened and blunted amygdala
activity have been reported in response to aversive stimuli among
these populations [199-201] and smaller amygdala volumes
reported compared to controls [202, 203]. Moul and colleagues
[204] suggest that these differences in amygdala responses are
linked to different amygdala subregions, with overactivation
linked to alterations in central amygdala valence-coding and
underactivation to alterations in BLA encoding of outcome value.

In contrast, depression is associated with increased sensitivity to
punishment [205]. Depressed individuals show heightened
sensitivity to negative feedback and errors. They also reduce
risk-taking more than matched controls following punishment
[206]. Depressed individuals can perform comparably or dis-
advantageously relative to healthy controls on the lowa Gambling
Task (IGT), depending on the task variant used. This profile,
possibly reflecting depressed patients’ flattened hyper-sensitivity
to punishment and/or hyposensitivity to reward [207-209], is
linked to alterations in frontostriatal systems. A key deficit is failing
to shift responding when contingencies shift [210] and could be
due to a failure to adaptively extinguish avoidance. This is
consistent with the observation that depression is associated with
increased behavioral inhibition and lower behavioral activation,
with lower behavioral activation (which would drive punishment
extinction) being the better predictor of continuing depression
symptoms [211]. Computational models have linked these deficits
to serotonergic dysfunction [212].

CONCLUSIONS

Punishment offers a rich experimental preparation for
answering fundamental questions about learning, motivation
and decision-making. It also provides unique opportunities to
help understand core dysfunctions in complex, neuropsychiatric
disorders. We hope it is clear from this primer that many
interesting learning processes are involved in even the simplest
punishment design, and that determining which of these learning
processes are controlling behavior is an important consideration.
Remarkably, we are far from a coherent understanding
of punishment. We know far less about the brain mechanisms
of punishment than those for reinforcement or for other
forms of aversive learning. Although some key brain regions have
been identified, the precise nature of these contributions to
learning and motivational processes, relevant connectivity, and
cell types, remain poorly understood and await detailed
investigation.
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