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Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system.
One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory
animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing
literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are
associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that
Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.

Objectives

The human brain is interconnected by an estimated 10
million km of neurites [1]. The specific routes taken are
choreographed by a surprisingly small number of axon
guidance molecules [2]. In this review, we summarize
evidence that recently identified mutations and common
variants of genes encoding the guidance cue Netrin-1 and its
receptor, DCC (deleted in colorectal cancer), affect the
adolescent expansion of mesocorticolimbic dopamine
pathways and vulnerability to putative mesocorticolimbic-
related psychiatric disorders.

Mesocorticolimbic dopamine anatomy and
psychiatric disorders

The primate mesocorticolimbic dopamine system shares
many features with the homologous pathways in rodents. As
in rodents, primate dopamine cells project from the upper
brainstem to the dorsal striatum and multiple cortical and
subcortical limbic regions [3, 4]. These latter targets include
the ventral striatum (nucleus accumbens (NAcc), olfactory
tubercle), septum, hippocampus, amygdala, and cortical
regions, particularly the prefrontal (PFC), cingulate, and
perirhinal cortices. Primates and rodents both have descend-
ing glutamatergic and GABAergic projections from the
anterior cingulate and orbital frontal cortices to several limbic
and midbrain regions, including the ventral striatum and the
dopamine cell body regions, the substantia nigra (SN) and
ventral tegmental area (VTA) [3, 5]. In both rodents and
primates, the density of mesocortical dopamine fibers
increases dramatically from adolescence to adulthood [6, 7].
This process, at least in rodents, results from dopamine axons
continuing to grow beyond the NAcc to the PFC across
adolescence [8]. Compared to rodents, primate cortical
dopamine projections are more widespread [9], innervating
the entire cortical mantle, albeit more to anterior than pos-
terior regions [10, 11]. Subcortical dopamine axons are often
myelinated in primates, a feature not seen in rodents [10].

Disturbances to mesocorticolimbic development have
been proposed to contribute to multiple psychiatric dis-
orders. Consistent with this hypothesis, dopamine neuro-
transmission and mesocorticolimbic functional connectivity
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(the degree to which functional magnetic resonance imaging
(fMRI) blood oxygen level-dependent (BOLD) signals from
disparate brain regions are temporally correlated) are altered
in the mesocorticolimbic system in schizophrenia [12], sti-
mulant drug addiction [13, 14], and depression [15, 16],
each of which begins to emerge in adolescence [17, 18].
The proposal here is that DCC-mediated Netrin-1 signaling
alterations might be an important contributing factor
[6, 7, 19] (Fig. 1).

Axon guidance

The axon guidance properties of Netrin-1 and its receptor,
DCC, are shared by a larger class of proteins which operate
according to the following general mechanisms. During

neurodevelopment, axon navigation is directed by extra-
cellular axon guidance cues, which attract or repel growing
axons by inducing molecular changes in their growth cones
[2]. Growth cones are versatile structures with actin-based
finger-like extensions (filopodia) and protruding sheets
(lamellipodia) in their peripheral domains and microtubules
in their central domains. Guidance cues induce elongation,
retraction, or turning of growth cones, by altering the
relative rates of polymerization and depolymerization in
actin filaments as well as changes in microtubule stabili-
zation of the growth cone’s cytoskeletal proteins, including
actin filaments and microtubules [20]. These processes play
a critical role in the organization of brain connectivity and
are coordinated by a small number of guidance cue families,
including the netrins, slits, semaphorins, and ephrins [2, 21].
There are many members of these families as well as splice

Fig. 1 a DCC-mediated Netrin-1
connectivity-related processes.
Throughout adolescent brain
development, target recognition,
axon arborization, and synapse
formation are ongoing including
dopamine axon targettting, long
distance axonal growth, and
synaptogenesis by
mesocorticolimbic dopamine
axons. Green gradients indicate
Netrin-1 and the depicted axons
express DCC. b Dcc Mutation
Behavioral Effects in Mice.
Ages, in post-natal days (P), and
periods (early adolescence, mid
adolescence, and adulthood) at
which stimulant drug-induced
effects on reward and
information processing emerge
in Dcc haploinsufficient mice.
The effects are in green, based
on studies of Dcc
haploinsufficient mice [6, 7].
c Age of Onset of DCC-
implicated Psychiatric
Disorders. The DCC-implicated
psychiatric disorders, major
depressive disorder,
schizophrenia, and substance
use disorder, begin to emerge in
adolescence. The interquartile
ranges (25th to 75th percentiles)
are indicated in green. The
median ages of onset for major
depressive disorder,
schizophrenia, and substance
use disorder are 32, 23, and 20,
respectively. Data to construct
the figure were obtained from a
U.S. survey and an international
review [17, 18]
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variants [2, 21]. While the present review focusses on
Netrin-1 and its receptor, DCC, there are additional Netrin-1
receptors including Neogenin [22], uncoordinated 5
homologues (UNC5-H) [23], and Down syndrome cell
adhesion molecule (DSCAM) that contribute to the
orchestration of neuronal networks [24]. Furthermore, in
addition to guidance cue systems, cell adhesion molecules,
such as neural cell adhesion molecules (NCAM) [25] and
cadhedrins [26], as well as growth factors, also play critical
roles in brain connectivity processes (i.e., synapse forma-
tion [27], axon branching [28], and axon guidance [29]).

Netrin-1 and its DCC receptor

Netrin-1 is a mammalian laminin-related diffusible mole-
cule that interacts attractively or repulsively with several
receptors, including DCC [30]. These effects of Netrin-1
play a well-documented role in axonal pathfinding, an
evolutionarily conserved process demonstrated in several
species, including Drosophila [31], C. elegans [32], and
rodents [6]. The role of netrin and its receptors continues
beyond the laying down of pathway connectivity. Indeed,
once axons reach their intermediate or final targets, Netrin-1
participates in connectivity-related processes, including
target recognition, axon branching, synaptogenesis, and
synaptic plasticity [11, 30, 32, 33].

DCC receptors are part of the immunoglobulin super-
family and their extracellular domains are composed of four
immunoglobulin domains, in addition to six fibronectin type
III repeats [34]. The fourth, fifth, and sixth fibronectin type
III repeats constitute the binding sites for Netrin-1 [35]. In
humans and rodents, the DCC gene is located on chromo-
some 18 and comprises 29 exons [36]. The first demon-
stration of DCC’s role in axon guidance was in commissural
fibers of the developing neural tube [37], but DCC’s role is
not restricted to these fibers or to this early stage. Instead,
DCC remains expressed across the lifespan throughout the
nervous system [38–40]. DCC and Netrin-1 are highly
expressed in dopamine cell bodies and terminal regions,
including the SN, VTA, striatum, hippocampus, and cere-
bral cortex, in both rodents and humans [38–45].

Mice bred for Dcc haploinsufficiency (+/−) have
altered adolescent development of mesocorticolimbic
dopamine neurons affecting dopamine transmission
and dopamine-related behaviors in adulthood [6, 7]. Adult
Dcc+/− mice exhibit increased dopamine axon innervation,
dopamine presynaptic sites, and amphetamine-induced
dopamine release in the PFC. In comparison, in the
NAcc, there are decreases in dopamine varicosities and
amphetamine-induced dopamine release [8, 42, 45, 46]. The
latter effects result from ectopic growth of mesolimbic
dopamine axons to the PFC, a concomitant increase in

mesocortical dopamine synapses [8], function [47], and
augmented cortical inhibitory control over the responsive-
ness of mesolimbic dopamine neurons [48]. These changes
are concordant with the findings that, as adults, but not as
adolescents, Dcc+/− mice display multiple alterations to
dopamine-related behaviors, including diminished sensitiv-
ity to the effects of stimulant drugs (cocaine, amphetamine,
methamphetamine) on locomotor activity, sensorimotor
gating, conditioned place preference, and intracranial self-
stimulation [6, 42, 49, 50]. These behavioral effects have
been observed primarily under pharmacological challenge
conditions but drug-free adult DCC-deficient mice exhibit
reduced impulsivity [8] and attend less to a novel object in
the presence of a familiar object [51]. These altered drug
responses might be specific to stimulants, given that no
differences in conditioned place preference responses are
observed to either morphine or ethanol between Dcc hap-
loinsufficient mice and controls (Personal Communication;
Flores, Keifer, Darq and Nouel).

Behavioral and neurochemical effects of DCC hap-
loinsufficiency are mirrored by Netrin-1 haploinsufficiency.
In adulthood, but not in adolescence, Netrin-1 haploinsuffi-
cient mice exhibit increased medial PFC (mPFC) dopamine
concentrations and reduced sensitivity to the behavioral
effects of amphetamine [48]. Finally, adolescent ampheta-
mine administration alters the expression of both DCC in
dopamine neurons and Netrin-1 in the NAcc and mPFC [52].

In the following sections, we collate the evidence that
similar DCC and Netrin-1 related effects occur in humans,
influencing susceptibility to mood disorders, psychosis, and
addictions. As described above, specifically during adoles-
cence, DCC and Netrin-1 mediate dopamine axon targeting
in rodents. These processes coincide with changing levels of
a microRNA which suppresses DCC expression, miR-218
[7]. In comparison, directly testing temporal effects is
generally not possible in human genetic association studies,
given that the polymorphisms or mutations are present
throughout the lifespan. Nonetheless, as depicted in Fig. 1,
the observation that the psychiatric disorders associated
with DCC and Netrin-1 polymorphisms begin to emerge in
adolescence raises the tantalizing possibility that the pro-
cesses follow a parallel neurodevelopmental pathway.

Human genetic investigations of DCC

Schizophrenia

Several studies have linked DCC polymorphisms with
schizophrenia. In a candidate gene study, comprising
556 schizophrenia patients and 208 healthy controls, a SNP
(rs2270954) in DCC was found to be nominally associated
with schizophrenia. It was postulated that because this SNP
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is within the regulatory 3′ untranslated region (UTR), it may
alter DCC mRNA stability and consequently levels of DCC
protein translation [53]. Given that the 3′UTR region con-
tains microRNA (miRNA) binding sequences, the identified
SNP may disrupt miRNA binding, potentially increasing
DCC expression by preventing DCC mRNA transcript
degradation and/or translation inhibition [54, 55].

A second candidate gene study of 454 patients with
schizophrenia and 486 healthy controls reported a nominal
association with a DCC SNP (rs2229080) on exon 3 [56].
The authors also found evidence that rs2229080 induces a
protein structural change and, according to in silico analyses,
alters splicing regulation. Moreover, the authors noted that
rs2229080 is a known target of loss of heterozygosity (LOH)
and that such LOH is associated with reduced DCC
expression [57]. Thus, if the rs2229080 risk allele disrupts
the LOH target site (which downregulates DCC), the authors
proposed that the risk allele would result in increased DCC
expression, changing mesocorticolimbic dopamine devel-
opment and ultimately contributing to the schizophrenia
phenotype [56]. Subsequently, a much larger genome wide
association study (GWAS), applying a false discovery rate
(FDR) correction, found that an intronic locus of DCC
(rs4632195) is associated with schizophrenia (n= 82,315)
[58]. A mechanism regarding predicted expression outcomes
remains to be determined for this SNP. Most recently, by
applying next-generation sequencing, which sequences the
entire genome and can detect rare variants, loci in five genes,
including DCC, were shared among three family members
exhibiting atypical psychosis [59].

Depression

Over the past six years, there has been rapidly accumulating
evidence that both genetic variants and other factors that
alter DCC expression also affect susceptibility to mood
dysregulation and suicide. Two independent studies from
our group, in a discovery and replication cohort, have
demonstrated that depressed suicide completers exhibit
elevated DCC mRNA expression in the PFC, and a corre-
sponding downregulation of the DCC miRNA repressor,
miR-218 [54, 60]. Moreover, a genome-wide investigation
of differential gene expression in blood, applying a Baye-
sian approach, identified 165 differentially expressed genes
in major depressive disorder, including overexpression of
DCC [61]. Further strengthening these findings is a blood-
derived methylome-wide association study (MWAS) of 812
patients with depression and 320 controls, which found
associations between methylation sites in DCC and
depression [62]. Notably, while there is evidence of general
concordance between DNA methylation across blood and
brain tissue, there are exceptions [63], and this is a limita-
tion of the study.

GWAS research has identified an intronic DCC SNP
(rs4542757) associated with depressive symptoms (n=
3138) [64]. Although this effect did not achieve genome-
wide significance and was not identified in a replication
sample, the GWAS study was likely underpowered [64]. A
larger GWAS study (n= 161,460) identified an association
between depressive symptoms and an intronic DCC SNP,
rs62100776 [65]. Moreover, using pathway analyses in two
independent samples (n= 6455, n= 18,759), FDR-
corrected associations between depression and a Netrin-1
signaling pathway were identified, comprising SNPs from
multiple genes involved in Netrin-1 signaling, including
DCC [66]. Additionally, gene-based tests found that
depressive symptoms among participants in the UK Bio-
bank (n= 99,057) were associated with six genes, including
DCC [67]. Another UK Biobank (n= 122,935) gene-based
analysis found associations between suicidality and five
genes, including DCC [68]. Finally, a GWAS meta-analysis
of 135,458 individuals with major depression and 344,901
controls identified 44 genomic loci significantly associated
with depression, including an intronic DCC SNP
(rs11663393) [69].

The above associations might reflect an effect on mood
instability, a clinical feature common to numerous psy-
chiatric disorders [70]. In a GWAS study of 60,443 controls
and 53,525 mood instability cases, genome-wide sig-
nificance was detected for four independent genetic loci,
including an intronic DCC SNP (rs8084280) [71]. In line
with this idea, genetic correlations, which assess the degree
of shared heritability between phenotypes, were identified
between mood instability and three psychiatric conditions:
major depressive disorder, schizophrenia, and anxiety dis-
order [71].

Recently, a UK Biobank study (n= ~6400) found that
the SNPs in the Netrin-1 signaling pathway conferring risk
for major depression are associated with altered white
matter microstructure in thalamic radiations, namely lower
fractional anisotropy and higher mean diffusivity [72].

Strikingly, a UK Biobank meta-GWAS (n= 375,275)
identified an association between anhedonia and a locus in
DCC, which was the most statistically significant finding
[73]. The authors also reported high genetic correlations
between anhedonia and depression, as well as a moderate
genetic correlation with schizophrenia [73]. Moreover, a
higher anhedonia polygenic score predicted reduced brain
volumes, including in the NAcc and mPFC, as well as
altered white matter integrity in multiple pathways [73].

Furthermore, a genome-wide methylation study of 150
pairs of monozygotic twins (one co-twin with, and one
without, early onset major depression), identified altered
methylation in Netrin-1, among other genes in depression
[74]. An additional meta-GWAS study reported that a
Netrin-1 SNP, rs8081460, was associated with neuroticism
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(which is highly genetically correlated with depression) in
the UK Biobank sample (n= 91,370), although this SNP
effect did not replicate in two smaller, independent samples
(n= 6659 and n= 8687) [75].

The larger number of studies implicating DCC, relative
to Netrin-1, variants is notable. We propose that changes in
receptor expression/function, including DCC, result in
modifications in Netrin-1′s actions (attracting or repelling).
Therefore, subtle spatiotemporal variation in DCC expres-
sion could be sufficient to produce changes in connectivity,
even if total Netrin-1 expression is unaltered [6].

In the largest cross-disorder meta-GWAS of neu-
ropsychiatric disorders to date, comprising more than
232,964 cases and 494,162 controls across eight disorders,
the intronic DCC SNP, rs8084351, had the most robust
pleiotropic effects [76]. This striking finding indicates that
the effects of DCC and Netrin-1 are important across a wide
variety of psychiatric disorders.

DCC haploinsufficiency: personality traits and drug-
related behaviors

While GWAS studies typically detect relatively subtle
effects of DCC polymorphisms [77], loss-of-function hap-
loinsufficient DCC mutation carriers were expected to
exhibit larger effects, detectable with smaller sample sizes.
Our group recently conducted neuroimaging and psycho-
logical studies of a large Quebec family (n= 36), half of
whom possess a heterozygous frameshift mutation to DCC
(NM_005215.3, c.1140+ 1 G > A). The resulting mutated
allele encodes a truncated DCC protein that fails to bind to
Netrin-1 [78]. As in Dcc haploinsufficient mice, robust
anatomical and behavioral phenotypes are observed as a
consequence of human DCC haploinsufficiency, under-
scoring the sensitivity of the system. The DCC hap-
loinsufficient Quebecers have an adult behavioral
phenotype that shares two striking features with adult Dcc
haploinsufficient mice [79]. First, the adult DCC hap-
loinsufficient humans exhibit reduced novelty seeking per-
sonality traits [79]. Second, compared with their unaffected
relatives, the DCC haploinsufficient humans smoke less
tobacco yet use similar amounts of alcohol and cannabis
[79], consistent with the evidence in mice that DCC’s
effects are specific to stimulant drugs. Notably, cigarette
smoking increases dopamine transmission in humans [80]
while lowered dopaminergic tone can decrease smoking
[81], indicating that an altered smoking phenotype could
reflect alterations to the dopamine system.

These findings are bolstered by a large meta-GWAS
(n= 518,633), which identified associations between an
intronic DCC SNP, rs1221976, and self-reported “ever
smoker” [82]. This finding was part of a larger study on
risk-tolerance, whereby DCC SNPs were also associated

with “adventurousness”, defined as the propensity to be
“adventurous versus cautious.” An additional UK Biobank
GWAS study (n ~ 458,000) identified an intronic DCC
SNP, rs12970816, associated with cigarette smoking status
[83]. Finally, one more study (discovery: n= 5339, repli-
cation: n= 1682) reported that the intronic DCC SNP,
rs1372626, while not genome-wide significant, was the
SNP most strongly associated with cigarette smoking, and
was plausibly underpowered [84].

Moreover, in a human multivariate investigation, using a
powerful and sensitive alternative to traditional SNP stu-
dies, DCC was among the top genes associated with
impulsivity (n= 426) [85]. Since diminished novelty
seeking is associated with reduced dopamine release in the
ventral striatum of humans and rodents [14, 86, 87] these
behavioral alterations might reflect DCC’s effects on
mesocorticolimbic dopamine development and striatal
dopamine transmission [42].

DCC haploinsufficiency: dopamine
mesocorticolimbic connectivity

The associations between DCC and psychiatric disorders
might be a consequence of DCC-related alterations to
mesocorticolimbic pathways. As predicted, our group
revealed that DCC haploinsufficient members of the Quebec
family, as compared with control groups without the mutation
(i.e., both relatives and unrelated healthy volunteers) exhibit
striking reductions in anatomical connectivity, assessed using
diffusion MRI probabilistic tractography, from the SN/VTA
to both the ventral striatum and ventral mPFC [79].

These effects might include changes to dopamine path-
ways, but some caution is warranted. First, the reduced
mesocortical connectivity differs from the increased cortical
dopamine innervation seen in adult Dcc haploinsufficient
mice. Second, MRI methodologies do not discern the
underlying neurochemistry. Indeed, since mesocortico-
limbic pathways contain dopamine, gamma-aminobutyric
acid (GABA) and glutamate axons [88], the anatomical
connectivity findings in humans plausibly represent altera-
tions to both dopaminergic and non-dopaminergic axons.
These same considerations also raise the possibility that the
dopamine focused studies in rodents have yet to identify
alterations to inter-connected non-dopamine neurons.

In rodents, there is a complementary receptor to ligand
expression pattern of DCC and Netrin-1 in the NAcc and
PFC. While dopamine axons express high DCC levels in the
NAcc, they only rarely express DCC in the PFC [45].
Conversely, the intensity of Netrin-1 expression in the
NAcc is low, especially compared to the PFC, where
Netrin-1 expression is substantial [45]. Indeed, dopamine
axons expressing high levels of DCC target the NAcc and
do not continue to grow to the PFC in adolescence [8]. In
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the case of Dcc haploinsufficiency, since DCC expression is
reduced, mesolimbic dopamine axons fail to recognize the
NAcc as their final target and instead continue to grow
ectopically into the PFC throughout adolescence [8]. In
human DCC mutation carriers with reduced mesocortical
anatomical connectivity, these same effects might be
occurring yet the larger distances to be covered might lead
the misrouted mesocortical axons to disperse more diffu-
sely, compared to the rodents.

Striatal brain volume

We recently reported that both DCC haploinsufficient humans
and mice exhibit reduced striatal volumes. While these effects
occur in the NAcc in mice, they are localized to the putamen
in humans [79]. These effects were also identified in large-
scale GWAS investigations. One of these GWAS studies
(n= 30,717), part of the Enhancing Neuro Imaging Genetics
through Meta-Analysis (ENIGMA) initiative, investigated
genetic variants associated with the volumes of subcortical
structures [89]. Putamen volume was associated with four
genetic loci, including an intronic DCC SNP (rs62097986), in
both discovery and replication cohorts [89].

Bilateral putamen volume has also been associated with
an intronic SNP in DCC (rs62098013), as identified in the
UK Biobank Brain Imaging Data browser (http://big.stats.
ox.ac.uk/), which comprises neuroimaging GWAS data
from 9,707 participants [90]. Confidence in this finding is
bolstered by a more recent GWAS study that reported an
additional intronic locus of DCC (rs4632195) associated
with both putamen volume (n= 11,598) and schizophrenia
(n= 82,315) [58]. The risk allele for schizophrenia is
associated with larger putamen volumes.

Earlier work also identified larger putamen volumes
among those with schizophrenia [91], consistent with the

two genetic investigations that found associations between
SNPs in DCC and schizophrenia [53, 56]. This observation
fits well with our earlier proposal that schizophrenia is
associated with increased DCC expression [53]. Moreover,
in discovery (n= 905) and replication (n= 166) cohorts,
variants in genes incurring risk for schizophrenia, including
DCC, were associated with alterations in gray matter
volumes (putamen, thalamus, temporal gyrus), resting state
functional magnetic resonance imaging (rs-fMRI) signals in
the mPFC, and working-memory performance [92].

These striatal volumetric effects might have implications
for mood disorders as well. In depression, there are reports of
decreased putamen volume [93–95], although some other
groups have failed to replicate this finding [96] potentially
reflecting small sample sizes, heterogeneity within the
diagnostic category, and medication effects. Indeed, there is
recent MRI evidence that, in psychotropic medication-naïve
participants (n= 625), elevated putamen gray matter volume
is a disease risk marker across multiple diagnostic categories,
namely schizophrenia, major depression, obsessive compul-
sive disorder, and post-traumatic stress disorder [97].

Cortical volume

The DCC haploinsufficient Quebecers also demonstrate
modest volumetric increases in two cortical regions: the
mPFC/anterior cingulate cortex and the ventral mPFC [79].
In comparison, among human carriers of another DCC
mutation, a completely different phenotype is observed,
such that there is a complete absence of the cingulate gyrus
[98]. Volumetric cortical changes are not observed in Dcc
haploinsufficient mice [79] and have not been identified in
human neuroimaging GWAS investigations, to the authors’
knowledge, and therefore, the cortical findings may have
limited generalizability.

Fig. 2 Single nucleotide polymorphisms (SNPs) and associated phe-
notypes in the DCC gene. Depicted here is the 5′−3′ oriented DCC
gene, comprising 29 exons (red), intervening introns (gray), untrans-
lated regions (UTR; teal), transcriptional start site (TSS) region, pro-
moter region, start codon (ATG) and stop codon. The rs ID for each
SNP and associated phenotype(s) are indicated. The phenotypes are

cross disorder (yellow), smoking (light green), depression (blue),
schizophrenia (dark green), mood instability (orange), and putamen
volume (purple). The gene structure and SNP locations were deter-
mined using the NCBI tool, Variation Viewer (https://www.ncbi.nlm.
nih.gov/variation/view/), using the genome assembly, GRCh38.p12
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Identification of different DCC SNPs

The effects reported here are related to multiple SNPs
(Fig. 2). This could reflect several factors, including link-
age disequilibrium, the set of SNPs examined, the genetic
compositions of samples, the statistical procedures, the
sample sizes (i.e., statistical power), and the differing use
of covariates. Of note, 85% of the discussed DCC SNPs
are intronic, indicating that they plausibly influence spli-
cing, and consequently, DCC mRNA transcription and
translation; [99] such intronic SNPs may affect enhancers

or repressors which may distally regulate DCC transcrip-
tion [100].

Conclusions

This review highlights accumulating evidence that Netrin-
1 and its receptor DCC contribute to mesocorticolimbic
dopamine related psychiatric disorders that emerge during
adolescence (Tables 1 and 2). The findings are strikingly
convergent across heterogenous methodologies and

Table 1 Summary of human genetic studies of DCC and Netrin-1

References Genetic approach Gene Sample size Ancestry Phenotype

Mood disorders

Manitt et al. [60] mRNA expression DCC mRNA 30 cases, 35 controls Not available Depressed suicide completers

Dunn et al. [64] Genome-wide association study (GWAS) DCC gene 3138 Hispanic Depression

Okbay et al. [65] GWAS DCC gene 161,460 European Depression

Smith et al. [75] Meta-GWAS Netrin-1 91,370, replication
samples: (6659, 8687)

White, United Kingdom Neuroticism

Torres-Berrío et al. [54] mRNA expression DCC mRNA 11 cases, 12 controls Not available Depressed suicide completers

Zeng et al. [66] Pathway analysis, multilevel regional
heritability, and polygenic risk score

Netrin-1 signaling
pathway

25,214 European Depression

Aberg et al. [62] Methylome-wide association
study (MWAS)

DCC methylation sites 812 cases, 320 controls European Depression

Leday et al. [61] Genome-wide gene expression DCC mRNA 207 cases, 157 controls Caucasion Depression

Roberson-Nay et al. [74] Genome-wide methylation study Netrin-1 150 monozygotic
twin pairs

Caucasion Depression

Wray et al. [69] GWAS DCC gene 135,458 cases, 344,901
controls

European Depression

Arnau-Soler et al. [67] Gene-based test DCC gene 99,057 White, United Kingdom Depression

Barbu et al. [72] Polygenic risk score Netrin-1 signaling
pathway

~6400 Not available Depression

Lee et al. [76] Meta-GWAS DCC gene 232,964 cases, 494,162
controls

European Cross-disorder

Strawbridge et al. [69] Gene-based test DCC gene 122,935 White, United Kingdom Suicidality

Ward et al. [73] Meta-GWAS, polygenic score, genetic
correlations

DCC gene 375,275 European Anhedonia

Personality traits and substance use

Khadka et al. [85] Parallel independent component analysis DCC gene 426 Caucasion, African-
American, Hispanic, other

Impulsivity

Zanetti et al. [84] GWAS DCC gene 5339, replication: 1662 African-American Cigarette smoking

Ward et al. [71] GWAS DCC gene 53,525 cases, 60,443
controls

White, United Kingdom Mood Instability

Vosberg et al. [79] Rare mutation cohort DCC gene 20 cases, 36 controls Caucasion French
Canadian (cases)

Novelty seeking & tobacco use

Kichaev et al. [83] GWAS DCC gene n ~ 458,000 European Cigarette smoking

Lee et al. [76] Meta-GWAS DCC gene 232,964 cases, 494,162
controls

European Cross-disorder

Linnér et al. [82] Meta-GWAS DCC gene n= 518,633 European Cigarette smoking

Schizophrenia and psychosis

Grant et al. [53] Candidate gene DCC gene 556 cases, 208 controls African American, Asian,
Caucasion

Schizophrenia

Yan et al. [56] Candidate gene DCC gene 454 cases, 486 controls Han Chinese Schizophrenia

Okayama et al. [59] Next-generation sequencing DCC gene 3 cases Japanese Atypical psychosis

Smeland et al. [58] GWAS DCC gene 82,315 European, East Asian Schizophrenia

Lee et al. [76] Meta-GWAS DCC gene 232,964 cases, 494,162
controls

European Cross-disorder

Neurobiology

Hibar et al. [89] GWAS DCC gene 30,717 European Putamen Volume

Elliot et al. [90] GWAS DCC gene 9707 White, United Kingdom Putamen Volume

Luo et al. [92] Polygenic risk score Schizophrenia-associated
genes including DCC

Discovery (n= 905);
replication (n= 166)

Han Chinese Putamen, thalamus, temporal gyrus volumes;
mPFC rs-fMRI activity; working-memory

Smeland et al. [58] GWAS DCC gene 11,598 European Putamen volume

Vosberg et al. [79] Rare mutation cohort DCC gene 20 cases, 36 controls Caucasion French
Canadian (cases)

Mesocorticolimbic anatomical connectivity &
putamen volume

Barbu et al. [72] Polygenic risk score Netrin-1 signaling
pathway

~6400 Not available Thalamic raditions, white matter integrity
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samples and both between and within studies in humans
and mice.
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