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Abstract
Individual differences in human intelligence, as assessed using cognitive test scores, have a well-replicated,
hierarchical phenotypic covariance structure. They are substantially stable across the life course, and are predictive of
educational, social, and health outcomes. From this solid phenotypic foundation and importance for life, comes
an interest in the environmental, social, and genetic aetiologies of intelligence, and in the foundations of intelligence
differences in brain structure and functioning. Here, we summarise and critique the last 10 years or so of
molecular genetic (DNA-based) research on intelligence, including the discovery of genetic loci associated with
intelligence, DNA-based heritability, and intelligence’s genetic correlations with other traits. We summarise new brain
imaging-intelligence findings, including whole-brain associations and grey and white matter associations. We summarise
regional brain imaging associations with intelligence and interpret these with respect to theoretical accounts. We address
research that combines genetics and brain imaging in studying intelligence differences. There are new, though modest,
associations in all these areas, and mechanistic accounts are lacking. We attempt to identify growing points that might
contribute toward a more integrated ‘systems biology’ account of some of the between-individual differences in
intelligence.

Individual differences in human intelligence

This article is about some new contributions toward
understanding the aetiology of individual differences in
human intelligence. The focus is on genetic variation and
brain imaging-derived differences, including where those
two sources overlap. For more than a century, the field of
research that studies intelligence differences has had some
controversies (Box 1). Notwithstanding these, research
findings on intelligence have much consensus, based on
robust findings. The first part of this article summarises
some of the findings from which reductionist approaches—
including brain imaging and genetics—to intelligence dif-
ferences proceed.

Describing the phenotype of intelligence

We should make it clear to the reader that ‘intelligence’ is
just one of the terms that are used to describe humans’
differences in thinking skills; others, sometimes used as
near-synonyms, include cognitive ability, cognitive perfor-
mance, cognitive functioning, and mental ability. Some-
times IQ (intelligence quotient) is used, although that has a
specific meaning within the field of psychometrics. Intelli-
gence (or the other terms listed in the previous sentence), as
a human phenotype, is measured using cognitive tests, of
which there are thousands. This hands the cynic a weapon
that, to the ignorant, can glibly dismiss the field of research
because, as Boring [1] famously wrote in 1923, “…intelli-
gence as a measurable capacity must at the start be defined
as the capacity to do well in an intelligence test. Intelligence
is what the tests test.” That much-quoted last short sentence
was not Boring’s opinion; rather, it was his saying that that
is what one would think if one did not know the research
findings. His next sentence starts, “This is a narrow defi-
nition, but it is the only point of departure for a rigorous
discussion of the tests”. We shall have that rigorous dis-
cussion here. Before that, we offer another, much-cited
definition: “Intelligence is a very general mental capability
that, among other things, involves the ability to reason,
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plan, solve problems, think abstractly, comprehend complex
ideas, learn quickly, and learn from experience. It is not
merely book learning, a narrow academic skill, or test-
taking smarts. Rather, it reflects a broader and deeper cap-
ability for comprehending our surroundings—‘catching on’,
‘making sense’ of things, or ‘figuring out’ what to do’ [2].
More succinctly, intelligence has been described as, “rapid
and accurate problem solving” [3].

Cognitive ability differences form a hierarchy of var-
iances. This grew from the finding that all cognitive tests are
positively correlated; people who score well on one cog-
nitive test tend to score well on all the others, no matter how
different the cognitive skills being assessed appear to be.
This finding has been replicated consistently since Charles
Spearman discovered it in 1904 [4]. For example, John
Carroll re-analysed correlation matrices of diverse cognitive
tests from 400+ studies conducted in the 20th century [5].
These included studies by many of the most prominent
researchers over that time, including those who had claimed

not have found a general intelligence factor. Carroll found
that, in all studies, the cognitive tests’ scores correlated
positively, and that each study contained a general com-
ponent that accounted for around 40%, sometimes more, of
people’s differences in performance [5]. There was also
variance at the level of cognitive domains, such as memory,
reasoning, and speed; i.e., some cognitive tests correlate
more highly with some tests—that have contents similar to
theirs—than with others. And there was variance at the level
of the individual tests. In summary, as shown in Fig. 1, the
reasons that people do well on any cognitive test are that:
they are generally intelligent; they are good at that type of
test; that they are good at the specific skills in that test; and
we should not forget the error in the measurement, and just
having a good day for whatever reason.

General intelligence (g), as a statistical phenomenon, is a
universal finding from different batteries of cognitive tests.
However, there is still mystery about what causes the cov-
ariation. If a large sample of people take two different,

Box 1 Some controversies and some consensuses in intelligence

Here is an abbreviated litany of controversies about human intelligence differences. Galton [130], who suggested that cognitive capabilities
might be general, normally distributed, and somewhat heritable (modern data show some support for these suggestions), was also, notoriously,
an originator of eugenics, and invented that word (see www.ucl.ac.uk/provost/inquiry-history-eugenics-ucl). Spearman [4] discovered the
positive matrix of correlations among cognitive performance assessments, and developed a two-factor theory of intelligence, which had
‘general intelligence’, which he called g, and specific abilities, which he called ‘s’. Researchers such as Thurstone [131] and Gardner [132]
disagreed, and thought there were several separate intelligences. Thomson [133] produced an ingenious theory about how the positive matrix of
cognitive test correlations might occur without there being a g factor. Whether g is found (it is a replicable statistical finding [5]) and what it
means (which is not known) have been discussed since then. Henry Herbert Goddard imported Binet’s intelligence test (the first one to be
invented) to the USA and is documented to have over- and mis-applied it (Zenderland) [134]. Gould [135] strongly criticised the g factor in
intelligence—stating that it was a necessary outcome of the statistical analytic methods applied (which is incorrect)—and the association
between intelligence and brain size in his famous book, The Mismeasure of Man. The book has been criticised for having got both of these
wrong (Carroll) [136]. Flynn [137] found that intelligence test scores increased across the years and generations of the middle two quarters of
the 20th century. However, Flynn also made it clear that this does not alter the within-cohort reliability, validity, and heritability of intelligence
test scores. Nevertheless, the cause(s) of the ‘Flynn’ effect on intelligence test scores still remains mysterious. Herrnstein and Murray wrote a
book called The Bell Curve [138]. They analysed data from the USA’s National Longitudinal Survey of Youth 1979 and found that higher
intelligence in late adolescence/early adulthood was related to better life outcomes by the 30 s. The book was strongly and widely criticised,
especially for its dealing with ethnic group differences, and for not having published its analyses via peer review.
Calming, consensual oil was poured on intelligence’s stormy waters in 1996, by the American Psychological Association (APA). As a result of
the controversy caused by The Bell Curve, the APA put together a Task Force, chaired by cognitive psychology doyen Neisser [139], to tell
non-experts what was (solidly) known and (as-yet) unknown about intelligence test score differences. The 11 persons in the Task Force—who
became co-authors of an agreed article—surprised many. They were experts who were diverse in their viewpoints—for example, there were
some individuals who were more environmentally inclined and some who were more genetically inclined, some who were associated with the
hierarchical model of intelligence differences including g and some with different models of intelligence, etc. Yet, they wrote a still-useful
article on some of the solid ground in intelligence research. Among many topics addressed, they recognised the prominence of the
psychometric testing approach to intelligence differences, and the hierarchy with the g factor at the apex; they summarised the stability of
intelligence test scores, their predictive validity for education, work and other life outcomes, their having environmental and genetic origins, the
Flynn effect, and various types of group differences. The APA Task Force Report is still a must-read for obtaining a mostly disinterested and
consensual summary about intelligence. Their list of intelligence’s unknowns are still mostly in that state; one of them was genetics, which we
address here and which has moved on considerably. We recommend reading other, more recent summaries about knowns and unknowns in
intelligence, though we wish to orient the reader that some come from more socially/environmentally inclined groups of authors (Nisbett et al.)
[129], some from more genetically inclined (Gottfredson) [2], and two from one of the present authors (Deary) [27, 140]. Progress in finding
social and environmental causes of intelligence has arguably been less successful than the biological research summarised herein, though the
Nisbett et al. review discusses many growth points. Moreover, the Neisser et al., and Nisbett et al., summaries also deal with brain imaging and
genetics, providing useful background to the present overview, as does Haier’s book, The Neuroscience of Intelligence [141]. Lest the reader
makes the error of over-extending intelligence’s demesne and importance, the APA Task Force ended by emphasising—as do we—that there
are many cognitive and non-cognitive aspects of human differences that are not captured by intelligence tests and general intelligence. g might
be important, but it is far from being all that matters.
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diverse sets of cognitive tests, the two g factors from them
correlate highly [6]; thus, g is not idiosyncratic, and its
ranking of individuals does not differ substantially
depending on the test battery. Among the sources of
between-individual variance that are extractable from a set
of cognitive test scores, it tends to be the g factor that leads
the way in being associated with life outcomes, and with
some possible origins, such as brain imaging indices and
genetic variants. When researchers measure general intelli-
gence they tend to use one of the following indices: ide-
ally, the first unrotated principal component or factor from a
battery of diverse cognitive tests; a total score from a test
that has heterogeneous items covering diverse cognitive
skills; or a test with a more homogeneous set of items that
loads highly on the first unrotated principal component or
general factor of several cognitive tests.

Stability of intelligence differences and mean scores

Measures of general intelligence have high test-retest
reliability. Taking an extreme example, the stability co-
efficient of intelligence test scores is between 0.6 and 0.7
from age 11 years to about 80, even before correcting for
measurement error [7].

The other type of stability—stability of age-related
means—shows a well-reproduced pattern. Tests that
involve the recall of learned information (called crystallised
intelligence)—such as vocabulary, general knowledge, and
some number skills—are relatively stable in mean levels

from young adulthood to older age [8, 9]. Tests that involve
active mental work (aspects of fluid intelligence) decline in
mean levels from young or middle adulthood to older age
[8, 9]. These include cognitive domains such as processing
speed (e.g. in tests of coding numbers into symbols at
speed), memory (e.g. delayed recall of a story or a list of
words, or a working memory test, such as backward digit
span), visuo-spatial ability (such as the replication of a 2-
dimensional pattern using blocks in the Wechsler Block
Design test), and abstract reasoning (such as the inductive
reasoning from abstract patterns that is required in Raven’s
Progressive Matrices). These more age-sensitive cognitive
domains tend to age in concert, with half or more of the
individual differences in their age-related declines accoun-
ted for by the ageing of general fluid intelligence [10].
There are individual differences in the ageing of intelli-
gence, which has growing importance as populations have
more older people who live longer [9]; that is, it is important
to understand the determinants (especially the modifiable
ones) of successful cognitive ageing.

Predictive validity of intelligence: ‘healthy, wealthy,
and wise’

Intelligence test scores at the end of primary schooling—at
about 11 years of age—are highly correlated with educational
outcomes several years later, whether that is measured as
scores on standardised national examinations at 16 (where
correlations up to 0.8 have been reported), years of education
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Fig. 1 The hierarchical model of human intelligence differences. At
the bottom, on level 1, individuals differ with regard to their perfor-
mance on specific cognitive tests. Here we have shown that multiple
tests (up to a number k) are used to assess each domain of cognitive
capability. Scores on all tests of cognitive ability correlate positively.
However, there are especially strong correlations among tests that tax
the same cognitive domain (level 2). Level 2 illustrates three example
cognitive domains: memory, processing speed, and verbal. There
could be more (up to a number ‘N’), depending on the types of specific
tests included in the battery. The names applied to domains are
common-sense labels based on the apparently shared contents of the
specific tests that contribute to them. It is possible to have tests that

contribute to more than one domain (a possibility not shown in the
Figure). Individual differences are observable at the domain level.
However, people’s scores on any one cognitive domain correlate with
their scores in other domains. This means that there is a third level
describing the variance common across all the domains and, thereby,
across all the individual cognitive tests. This is denoted, at Level 3, by
general cognitive ability, general intelligence, or just ‘g’. It is impor-
tant to note that this three-level structure emerges from the data and is
not imposed on it. g tends to account for about 40% of the total test
score variance when a battery of diverse cognitive tests is administered
to a sample of people with a wide range of cognitive capabilities.
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undertaken, or the highest qualification obtained [11, 12].
Probably, intelligence is causal to experiencing longer and
more complex education, and there appears to be a small
effect in the opposite direction too [13]. Thus, intelligence and
education probably have a dynamic bi-directional, and pos-
sibly causal, association.

Intelligence is one of the best (and cheapest) predictors of
performing well on a job, and of learning well on a job, with
moderate correlations [14]. This applies to all levels of job
complexity, though the correlations are somewhat higher with
more complex occupations. Higher childhood intelligence is
moderately related to moving upward in occupational status
from one’s parents (usually father) [15]. Intelligence is one
among many other variables that are associated with socio-
economic status differences in the UK [15, 16]. More affluent
parental socioeconomic status and more education are among
other variables that independently contribute; the former
effect is relatively small, and it is not certain to what extent
education acts as a proxy for prior intelligence.

There is a robust and consistently sized association
between higher intelligence measured in childhood or youth
and longer life and better health [17]. Studies on this topic
include unusually impressive samples, including a country’s
almost-whole year-of-birth population [17] and samples
that contain up to millions of subjects [18, 19]. People
with higher intelligence in early life are, up to several
decades later, less likely to suffer from poor health and then
die from all causes, and, specifically, from heart disease,
stroke, respiratory disease, smoking-related cancers, diges-
tive diseases, dementia, accidents, and suicide, among other
causes. A typical effect size for this field—cognitive epi-
demiology—is that a standard deviation (15 IQ-type points)
advantage in intelligence in youth is associated with
20–25% lower risk of these illness and mortality outcomes
up to several decades later. Expressed as a correlation, the
association between childhood cognitive test scores and all-
cause mortality is typically between about 0.15 and 0.2.

Therefore, intelligence, as operationalised by cognitive
test scores, has a robustly characterised phenotype, high
test-retest stability, and some predictive validity for educa-
tion, work, and health; all are contributions to broader
construct validity. However, there is a lack when it comes to
understanding why some people are more intelligent than
others. We have written about these matters previously. A
book-length treatment in 2000 [20] examined possible ori-
gins of intelligence differences in so called ‘elementary’
cognitive components, brain parameters, and genetic var-
iation. There are robust associations between intelligence
test scores and apparently simpler processing speed mea-
sures such as reaction times [21] and the psychophysical
procedure called inspection time [22]. We do not focus on
these here, because we judge that they afford less-tractable
possible causes of some of the between-individual

differences in intelligence than genetic variation and brain
structure and functioning. We previously summarised
genetics and brain imaging associations with intelligence
test scores in 2010 [23]. However, at that time there were
no genome-wide association studies (GWAS) of intelli-
gence and, since then, brain imaging studies have larger
samples, new brain parameters, and have been linked with
molecular genetic studies.

Intelligence differences and genetic
variation

Heritability and genetic architecture of intelligence
differences

Twin and family studies report that genetic differences are
associated with individual differences in intelligence test
scores (Box 2). If studies from all ages are taken together,
genetic differences account for about 50% (standard error
[SE] about 2%) of the variation in intelligence [24].
Higher heritability (see Glossary) estimates are found in
samples of adults (where it can be 70% or slightly more)
than in children (where estimates as low as 20–30% have
been reported) [24–27]. The finding that intelligence is
heritable has been replicated across multiple data sets
sourced from different countries and times [28]. Our
emphasis herein is on results from the newer, DNA-based
studies rather than on traditional twin and family studies.

DNA-based studies have shown that a pattern of hier-
archical variance is evident at the genetic as well as the phe-
notypic level. Using genomic structural equation modelling
[29] it was found that a genetic general factor explained, on
average, 58.4% (SE= 4.8%, ranging from 9 to 95% for
individual tests) of the genetic variance across seven cognitive
tests in people with European ancestry. This provides some
support for the idea that the phenotypic structure of intelli-
gence is in part due to genetic effects that act on a general
factor of intelligence and also at more specific cognitive levels.

Since 2011, the heritability of intelligence has been
investigated by direct testing of DNA in large numbers of
unrelated individuals [30]. This is mostly based on the
testing of genetic variants called single nucleotide poly-
morphisms (SNPs) (see Glossary). The statistical-genetic
method used to estimate heritability is called genome-based
restricted maximum likelihood single component (GREML-
SC) (Box 2). This tests how closely people’s similarity in
cognitive test scores associates with their genetic similarity,
the latter being based on hundreds of thousands of SNPs. In
such studies, heritability estimates are about 20–30% (SEs
< 1% in recent studies) [31, 32]. The lower estimates of
heritability found using GREML-SC are probably due to the
technique’s being better at capturing variance from genetic
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variants in linkage disequilibrium (LD) with common SNPs
rather than those that are less common or in lower LD [33].
This difference in estimated heritability of intelligence
between twin-based studies and DNA-based studies using
SNPs has been recovered using DNA testing and the
GREML-KIN analysis method in a large cohort of indivi-
duals that included families (Box 2) [32].

Non-additive genetic variation, including dominance and
epistasis, has been postulated as a partial explanation for the
gap in heritability estimates derived using twin and family
methods compared with those derived using DNA-SNPs.
However, one study found dominance effects were linked to
less than 4% of phenotypic variance in complex traits [34].
Furthermore, quantitative genetics theory predicts that
epistasis is unlikely to be associated with a substantial
amount of phenotypic variance [35]. Moreover, the results
of GREML-KIN have been replicated in unrelated indivi-
duals by deriving heritability estimates using high-quality
imputation panels [32], indicating that non-additive genetic
effects, if present for intelligence, are not a major con-
tributing factor to intelligence differences.

Although GREML-KIN might recover some of the herit-
ability that is attributable to genetic variants that are in poor
LD with common genotyped SNPs, it cannot determine the
proportion of the heritability estimate that is due to dynastic
effects [36]. Dynastic effects include instances where the
genotype of a parent is associated with the phenotype of the
offspring, including via alleles that are not passed from parent
to offspring; this has been termed genetic nurture [37].
Whereas the presence of dynastic effects does not indicate a
bias in methods that also capture indirect genetic effects, it
does however hamper efforts to understand how genetic dif-
ferences can give rise to phenotypic differences. This is
because the resulting heritability estimate is, potentially, a
combination of direct genetic effects (genetic variation in an
organism that is associated with phenotypic variation in the
same organism) and indirect genetic effects (where genetic
endowment of one organism is associated with the phenotype
of another organism).

The presence of dynastic effects has been indicated for
education. In one study, its SNP-based heritability estimate
was 29.2% (SE= 4.4%) before indirect genetic effects were

Box 2 Heritability of intelligence: why different methods give different results

Heritability describes the proportion (often expressed as a percentage) of phenotypic variation in a tested sample of people that can be
accounted for by genetic variation [142]. Note that heritability estimates apply to a sample at a given time; the estimate might be different in
other groups, and in the same group at other times. Often, in human studies, only additive genetic factors are considered. Different methods are
used to estimate heritability of intelligence (and other phenotypes). They give different estimates. These are not contradictory; rather, they are a
reflection of the sources of genetic variation to which the methods afford access, as we explain below.

Twin and family methods
Twin- and family-based estimates of the heritability use the expected proportion of alleles shared between the participants as the estimate of
genetic variance within the sample. They can include comparisons between monozygotic twins and dizygotic twins, as well as studies that
include families consisting of parents, siblings, and other relationships. In each instance, a genetic effect on a trait is inferred if individuals who
are more genetically similar are also more similar in terms of their intelligence test score. For intelligence, substantial (50% or more, unless the
study is of young children) heritability estimates are found in twin studies [24] and family studies [143]. We note that twin studies assume that
dizygotic twins have just as similar shared environments as monozygotic twins, a potential limitation that does not affect DNA-based studies.

Genome-based restricted maximum likelihood single component (GREML-SC)
GREML-SC, sometimes referred to as ‘the GCTA method’, was the first DNA-based genetic method used to derive an estimate of heritability
for intelligence [30]. As with twin and family-based methods, genetic similarity is compared with phenotypic similarity. However, genetic
similarity is measured, rather than inferred, using a genomic relationship matrix constructed from genotyped common SNPs. Importantly,
closely related individuals are excluded from the analysis (typically those who are more than 0.025 similar, i.e. closer than a second cousin).
This is an attempt to ensure that the similarity in environment between family members is not captured by genetic the genomic relationship
matrix, which can result in an inflation of the heritability estimate. Heritability estimates of intelligence that use GREML-SC have typically
been between 20 and 30% [30, 31, 143]. One of the major assumptions of GREML-SC is that genetic similarity is uncorrelated with
environmental similarity. Whereas this assumption has been found not to hold in some situations, the inflation of the resulting heritability
estimate is thought to be negligible [144]. Furthermore, GREML-SC assumes an infinitesimal, or polygenic, model whereby the trait examined
is associated with a very large number of variants each making an infinitesimal contribution to phenotypic variance. GREML-SC assumes that
SNP effects are normally distributed as well as independent of LD (see Glossary), and inversely proportionate to minor allele frequency [33].

Genome-based restricted maximum likelihood kinship (GREML-KIN)
GREML-KIN was introduced to capture the effects of rarer and less common genetic variants that are not captured using GREML-SC.
Importantly, whereas it uses the same genetic data as GREML-SC, GREML-KIN uses samples with a dense and known pedigree to derive
additional matrices to capture additional sources of variance from genetic variants that are in poor LD with common genotyped SNPs and to
control for the effect of environmental influences. When GREML-KIN was applied to the study of intelligence, 54% of intelligence test
variation was accounted for [32]; therefore, the DNA-based heritability of intelligence was about the same as those derived using twins.
GREML-KIN has the same assumptions as GREML-SC. In addition, GREML-KIN uses closely related individuals, and the data it is applied to
must contain a sufficiently dense pedigree in order to prevent an inflation of the heritability estimates due to shared environmental influences
between those closely related individuals.
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removed, and 17% (SE= 9.4%) afterwards [36]. Moreover,
environmental influence on the heritability of education was
suggested by finding that a polygenic score (see below)
predicting education in non-adoptees accounted for twice
the phenotypic variance of a polygenic risk score applied to
adoptees [38]. The variance accounted for by a polygenic
score captures both direct genetic effects and indirect,
environmentally mediated, genetic effects. When predicting
education with polygenic scores in adopted individuals, the
link between the rearing environment provided by the
genetically related parent and the phenotype of the offspring
is broken. Because intelligence is highly genetically and
phenotypically associated with education (see below), it
appears likely that indirect genetic effects influence
intelligence too.

Genome-wide association studies (GWAS) of
intelligence: finding loci

Heritability analyses suggest the presence of genetic influ-
ence on a trait. They do not indicate which genetic variants
are associated with trait variation. Initially, candidate gene
designs (see Glossary) were used to test for associations
between genetic variants and intelligence test scores.
However, these designs were underpowered and produced
no replicable results [39]. The qualified exception is that
possession of the e4 allele of the gene for Apolipoprotein E
(APOE) is reliably associated with slightly lower cognitive
function at older ages, accounting for around 1% of the
variance [40, 41]. No other SNP-based genetic variant
comes close to this effect size in accounting for intelligence
differences. The association might occur because APOE is
involved in neuronal repair, and there is more repairing to
do—and probably more individual differences (variance) in
neurodegeneration—at older ages. The field changed to the
conducting of GWAS (see Glossary) that are agnostic
regarding which, if any, loci are associated with the trait of
interest. This was driven by the availability of affordable
arrays of hundreds of thousands of SNPs covering the
genome, alongside the collection of large samples sizes and
the formation of multi-sample consortia.

The first GWAS of intelligence with N > 3000, from
2011, detected no significantly associated loci [30]. How-
ever, it included the first DNA-based (GREML-SC-derived)
heritability estimate of intelligence and showed that geno-
typed SNPs do account—collectively—for some of its
variation [30]. For the next 6 years, GWASs conducted on
intelligence test scores were largely unsuccessful in identi-
fying associated genetic loci [42–45]. In 2018, three studies,
using substantially overlapping samples, attained sample
sizes of over 200,000 participants and found hundreds of
genetic loci significantly associated with intelligence
[31, 46, 47].

The first of the three studies had a sample size of
248,428; it found 187 (172 novel when it appeared online)
independent regions of the genome that were associated
with intelligence [46]. A major contribution to this study
was from the large UK Biobank sample’s short Verbal and
Numerical Reasoning test (VNR; called the ‘fluid’ test by
UK Biobank, which is a misnomer). This study used a
meta-analytic method (MTAG) to combine data sets using
different indices of cognitive ability, and including educa-
tional attainment to increase statistical power. However,
whereas a proxy-phenotype approach was used previously
to identify SNPs that showed a joint association with edu-
cation and intelligence [48], the meta-analytic method used
in MTAG is different because it was designed to detect
genetic associations with the target trait of intelligence and
not those specific to educational attainment [46, 49].

The second of the three studies to appear found 148
loci (53 novel when it appeared online) associated with
intelligence, with a sample size of 300,046 participants
[31]. This study also used the UK Biobank VNR test and
several other samples that formed a general intelligence
component from three-or-more, mostly fluid intelligence-
type tests. The third study to appear identified 205
loci (84 novel when it appeared online) using 269,867
participants [47]. This study was conditioned on socio-
economic status, and combined tests of cognitive ability
and scores on scholastic aptitude tests.

It has become clear, therefore, that the genetic con-
tribution to intelligence differences is highly polygenic, i.e.
there are large numbers of independent genetic variants,
each of which accounts for a tiny proportion of intelligence
variation.

The three studies above used polygenic scores to provide
out-of-sample predictions of intelligence based solely on
DNA-SNP data [31, 46, 47]. A polygenic score is an
individual-level predictor derived from the sum of effect
alleles at a SNP, weighted by the regression co-efficient
describing each SNP’s level of association with the trait, in
this case intelligence. The polygenic scores predicted 4–7%
of intelligence variance in independent samples; another
study predicted 10.6% [50]. Thus, a blood sample at birth in
these samples predicts intelligence with about the same
effect size as parental socioeconomic status, i.e. they do not
predict well; neither is of practical use for predicting
the intelligence of an individual. The proportion of variance
explained by polygenic scores rises with sample size, so
the predictive power is likely to rise as sample sizes increase
[51]. This raises ethical issues—outlined more elsewhere
[52]—which should be addressed by well-informed pro-
fessionals and lay people from appropriate interest groups
and areas of expertise. We emphasise that the results above
apply to the samples tested, all of which were of European
ancestry, and relatively few of which, probably, were from
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very deprived situations. Therefore, results reported here
may not be assumed to apply to other populations, or to the
same populations at other times.

After GWAS of intelligence: clues to mechanisms?

Finding genetic loci whose variants are associated with
intelligence differences only helps to understand these dif-
ferences if we understand the mechanistic consequences of
the genetic variation. GWAS data sets’ results on intelli-
gence have found associations between SNP variation and
tissue-specific gene expression across many of the brain’s
cortical regions (Fig. 2) [31, 46, 47]. SNP variation asso-
ciated with intelligence has been linked to tissue-specific
gene expression in specific classes of neuron, including

pyramidal neurons of the somatosensory cortex, the CA1
region of the hippocampus, midbrain embryonic GABAer-
gic neurons, [53] and medium spiny neurons [47]. These
associations indicate that, rather than any one specific area,
the association between genetic and intelligence variation is
probably mediated in part by individual differences in gene
expression across the cortex.

Genetic variants associated with intelligence test scores
tend to cluster in groups of genes linked with neurogenesis,
the synapse, neuron differentiation, and oligodendrocyte
differentiation [46]. These results are consistent with pre-
vious studies that found an association between intelligence
and brain-expressed genes [54], as well as the genes
expressed in the postsynaptic density and its associated
components of the NMDA-receptor signalling complex [55]

A.    Genomic regions associated with intelligence test scores
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Fig. 2 This shows genetic loci associated with intelligence test scores
[46], intelligence’s overlap with transcription differences in the
brain, and some of intelligence’s genetic associations with physical
and mental health. A Manhattan plot displaying 187 regions of the
genome associated with intelligence test scores. The chromosomes are
on the x axis and the −log10 P value is on the y axis. Each dot
represents a single nucleotide polymorphism. The horizontal red line
indicates the genome-wide significant threshold of P= 5 × 10−8 and the
horizontal black line represents genome-wide suggestive variants at
P= 1 × 10−5. B The relationship between specific gene expression
profiles in the cortex and intelligence-gene associations. Illustrated here
is the finding that tissue-specific expression in and across the brain is
associated with intelligence; the full list of associations is in the original

report [46]. C Some of the genetic correlations between intelligence test
scores and phenotypes linked to health, mental health, and measures of
brain size [46]. A positive genetic correlation indicates that the genetic
variants associated with higher intelligence test scores are associated
with a greater value of the trait or a higher likelihood of developing the
disorder. Longevity, intracranial volume, self-rated health, and head
circumference all show positive genetic correlations with intelligence.
A negative genetic correlation describes instances where the genetic
variants associated with higher intelligence are also those that are
associated with a lower value of the trait or a lower likelihood of
developing the disorder. Traits such as ADHD, obesity, coronary artery
disease, major depressive disorder, and Alzheimer’s disease show
negative genetic correlations with intelligence.

Genetic variation, brain, and intelligence differences 341



and Arc complex [56] more specifically. Together, these
studies highlight the role of the synapse, and possibly the
postsynaptic density and/or its associated components, as
being biological systems that, when perturbed by common
genetic variation, are associated with some of phenotypic
differences in intelligence. However, the variance accoun-
ted for by the intelligence-associated SNPs found in these
biologically plausible tissues is probably very small.
Nevertheless, efforts to understand DNA versus intelligence
phenotype associations at levels such as neuron types and
gene systems are ways to tame the huge number of
cognition-related SNPs, each of which has a miniscule
effect size.

Pleiotropic associations and intelligence

Pleiotropy (see Glossary) describes instances where varia-
tion at a region of the genome is associated with multiple
phenotypes. Widespread pleiotropy between two pheno-
types can be detected by deriving a genetic correlation (see
Glossary) between the two phenotypes. A genetic correla-
tion describes the average genetic effect shared between two
traits as well as whether it is positive or negative; i.e. a
positive genetic correlation occurs when genetic effects
associated with an increase in one trait are also associated
with an increase in a second trait, and a negative genetic
correlation occurs when genetic effects associated with an
increase in one trait are also associated with a decrease in a
second trait. A genetic correlation co-efficient is derived
using all SNPs from a GWAS regardless of the SNPs’ levels
of association with a trait. Genetic correlations can be
derived using two independent samples; this has the
advantage that any genetic correlations found between
intelligence and disease, for example, will not be due to
individuals’ having the disease’s symptoms (i.e. if the
intelligence GWAS has been conducted in healthy indivi-
duals). Polygenic scores can also make predictions across
traits by deriving a polygenic score for intelligence and
using it to predict health, or brain imaging traits, for
example. However, these shared genetic associations—
detected by genetic correlations or polygenic scores—can
arise due to vertical pleiotropy, horizontal pleiotropy, or
spurious pleiotropy, which we explain below [57].

Genetic correlations derived using GWAS data sets have
demonstrated that genetic variants associated with higher
intelligence test scores are, on average, also associated with,
for example, longevity [46], better physical health [58], and
more advantaged socioeconomic position [16, 50, 59].
Genetic variants associated with higher intelligence are
more likely to be associated with lower levels of traits
associated with mental health problems (Fig. 2) [60]. On
the other hand, genetic variants associated with higher
intelligence test scores are, typically, slightly positively

associated with autism spectrum disorder and anorexia
nervosa [46].

Mendelian randomisation (MR; see Glossary) studies
move beyond associations between intelligence and health
variables to seeking evidence that one phenotype might be
causally related to another. MR results have indicated that
intelligence and education probably have a bi-directional
causal relationship [61], and that intelligence might have
some causal association with, for example, Alzheimer’s
disease that is independent of any protective effects of
education [61]. Such results from MR should be interpreted
cautiously as they can be biased by dynastic effects [62]
known to influence education [36], which is highly
genetically correlated with intelligence. The presence of
dynastic effects violates the independence assumption of
MR, as they induce a correlation between the environment
in which a child is raised and their genetic inheritance.

Assortative mating, the tendency to select a partner based
on heritable traits similar to one’s own, can bias the results
of MR [63]. Education and intelligence are traits with evi-
dence of assortative mating; there are reports of cross-
spouse correlations of r= 0.40 for intelligence and r= 0.60
for education [64]. These contrast with measures of per-
sonality where correlations of r= 0.10 are found [65].
Biases from assortative mating can be induced by cross-trait
assortative mating whereby, for example, more highly
educated women might select partners who are taller,
resulting in an apparent ‘finding’ that height is causally
associated with education [63]. Bias due to dynastic effects
and assortative mating can be controlled for by performing
MR within families [66].

GWASs of educational attainment show high genetic
correlations with intelligence (rg= 0.70–0.80 [46]) and
have identified 1271 independent genome-wide significant
SNPs [50]. Bioinformatic analyses of these data have
identified associations with genes expressed in the brain and
other cortical tissues as well as genes whose level of
expression is elevated both pre- and postnatally. Further-
more, many of the genes identified encode proteins that are
involved in synaptic functions such as synaptic plasticity,
and neurotransmitter secretion, consistent with what has
been identified for intelligence [46, 55, 67]. However, the
use of education as a proxy phenotype for intelligence in
genetic studies should be interpreted with caution. For
example, whereas genetic correlations with schizophrenia
indicate that the genetic variation that is associated with
higher intelligence test scores is also associated with lower
risk of schizophrenia, the genetic variants associated with
attaining a longer and higher-level education are associated
with higher risk of schizophrenia [46]. In a study investi-
gating this phenomenon, SNPs associated with lower
intelligence test scores, less education, and an increased risk
for schizophrenia were also associated with early
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developmental processes [68]. This contrasted with the
SNPs associated with lower education, and a lower risk of
schizophrenia which were associated with biological pro-
cesses of mature synapses.

A complementary explanation of some of the difference
in genetic correlations between intelligence and education
with schizophrenia focussed on “non-cognitive skills” [69].
The study used genomic structural equation modelling [70]
to perform a GWAS by subtraction, resulting in associations
specific to education once variance attributable to differ-
ences in intelligence was removed. The resulting GWAS of
so-called “non-cognitive skills” found a heritability of 6.6%
(SE= 0.2%), and a positive genetic correlation with schi-
zophrenia of rg= 0.26 (SE= 0.02). However, whereas the
cognitive traits captured by a GWAS of education were
negatively genetically correlated with schizophrenia, the
“non-cognitive traits” were genetically associated with a
greater schizophrenia risk. A single cognitive performance
test was used (UK Biobank’s VNR). This short test is
unlikely to have captured all variance associated with
intelligence and, so, this uncaptured cognitive ability var-
iance would also be included in the “non-cognitive skills”
(which would therefore be a misnomer) as evidenced by a
genetic correlation of rg= 0.31 (SE= 0.06) with other
measures of intelligence.

Intelligence and the brain

Intelligence and brain volume

There is a well-replicated, modest positive association
between brain size and intelligence test scores. Brain size is
usually measured as total volume, assessed in magnetic
resonance imaging (MRI) scans. A meta-analysis of data
from over 148 studies across more than 8000 individuals
[71] estimated the association at r= 0.24. A re-analysis of
those data including only healthy adults estimated the
association at r= 0.31; this rose to r= 0.39 when it inclu-
ded only the studies judged to have used better-quality
intelligence testing [72]. In a single sample of 18,426
middle- and older-aged participants of the UK Biobank (age
range 44–81 years), the association between intelligence
and total brain volume was estimated at r= 0.276 (95%
CI= 0.252, 0.300) [73]. This is about halfway between the
two previous estimates, and has the benefit of eliminating
cross-cohort heterogeneity that can influence meta-analytic
results.

There are many other ways to interrogate brain differ-
ences, beyond overall brain size, which, on its own, is not
informative about the brain’s complexity. For example, the
fact that there are substantial sex differences in brain size
[74] but very small or no sex differences in mean

intelligence [75, 76] is likely to be because multiple aspects
of the brain’s structure, function, and connectivity are
compensatory for any apparent brain size difference.
Notably, there do not appear to be sex differences in the size
of the brain-intelligence correlation [73, 74]. There is evi-
dence that the magnitude of associations with intelligence
vary as a function of brain tissue type and locus. A study
that included brain cortical characteristics (volume, area,
and thickness), total volume of subcortical structures, and
measures of white matter macro- and micro-structure found
that, together, they accounted for up to 18% of the variance
in general intelligence in 73-year-olds [77]. In the wider age
range of UK Biobank, multiple structural measures
accounted for more of the variance in intelligence in older-
age (13.6%) compared to middle-age participants (5.4%),
only outperforming the single variable of total brain volume
in the former group [73].

The Parieto-Frontal Integration Theory attempted to
summarise the intelligence-related brain regions implicated
by structural, functional, and diffusion imaging studies of
the brain [78] (Box 3). It identified that variations in the
structure and function of lateral and medial frontal, parietal,
lateral temporal, and lateral occipital cortex, and underlying
white matter connectivity (such as the arcuate fasciculus)
were associated with individual differences in intelligence.
The available neuroimaging research at the time (37 studies)
was hampered by small sample sizes, variable methods of
measuring intelligence, and the-then limited number of
diffusion MRI (dMRI) papers. This probably contributed to
the relatively weak convergence of findings; even the most
strongly implicated regions were supported by ≤60% of the
papers surveyed. P-FIT theory receives support from some
newer empirical findings (Fig. 3). We shall consider more
recent studies in the light of it.

Brain grey matter and intelligence

Associations between higher intelligence test scores and
greater brain cortical volume and thickness in adults
[73, 79], as well as data from lesion studies [80, 81] show
stronger magnitudes across areas cited by the P-FIT
(Box 3), though with consistently small effect sizes. The
intelligence-cortical thickness relationship changes over the
life course, with negative associations reported in 10-year-
olds [82–84]. In the largest of these recent adult studies
(N= 18,426, ages 44–81 [73]), some of the strongest
associations were also found between intelligence and the
volumes of the insula, posterior cingulate/precuneus (r <
0.20). These regions were not implicated in the initial
P-FIT, but were identified in a meta-analytic update [78]
using both functional and structural MRI data. However,
considering only structural voxel-based morphometry ana-
lyses in easily-meta-analysable common space meant other
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types of structural study were excluded [85]. The large UK
Biobank-based study [73] found that the intelligence asso-
ciations with the volume of the thalamus (r= 0.25) were 1.5
times larger than for any other subcortical structure
(r 0.06–0.17). The caudate, which had also previously been
implicated in intelligence differences, albeit in smaller
samples [86, 87], was also correlated with intelligence in the
UK Biobank analysis (r ≈ 0.13), but only hippocampal (r=
0.05) and thalamic volumes (r= 0.19) showed unique
associations with intelligence in a multivariate model
including all subcortical structures. These findings are in
line with the extensive cortical connectivity profiles of both
insula and thalamus [88, 89].

Brain white matter and intelligence

The last 20 years have witnessed an explosion of white
matter brain imaging studies, due to the advent of dMRI. By
exploiting the influence of various white matter properties
(axonal myelination and diameter, among others [90]) on
the motion of water molecular diffusion, dMRI enables

inferences about white matter microstructure. Measures
such as fractional anisotropy (FA; an index of the direc-
tional coherence of diffusion) and mean diffusivity (MD;
the average magnitude of diffusion) are commonly used
metrics. Both show general and regional ageing effects: on
average, FA goes down with age, and MD goes up [91].

When assessed as summary measures across multiple parts
of white matter, more directionally coherent water molecular
diffusion (higher FA) and lower overall magnitude of diffu-
sion (lower MD) are associated with higher intelligence test
scores in studies together covering ages 8–81 years
[73, 92, 93], typically with small effect sizes. FA and fluid
cognitive ability show significantly coupled declines even
over a 3-year period in older age (r= 0.31; [94]). Whereas we
acknowledge inconsistencies in white matter tract nomen-
clature and identification, there is emerging evidence that long
range cortico-cortical (association pathways), the genu (more
so than splenium) of the corpus callosum, and subcortico-
cortical (mainly thalamic) pathways show numerically larger
associations with intelligence than projection fibres (though
all r < 0.11; [73]). The identification of these pathways as

Box 3 Routes from the brain to theories of intelligence

P-FIT and beyond
We mention the parieto-frontal integration theory (P-FIT) [78] in the main text as a trellis upon which to hang diverse research results relating
brain measures to intelligence test scores. Here we describe other theories that are not necessarily aimed specifically at where intelligence
differences reside in the brain (as was the P-FIT), but they are nonetheless informative of the neuroscience of intelligence differences. For
example, a narrative synthesis of several divergent traditions within the functional brain imaging literature identified a number of regions
consistently showing convergent activations across multiple executive function tasks [145]. There are variations in the nomenclature (e.g.
Multiple Demand Network [MDN], fronto-parietal control network, the superordinate cognitive control network, and the extrinsic mode
network [145]), yet these schemas commonly comprise dorso-medial and lateral prefrontal cortex, insula, and parietal cortex. The more recent
extended MDN [145] also includes the putamen, thalamus, and more dorsolateral aspects of prefrontal cortex. Though these results are based
on convergent functional activations across multiple tasks (rather than patterns of activations from a general factor of intelligence indicated by
multiple tasks), the regions implicated from these functional studies bear a striking resemblance to the P-FIT. Integration of structural and
functional data (along with other modalities) will be central to testing broader theories about the nature of intelligence. It will provide important
biological constraints to questions about the degree to which intelligence is a single construct in the brain, or arises from a number of
overlapping brain networks that support the variety of psychological processes that are required by the multiple tests from which intelligence is
derived (e.g. [146]). It will also allow insights into the hypothesis that cortical connectivity facilitated by white matter is a biological substrate
for individual differences in processing speed, which is hierarchically subordinate to fluid intelligence [92, 147].

Contributions of longitudinal and lesion studies
If intelligence is supported by a large distributed network of brain regions and their connections, there may well be many potential cerebral
routes to intelligence differences, and to intellectual changes. This is a matter on which neuroimaging can offer important insights. Data from
lesion studies and the ageing process can be seen as helpful in triangulating whether certain brain regions might be necessary for higher
intelligence, rather than being related due to confounding factors (such as pre-existing, lifetime differences in brain volumes, in the example of
ageing). Nonetheless, both methods are still limited.
Longitudinal studies offer a more stringent test of causal hypotheses than do cross-sectional studies. For example, if white matter health is
important for higher intelligence, we would expect declines in both to be correlated [94]. However, even finding correlated changes between
intelligence test scores and changes in a given brain region or pathway is still potentially confounded. A region that is not central to intellectual
function could still exhibit correlated changes because its structural decline is simply correlated with regions that do support processes central
to intelligence. Improved characterisation of longitudinal brain ageing will elucidate the degree to which this (the magnitude of correlated
regional brain change) is an issue for localisation of intelligence.
Lesion studies offer valuable data on individuals in whom there has been a sudden and specific focal insult, which can be linked to differences
in intelligence [80, 81]. Those brain loci more strongly linked to lower intelligence can allow mapping of the relative importance of specific
regions. However, lesion studies may be limited by the numbers required to eliminate statistical power variability across the brain; i.e., the
regional coverage of lesion loci in the sample might be heterogeneous. The fact that lesions often involve both grey and white matter is a
further issue. Parsing their relative importance for a behavioural outcome (and identifying the underlying connective pathways affected in each
case) at a particular locus requires many participants with selective (grey or white) tissue damage.
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associated with intelligence accords with the grey matter
findings above, as these are broadly the connections that
facilitate frontal, parietal, lateral temporal (and subcortical)
interconnectivity. Age-related accrual of white matter damage
(measured by white matter hyperintensities [WMHs]) is
associated with lower (r=−0.106) and longitudinally cou-
pled declines (r ≤−0.334) in cognitive function [95, 96].
WMHs might interfere with selective pathways, because they
tend to accumulate predominantly superior to the lateral
ventricles [97].

Larger effect sizes for brain-intelligence associations can
be found with multiple measures of white matter micro-
structure. One study derived a general factor of white matter
integrity, across 12 white matter tracts, using three diffusion-
based metrics: FA, longitudinal relaxation time, and magne-
tisation transfer ratio [92]. These three general factors showed
only small correlations with each other, indicating that they
might capture non-overlapping aspects of white matter
microstructure. Together, they accounted for about 10% of
intelligence differences in 73-year-olds. This link between
white matter integrity and intelligence was fully mediated by
the cognitive domain of processing speed.

It appears that the brain regions and their underlying
connections that are associated with individual differences
in our most complex cognitive abilities are also those which
might: (i) show greater areal expansion as a function of
increasing brain size [98]; (ii) be those that are latest to
develop [99]; and (iii) be those most susceptible to brain
ageing [91] and potential determinants thereof, such as
vascular risk [100]. It is important to note that, even when
brain regional measures are used, effect sizes remain rela-
tively low, at an upper limit of ~r= 0.30 among well-
powered studies; however, these estimates appear robust
and replicable in large samples [73]. These findings illus-
trate the small but significant associations of multiple facets
of brain structure with intelligence differences. This appears
especially at older ages when a larger proportion of the
variance in these measures is probably driven by differences
in age-related neurodegenerative processes. Modest asso-
ciations should not be surprising given the macro-scale of
the brain variables, and that measures discussed above are
only few of the potentially large number of brain properties
that might be measured.

Newer approaches to brain-intelligence associations

Emerging approaches have begun to model multivariate
cross-tissue contributions to intelligence across selective
grey matter regions and white matter pathways. For exam-
ple, FA in the forceps minor and fronto-polar volume
mediated 18.2% of the age association with fluid intelli-
gence [101]. Such approaches have the potential to more
directly test the specificity of brain-based network theories

of intelligence, such as the P-FIT. Exploiting the brain’s
structural connectome offers the chance to assess such
network-based analyses with greater fidelity than via the
measurement of fewer, larger pathways (though this brings
a different set of limitations, e.g. [102]). Global measures
such as connectomic efficiency [103], or variation in the
‘degree’ of nodes in morphometric similarity networks,
have shown potential to predict intelligence differences (up
to a remarkable 40% in one study with an N of 296 young
adults [104]). Resting-state fMRI connectivity matrices
predicted 20% of the variance in intelligence among young
adults (N= 884; [105]). These results need replicating. It is
therefore of interest to continue the development of clear
and interpretable integration of structural and function brain
connectomes [106] to inform our understanding of intelli-
gence differences and the brain.

The next period of research should try to explain the
associations between brain indices (which are sometimes
rather crude) and intelligence, in addition to seeking and
testing new brain variables. Having larger volumes of brain
(and tissues therein) appears to be relatively strongly related
to having greater numbers of neurons [107]. Cortical
thickness differences are related to neuronal density,
columnar arrangement, alongside dendritic arbour and glial
properties [108]. Another promising metric may be the
diffusion characteristics of grey matter, assessed using
neurite orientation dispersion and density imaging, which
are putative markers of dendritic density and arborisation
and exhibit some P-FIT-like regional associations with
intelligence (|r | <0.25) [109]. Yet, much work is required
before we understand whether and how such specific
microscopic features (some of which are estimated with
neuroimaging) might specifically give rise to intelligence
differences. Whereas new methods, larger sample sizes, and
out-of-sample prediction designs have the potential to add
further insights and complementary contributions to intel-
ligence variation, we judge it will be important to: (i) test
the incremental validity of newer measures beyond more
conventional metrics (e.g. [110]); (ii) be critical regarding
whether the newer measures offer more biologically tract-
able variables for understanding brain differences; and, if
they do, (iii) integrate these new indices with other levels of
explanation, bridging the spectrum of macrostructure to
cellular.

Toward a better integration of genes, brains,
and intelligence

We structured this review into sections on phenotypic issues
about intelligence, the genetic associations with intelligence
test scores, and their brain correlates. This partly reflects the
division of labour among the authors, but also reflects the
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current prevailing separation of these lines of enquiry. We
should have liked there to have been more amalgamated
brain-cognition-genetics studies, and we should have liked
more integrated sections, examples and ideas to review.
However, we consider that to be a lesson for us, and for the
field, about the sorts of studies that could be done. These
divisions are also in part because research on the statistical
phenotypic nature of intelligence has been going on for more
than a century. Genetics and brain imaging are relative
youngsters, and methodologically fast-moving. New methods
have blossomed in these fields, and debates and enquiry into
the merits of these will continue apace. To mention a few
examples, there are debates about both the diffusion and fMRI
work in terms of cross-lab stability for neuroimaging
[111, 112], and there are discussions about the causal
nature, if any, of the observed genetic correlations between
intelligence and other phenotypes, as well as the role of
non-transmitted genetic effects. The phenotypic nature of
intelligence, too, has areas of contention: some areas of the
neuroscience and cognitive literature focus on experimental
cognitive tasks that assess aspects of so-called executive
functioning, in contrast to the psychometric tests upon which

intelligence scores are based. Consequently, reviews
that focus solely on, say, executive function(s) or working
memory might not fully bring out their strong phenotypic
[8, 113–115], genotypic [116, 117] and neurostructural
(Box 3) overlaps with psychometric intelligence. It would be
of interest to develop a theoretical superstructure to unite
these cognitive disciplines; it is unfortunate that cognitive
neuropsychologists and psychometricians do not bring their
tests and constructs together more when, empirically, they are
strongly related [114]. In this section we summarise some
recent studies that have integrated genes and brains to try
to understand intelligence differences, before discussing their
implications and potential future directions for a more inte-
grative and nuanced account of some biological under-
pinnings of intelligence differences.

Looking at all three of genes, brains, and
intelligence

Genetic correlations find that the genetic variants associated
with intelligence are shared in part with those associated with
volumetric measures of brain structure, such as intracranial
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Fig. 3 Possible brain loci of human intelligence differences. A The
Parieto-Frontal Integration Theory (P-FIT) of intelligence differences,
proposed by Jung and Haier [78]; reproduced with permission from
[23]. B A meta-analysis of functional and structural (voxel-based
morphometry only) studies of intelligence; reproduced with permis-
sion from [85]. C Associations between cortical thickness and intel-
ligence in children (age range 6–18 years; N= 216); reproduced with
permission from [83]. D Associations between cortical thickness and
intelligence in older adults (age 73 years; N= 588); reproduced with

permission from [79]. E Associations between intelligence test scores
and regional cortical volume (left), and white matter tract fractional
anisotropy (upper right, blue) and mean diffusivity (lower right,
orange) in middle-aged and older adults (age range 44–81 years;
Nrange= 7201–18,426); reproduced with permission from [73].
F Associations between lesion locus and intelligence in cortical (top)
and subcortical (bottom) loci (age M= 49, SD= 16 years; N= 241);
reproduced with permission from [80].
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volume (rg= 0.27), total brain volume (rg= 0.23), grey
matter volume (rg= 0.08), white matter volume (rg= 0.08)
[31], and volume of the left posterior cingulate cortex (rg=
0.23) [118]. Positive genetic correlations have been identified
between healthier brain white matter microstructure and
higher intelligence [119]. Reaction time—in which higher
values are worse—had genetic correlations of −0.18 on
average with brain white matter health/integrity, based on FA,
as well as widespread positive genetic correlations of 0.17, on
average, with axial diffusivity, MD, mode of anisotropy, and
radial diffusivity [119].

A study which found that a polygenic score for intelli-
gence predicted 3–5% of intelligence differences in a new
sample also reported that this association was partially
mediated to a small extent by brain cortical thickness and
surface area of the anterior cingulate cortex, the prefrontal
cortex, the insula, and the medial temporal cortex [120].
The results are consistent with the notion that the genetic
variants’ associations with intelligence test scores might be
accounted for partly through their associations with varia-
tion in the structure of the brain in many of the areas already
linked in phenotypically with intelligence differences.

The high level of polygenicity of both intelligence [46] and
structural brain measures [118, 119] may indicate that a
wealth of biological systems are associated with individual
differences in both. This may prove an obstacle for unco-
vering a mechanistic account of how genetic variation is
associated with brain and intelligence differences, as any
biological system associated with both is likely to explain
only a fraction of phenotypic variance in both brain and
intelligence measures. However, despite the small effect sizes
likely to be associated with each mechanism separately, future
work aiming to produce a more mechanistic account of
intelligence differences should examine the relative impor-
tance of any biological system identified, as well as exam-
ining its association with brain imaging measures.

The pleiotropy identified between intelligence and cor-
tical measures also requires further examination. Specifi-
cally, the relative importance of vertical pleiotropy and
horizontal pleiotropy in the generation of genetic correla-
tions between cognitive ability and brain variables is cur-
rently unknown. By understanding the forms of pleiotropy
responsible for such genetic correlations, more mechanistic
accounts of intelligence differences can be formulated. For
example, should vertical pleiotropy drive the genetic cor-
relation between intelligence and brain structure then it
could indicate that brain structure is causal in intelligence
differences; however the opposite scenario is possible, i.e.
where intelligence partly drives brain differences. Should
these genetic correlations be the result of horizontal pleio-
tropy this would indicate that the same genetic loci are
associated with both brain structure and intelligence with no
causal relationship between the two.

A related difficulty in the interpretation of genetic cor-
relations between intelligence and brain morphology arises
from non-transmitted genetic effects [36, 37]. Here, genetic
correlations between intelligence and cortical measures
may, in part, be the result of the genotype of the parent
being linked to rearing practices that support both healthy
brain development, and intellectual growth. Within-family
GWAS will provide future opportunities to identify these
effects [66] and gauge the magnitude of the residual genetic
relationship between intelligence and brain structure, in the
absence of the effect that parental genotype may have on
both these variables.

The finding of a genetic g factor [29] also has implica-
tions for the functional annotation of the loci identified as
being associated with intelligence. Specifically, loci found
to be associated with cognitive abilities might be associated
with the variance from a general factor or they might be
associations specific to the domain examined, or even to the
specific test within the given domain. This can be seen most
clearly when examining genetic loci previously associated
with the Trails B cognitive test; it was shown [29] that
Trails B’s scores’ associations with genetic loci were shared
with other tests of cognitive ability, and so were more
general than initially assumed. This is a potential issue for
examining more mechanistic accounts of intelligence dif-
ferences, as variance that is both common across cognitive
tests, and the variance that is specific to any particular
testing domain or single test might be included together. By
using techniques such as genomic SEM to distil these
associations into those that are general across cognitive
domains, and those that are specific to each domain or test
could help in identifying plausible biological mechanisms
linked with each.

Beyond just gen-‘omics’

There are, as yet, few studies that directly integrate genetic
variation, brain imaging indices, and intelligence test scores.
We barely have even a rudimentary understanding of how
variation in the huge number of genetic variants identified
as being associated with intelligence test scores and brain
indices might directly relate to mechanisms (e.g. protein
expression) and how these go on to facilitate the neuro-
biological machinery whose properties can be estimated and
tested for any associations with differences in general
cognitive ability. The explanatory gap between genetic loci
and cognitive test scores is massive, and liable to induce a
range of responses from the pleasure and terror of the
Burkean sublime (a job to be done, though daunting), to less
helpful routes of either premature and simplistic reduc-
tionism, or hopelessness.

There are fields that might help to bridge the gap, and
contribute toward understanding intelligence differences,
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such as epigenetics [121, 122], transcriptomics, proteomics,
virtual histology, and others. Compared with, say GWAS
methods, these are newer still, and will take time to even
partly fill in the spaces between the triumvirate of genes,
brains, and intelligence. However, genome-wide methyla-
tion studies examining intelligence and brain structure have
begun to show some converging results. An association was
identified between cg12507869 on chromosome 10 in the
INPP5A gene and cognitive ability, as measured using the
Mini-Mental State Examination, and with phonemic verbal
fluency [121]. Methylation probes in the INPP5A gene have
also been shown to be associated with hippocampal volume,
cg25594319, although this did not withstand correction for
multiple testing across the brain regions examined [122].
Nevertheless, we judge that poly-epigenetic approaches
(e.g. EWAS and resultant epigenetic scores created out-of-
sample) and larger sample sizes, particularly in epigenetic-
neuroimaging studies [123] will yield further progress.
For example, epigenetic signatures of smoking, mortality,
and inflammation exhibit cognitive associations and regio-
nal cortical correlates in older age that overlap with P-FIT
areas [124–126].

‘Virtual histological’ methods—which exploit histologi-
cal data on regional gene expression [127]—also have
potential for understanding how genes and brain measures
relate to each other in the context of cognitive differences.
Unifying information on (i) gene expression patterns and
(ii) brain structural information at the same specific spatial
level (e.g. cortical parcels) allows researchers to ask whe-
ther brain regional differences in brain structure-expression
associations are relevant for other correlates of brain
structure, using a correlation-of-correlations approach. For
example, those brain cortical regions that showed a stronger
relationship between greater triacylglycerol expression and
greater cortical thickness were also the regions where
thickness was more strongly associated with general cog-
nitive ability [128]. Multivariate and systems-specific
approaches (which consider multiple proteins together)
will further illuminate the unique contributions of specific
proteins and the underlying mechanisms via which they
might relate to the underlying neurobiological bases of
cognitive differences.

Finally, we want to be clear about ‘prediction’ of intel-
ligence using genetic or brain imaging variables. We
advocate testing replication across samples; that is, if a set
of genetic variants or one or more brain imaging variables is
associated with psychometric intelligence in a discovery
sample then it is prudent to test whether the association
holds in replication samples. This is a means to validating
and understanding the generalisability of the genetic and
cerebral correlates of intelligence from a starting sample.
Thus, replication via out of sample prediction into another
sample is a tool via which we can enhance our

understanding of reasons why people differ in their cogni-
tive abilities. On the other hand, prediction of the intelli-
gence of an individual from genetic or neuroimaging
variables is not a practical or, in our view, desirable aim.

Conclusion

Brain imaging and genetic associations with intelligence
test score differences made progress in the last 10 years,
with a raft of results based on new methods and large
samples. Imaging and genetic variables account for a
minority of intelligence variation. In both fields we con-
clude that: additional sources of variation should be
sought; there is still a large explanatory gap separating us
from even a partial mechanistic account of why people
differ in intelligence; and the associations should not be
taken to mean that there are immutable contributions to
intelligence. When, or maybe if, we understand these and
future associations, there might be hints as to what tends to
make optimal cognitive development and healthy cogni-
tive ageing. We recognise and encourage research on other
substantial sources of variation in intelligence, social as
well as biological [129].

Acknowledgements IJD and SRC were supported by the UKRI
Medical Research Council (MR/R024065/1) and the United States
Department of Human Sciences National Institutes of Health
(1R01AG054628-01A1). IJD and WDH were supported by Age UK
(Disconnected Mind grant).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Glossary

Candidate gene
design

This design focusses on variants in specific genes
that are thought to be linked to the trait of interest
due to the biological functions of the genes and
genetic variants that are selected.

Genetic
correlation

This describes the standardised average genetic
effect shared between two phenotypes. It is a
correlation between the tested genetically heritable
elements of each trait.

Genome-wide
association study
(GWAS)

This study design is used to identify loci through-
out the genome associated with a trait or disease
state. GWAS can include millions of mostly
common single nucleotide polymorphisms from
across the genome. These are each tested for
association with the phenotype of interest. The
problem of type 1 statistical errors in such a large
number of tests is controlled for by adopting a
stringent p value cut off, typically of 5 × 10−8.
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Heritability This is the proportion of phenotypic variance that is
attributable to the variance found in genetic factors.
In the context of GWAS it is typically only the
additive genetic factors that are considered from
variants that are in linkage disequilibrium (see
below) with the common SNPs used, and so the
heritability estimate is the narrow-sense heritability.

Linkage disequi-
librium (LD)

This is the non-random association of alleles
located in at least two distinct genetic loci.

Mendelian ran-
domisation (MR)

MR is a statistical technique that uses genetic
variants, which are unchanged from conception, to
test for possible causal relationships between an
exposure and an outcome. MR typically uses SNPs
that have attained genome wide significance for an
exposure trait, such as smoking, as proxy variables
for the exposure trait, i.e. forming an instrument for
it. Such instrumental variables are defined by three
key assumptions. First, that they are associated
with the exposure. Second, they are associated with
the outcome only through the exposure. Third, that
they are not associated with confounders with
respect to the outcome.

Pleiotropy This describes the finding that multiple phenotypes
can be associated with genetic variation at the same
locus. First, this may be due to the locus’s having an
independent causal effect on each phenotype, which
is termed horizontal or biological pleiotropy. Second,
it can describe instances whereby one phenotype is
causally associated with a second phenotype, mean-
ing that any genetic associations found with the first
phenotype will be shared with the second; this is
termed vertical or mediated pleiotropy.

Single nucleotide
polymorphism
(SNP)

SNP is pronounced ‘snip’. This is the most
common type of genetic variation between people.
Each SNP is a substitution of a single nucleotide at
a specific position in the genome. In a GWAS, a
SNP is treated as the statistical unit of association.
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