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sensitivity and linearity via positive design of
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Zhenjin Xu 1,2, Dezhi Wu 1,2✉, Zhiwen Chen1,2, Zhongbao Wang1,2, Cong Cao1,2, Xiangyu Shao1, Gang Zhou3,
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Abstract
The tactile pressure sensor is of great significance in flexible electronics, but sensitivity customization over the required
working range with high linearity still remains a critical challenge. Despite numerous efforts to achieve high sensitivity
and a wide working range, most sensitive microstructures tend to be obtained only by inverting naturally existing
templates without rational design based on fundamental contact principles or models for piezoresistive pressure
sensors. Here, a positive design strategy with a hyperelastic model and a Hertzian contact model for comparison was
proposed to develop a flexible pressure sensor with highly customizable linear sensitivity and linearity, in which the
microstructure distribution was precalculated according to the desired requirement prior to fabrication. As a proof of
concept, three flexible pressure sensors exhibited sensitivities of 0.7, 1.0, and 1.3 kPa−1 over a linear region of up to
200 kPa, with a low sensitivity error (<5%) and high linearity (~0.99), as expected. Based on the superior
electromechanical performance of these sensors, potential applications in physiological signal recognition are
demonstrated as well, and such a strategy could shed more light on demand-oriented scenarios, including designable
working ranges and linear sensitivity for next-generation wearable devices.

Introduction
Structural modulation in micron-sized patterns within

active layers is considered a promising approach for
enhancing the performance of flexible pressure sensors,
thereby expanding the targeted applications to electronic
skin1–4, healthcare monitoring5–7, and human‒machine
interfaces8–10. High sensor performance relies on employing
new microengineering strategies in terms of geometric and
spatial designs. For instance, enhanced sensitivity and
response speed can be achieved via the controllable

introduction of microstructures with highly regular shapes,
such as pyramids11–13 or microdomes14–16, by increasing
the compressibility and reducing the viscoelasticity of
hyperelastic elastomers in a modulus-tunable manner17,18.
However, a significant challenge remains as the external
pressure increases: the sensors inevitably suffer from
deformation saturation due to the elastomer’s compressi-
bility reduction19, which leads to sensing limitations in a
high-pressure regime.
The passive design of irregular microstructures with

multiscale hierarchical properties offers an optimal solu-
tion for realizing continuous deformation with pres-
sure20,21. Previously, methods of inverting naturally
occurring microstructural templates (e.g., pollen grains22

or petals23, human skin24,25, abrasive paper26, and kir-
igami patterns27) or MEMS-fabricated artificial
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patterns28–31 have been introduced for piezoresistive
sensors to fabricate active layers. For example, Geng et al.
reported an ordered multilevel microstructure and
explored the regulations of its radius and spatial dis-
tribution impacting the sensor performance merely via
simulations and experiments32, rather than from a
quantitative perspective. With this in mind, such passive
strategies still lack clarity regarding rational design based
on fundamental contact principles or models33–37,
resulting in limitedly targeted performance implementa-
tion. To this end, tailoring microstructures in a positive
rather than passive fashion is promising for eliminating
such restrictive limitations fundamentally based on
appropriate theoretical calculations to further determine
the morphological and spatial parameters.
Although some forward-looking approaches have

emerged based on proactive strategies, there remains an
important concern for positive design in micropatterned
devices, i.e., the constitutive model mismatch for active
layer deformation. Several reported examples of eluci-
dating the principle of resistance variation with pressure
have employed Hertz contact theory, attempting to
establish a relationship between contact area change and
sensitivity, but only qualitative analysis has been
used5,32,38. Zhou’s group proposed a rational assignment
method of the gradient microdome architecture for
proactive performance improvement on the basis of
Hertzian contact, including the target designs of both the
size and the count38. Nevertheless, such positive schemes
are unable to ensure highly predictable performance since
they are inappropriate for describing a hyperelastic
material utilizing elastic solid contact theory for large
deformations39,40.
Here, we propose a new positive design strategy of

microhierarchical structures for addressing the above-
mentioned concerns based on the hyperelastic mechanics
of sensitive elastomers. Unlike the simple application of
Hertzian contact on a hyperelastic material, which may
cause an elastic contact shift (Text S3), our modified
contact theoretical model could predict more accurate
deformation parameters by referring to the corresponding
finite element analysis (FEA) simulation, thus achieving
the targeted designs and implementations for micro-
engineered sensors. As a proof of concept, as-fabricated
pressure sensors featuring highly customizable sensitivity
(0.7, 1.0, and 1.3 kPa−1) and high linearity (R2 ≈ 0.99) over
a predesigned linear working range (approximately
200 kPa) have been developed, particularly on obviously
antisaturated compensation at the predetermined pres-
sure. The prototype sensor also presented a fast response/
release time of 12.5/37.5 ms, a tiny limit of detection
(LOD) of 35 Pa, and good repeatability for more than
10,000 cycles of repeated loading/unloading. This
straightforward, positive design philosophy could allow

such demand-oriented scenarios, including a designable
working range and linear sensitivity, to be successful.

Results and discussion
Design concept and sensing mechanism of the sensitivity-
customized sensor
Matching between practical sensing resolution and an

appropriate pressure range according to actual demands
can be considered a feasible course to make flexible sen-
sors more suitable for certain applications since a scenario
may emphasize the macroscale working range and de-
emphasize much higher sensitivity, such as tire tread
stability testing41, and other scenarios may be quite the
opposite, such as pulse waveform recognition42. Our
positive design strategy for scenario-specific pressure
sensors enables the achievement of highly customizable
sensitivity and linearity (Fig. 1a). For the initial design
step, motivated by the actual requirement of multiscale
applications for different target pressure ranges, here, we
realize both the corresponding sensitivity and linear
working range via a positive design scheme, which is
based on the hyperelastic properties of sensitive materials
to predict real-time deformation parameters more effi-
ciently and accurately. By applying our modified hyper-
elastic contact model, we can directly autocompute the
specific size and number of microdome pixels at each
stage in hierarchical structures. For the fabrication, the
design diagram presented here provides the following 3D
printing template for the microstructures of the sensitive
layer, featuring antisaturation characteristics over the full-
scale pressure range (Fig. S1).
To further demonstrate the positive design concept, Fig.

1b illustrates the sensing mechanism of the predesigned
sensitivity-customized sensor, which mainly perceives
external stimuli through the change in contact resistance.
Briefly, as the sensor is subjected to pressure, the micro-
structure of the conductive sensitive layer is compressed
and deformed to increase the contact area with the upper
electrode, and then the contact resistance is reduced. The
initial resistance of the uncompressed sensor can be cal-
culated by

R ¼ Ra þ Rb þ Ri þ Rc ð1Þ

where Ra, Rb, and Ri represent the contact resistance
between the bottom of the sensitive layer and electrodes,
the resistance of the electrodes and the bulk resistance of
the sensitive layer, respectively. By applying a certain load
to the upper electrodes, the contact resistance between
the upper electrodes and sensitive layer, which is defined
as Rc, becomes crucial to the sensing sensitivity, while the
above resistances remain nearly constant and are
considerably smaller than Rc, which means they can be
ignored28. By rewriting the sensitivity in terms of Rc and
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the pressure change ΔP, the sensitivity can be expressed
as

S ¼ ΔI=I0
ΔP

¼
U
Rc
� U

Rc0

� �
= U
Rc0

ΔP
¼

Rc0
Rc

� 1

ΔP
¼

A
A0
� 1

ΔP
ð2Þ

where A0 and A are the initial and compressed contact
areas, respectively.
Therefore, the sensitivity is positively correlated with

the contact area of microstructures as external pressure is
applied. Overall, regulating the linear change in contact
area as pressure increases is the key to realizing the sen-
sitivity design over a linear working range. In this work,
we employed PμSL-based 3D printing technology (Fig. 1c)
to realize the positive design of multistage protrusions
with a precision of approximately 10 μm to ensure cus-
tomized desirable sensitivity.

Hyperelastic contact theoretical model
As elucidated in Section “Design concept and sensing

mechanism of the sensitivity-customized sensor”, it is
believed that the sensing sensitivity is linearly related to the
rate of increase of the contact area, so maintaining the
contact ratio within a certain working range allows the
realization of a positive design for desirable sensitivity under
externally applied pressure. By revealing the relationship
among the contact area, compression height, and pressure
of hemispheric pixels, the parameters of multistage dome-
like microstructures that meet the requirements of high
linearity can be well designed.
To make the isotropic elastic properties of our

hyperelastic elastomer more appropriate for character-
izing flexible pressure sensing systems, we employed the
neo-Hooken model, which is reduced from the best-
known strain-energy function formulation, the Moony-
Rivlin model for simplicity43. Taking inspiration from
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the module measurement of the sphere squeezing case
in Claude’s44 and Karssemeijer’s45 work, we determined
the two major parameters for properly reflecting the
large deformation based on hyperelastic mechanics, i.e.,
the compression height Δh and contact radius Rc, such
that

Δh ¼ 1� βð Þ � R� ð3Þ

Rc ¼ R
�
´

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ;2c
αc

s
ð4Þ

where β and R* are the compression ratios of the overall
height and initial radius of the hemisphere pixel,
respectively, and ∅c and αc represent the nominal height
and tangentially principal extension ratio for the contact
surface, respectively.
Although we concentrate on the critical variables (Δh

and Rc) in this compression-dependent behavior, which
then determine the current contact area and the shape
configuration of hierarchical structures, there are two
factors related to the value range determination that
should also be noted: neither the nominal height φ nor the
extension ratio α can be assigned to zero. If we assume
that φ converges to zero at the pole of the hemisphere-
shaped structure and that an extensive condition appears
at this point only, i.e., remains unchanged, Eqs. 3 and 4
become unsolvable. Naturally, introducing the preloading
pressure to avoid this potential problem allows these
variables to be greater than zero, and is also consistent
with the practical experiments since the final sensor
encapsulation will apply an initial prestress on the sensi-
tive layers. The introduction of our preloading procedures
is described in Section “Prototype sensor test”, and the
deprivation process for these key parameters is detailed in
Text S1.
Furthermore, to design the microstructured array for

preferred sensitivity in versatile scenarios, an approach to
determine microhierarchical structures has also been
proposed. In brief, we have attempted to build a dynamic
equilibrium relationship between the total force that a
single-staged array should withstand and the actual force
that has been applied. Thus, since the sensitivity is
determined by the change in the contact area, for a
positive design, we can define

Sn
S1

¼ 1þ ðn� 1Þ � kðn � 2Þ ð5Þ

where k is the desired sensitivity for n-level hierarchical
microstructures and Sn and S1 represent the contact area
between two adjacent stages on the head and end levels,
respectively. The total force Fn on the nth-staged pixels
when in contact can be described by the following

equation:

Fn ¼ n �WR ´ SA
TO

ð6Þ

where WR, SA, and TO indicate the working range,
sensing area, and total hierarchical orders of the prede-
signed sensor, respectively. According to the balance
between Fn on each stage of the hemispherical micro-
structure and its actual applied force, it can also be
expressed as:

Fn ¼
Xn
i¼1

mi � Fn!i ð7Þ

where m represents the number of micro pixels in the
current stage and Fn!i is the component force of each
pixel. Similarly, the total contact area can be defined as

Sn ¼
Xn
i¼1

mi � πR2
ci ð8Þ

For the compression height of array conditions, we can
determine the deformation of the microhemispheres
under current pressure, which is

Δhn ¼ 1� βn
� � � R�

n ¼ 1� βn�1

� � � R�
n�1 � Δhn�1

¼ ¼ ¼ 1� β1ð Þ � R�
1 �

Xn�1

i¼1
Δhi

ð9Þ

With this in mind, the (n− 1)th-staged microstructure
radius is determined, and then the nth-staged radius can
be further calculated as

R�
n�1 ¼ R�

n � Δhn ð10Þ

Thus, the target parameters (i.e., mn and Rn) can be
obtained by solving the above equations simultaneously.

Fabrication of the microhierarchical structures
To further evaluate our hyperelasticity-based modified

model for a proof of concept, we designed certain flexible
pressure sensors in a predetermined linear region. A
schematic of the sensor structure is shown in Fig. 2a, and
the corresponding preparation mainly involved three
steps, as depicted in Fig. 2b: the design calculation for the
size and number of hierarchical pixels during each stage
and its corresponding layout, the fabrication of a struc-
tured template and sensitive layer, and the final sensor
encapsulation. In Step I, we first selected a proper con-
ductive elastomer to serve as a sensitive substrate, that is,
a multiwalled carbon nanotube and polydimethylsiloxane
(MWCNT/PDMS) conductive composite thin film. After
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the stress‒strain curve was plotted, we determined the
hyperelastic material constant for further application to
our modified contact model. Second, based on the actual
requirement of a specific application, the desired working
range and perceiving resolution (e.g., every 10 kPa or
1 kPa) were determined, and thus the order and number
of hierarchical microstructures were calculated. By
achieving a rational distribution, a diagram of the sensitive
layer for desirable sensitivity and the linear range was
obtained, and the details are listed in Tables S1–S4.
For the microstructural template preparation in Step II,

we 3D-printed (precision, 10 μm) the designed microdome-
like structures on the resinous substrate according to the
distribution diagram in Step I, and these structures served
as a convex module to prepare the thermoplastic poly-
urethane (TPU) template since the concave mold tends to
retain substances after film pouring, which not only is
inconvenient to clean but also affects the microstructure
shape. The TPU film was obtained after the inversion, and
then the prepared MWCNT/PDMS conductive solution
was poured and coated on the TPU film; finally, it was
cured and peeled off the template. In Step III, an MWCNT/
PDMS conductive film was sandwiched by the upper and
lower flexible electrodes with watertight polyurethane (PU)-

based adhesive tape46 for structure enhancement, which
also endowed the fabricated sensors with humidity-
insensitive properties (Fig. S2). Figure 2c shows the 3D
surface scanning image of the printed sensitive micro-
structures (also illustrated in Fig. S3). Moreover, the fabri-
cated films show multistage protrusions with different
sensitivities on the scale of 500 μm (Fig. 2d), with a
rationally predesigned distribution in both rows and
columns.

Sensing performance of the pressure sensor
The as-fabricated microengineered pressure sensors

prepared by the abovementioned procedure in the pro-
posed proactive fashion featured target sensitivities varying
from 0.7 to 1.3 kPa−1 over a working range of up to
200 kPa (Figs. S4–S7). Figure 3a–c shows the sensitivities
of the pressure sensors fabricated via the proposed mod-
ified model with a broad linear working range from 0 to
200 kPa. Figure 3a shows that the measured sensitivity was
0.705 kPa−1, with superior linearity of 0.989 for a target
sensitivity of 0.7, and the experimental deviation was only
0.7%, indicating that the sensitivity-tuned objective under
a linear working region was achieved. Likewise, the pre-
designed sensors with target sensitivities of 1.0 and
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1.3 kPa−1 (Fig. 3b, c) also showed expected results of
0.950 kPa−1 with a linearity of 0.999 and 1.321 kPa−1 with
a linearity of 0.987, respectively. Notably, the maximum
offset of the sensitivity arrangement (i.e., sensitivity error)
was less than 5%, which further demonstrates the practical
effectiveness of the positive design scheme. Figure 3d
compares the prototype sensors featuring no hierarchical
structures with previously developed sensors in terms of
sensitivity and dynamic range. It was observed that the
sensitivity gradually became saturated as the pressure
increased since the uniform pixels with a radius of 300 μm
tended to be flattened while lacking contact compensation.
The hierarchical structures generated by positively

microengineered design increased the compressibility of

the micropatterned active layer by adding air voids among
the structures to decrease the modules47,48, which can
easily and quickly induce energy conversion upon appli-
cation of unloading and loading pressure, thus increasing
the response speed and detection limit49. Here, the LOD
and response/release time was also explored (Fig. 3e, f).
The prototype sensor was capable of detecting a subtle
pressure of 35 Pa on a contact area of 1 cm2, corre-
sponding to a mass of 0.35 g. The fast response (12.5 ms)
and recovery (37.5 ms) times were attributed to the gra-
ded microdomes and shortened the reactive periods by up
to four orders of magnitude, thus indicating that the
sensors could be suitable for most applications, such as
low-frequency signal detection and monitoring.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

2

4

6

8

1.80 1.85 1.90 1.950.80 0.85 0.90 0.95

Time (s)

0 40 80 120 160 200

0

30

60

90

120

150

ΔI
/I 0

ΔI
/I 0

ΔI
/I 0

ΔI
/I 0

ΔI
/I 0

ΔI
/I 0

ΔI
/I 0

Pressure (kPa)

 Target patterned sen. 0.7

Error Bar

S = 0.705 kPa-1

R2 = 0.989

S = 0.950 kPa-1

R2 = 0.999

S = 1.321 kPa-1

R2 = 0.987

0 40 80 120 160 200

0

30

60

90

120

150

180

Pressure (kPa)

 Target patterned sen. 1.0

Error Bar

0 40 80 120 160 200

0

40

80

120

160

200

240

280

Pressure (kPa)

 Target patterned sen. 1.3

Error Bar

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Time (s)

LOD ~ 35 Pa

12.5 ms 37.5 ms37

-2 -1 0 1 2

-2

-1

0

1

2

 
C

u
rr

en
t 

(m
A

)

Voltage (V)

  0 kPa    30 kPa    60 kPa

  90 kPa    120 kPa

  150 kPa   180 kPa

  200 kPa  

0 5000 10,000 15,000 20,000 25,000 30,000

0

80

160

240

320

400

0 5 10 15 20

0

40

80

120

160

15,035 15,040 15,045 15,050 15,055

0

40

80

120

160

30,030 30,035 30,040 30,045 30,050

0

40

80

120

160

Time (s)

a b c

d e

g

f

h

0 40 80 120 160 200

0

15

30

45

60

Pressure (kPa)

 Uniformed structure
(radius. 300 μm)

300 μm

Fig. 3 a–c ΔI/I0 versus the imposed pressure range of 0–200 kPa indicating the predesigned target sensitivity of 0.7, 1.0, and 1.3 kPa−1, respectively,
based on the hyperelastic mechanism. d The sensitivity performance of the sensor with uniform microstructures with a radius of 300 μm. e Limit of
detection. f The response/release time of the sensor. g Ohmic characteristics under the investigated voltage from −2 to 2 V. h The sensing reusability
under 10,000 loading/unloading cycles

Xu et al. Microsystems & Nanoengineering             (2023) 9:5 Page 6 of 12



Significantly, the ineluctable viscoelastic behavior of
hyperelastic materials can result in hysteresis of the
relaxation time17,50, but the patterned structures could
minimize this problem by decreasing the relative volumes
without altering the sensing area.
To demonstrate the ohmic characteristics, the

current–voltage (I–V) curve from −2 to 2 V was investi-
gated under various pressures, and good linearity with a
stable response was observed (Fig. 3g). In addition, as
shown in Fig. 3h, the reusability of the sensor at a periodic
pressure over 30,000 s was evaluated, and the insets
emphatically show the good reusability and stability of the
sensors even after 10,000 loading/unloading cycles with a
consistent swift response. This favorable sensing perfor-
mance is suitable for potential applications to better
demonstrate the proposed positive design strategy with
customizable sensitivity over highly linear regions.

Theoretical validation of the hyperelastic and Hertzian
models for the positive design strategy for comparison
In addition to applying the developed modified hyper-

elastic model to sensor fabrication to realize the desired
sensitivity and working range with high linearity, we
validated the contact model by applying the FEA method
to the investigation of the compression behavior of a

single microstructural pixel. In addition, the Hertzian
model has also been employed to describe the mechanism
of hyperelastic compression. Figure 4a–c shows the height
and area parameters determined with the hyperelastic
contact, FEA, and Hertzian contact models for a single
microstructural pixel versus an imposed pressure of up to
250 kPa.
The stress and deformation conditions over the dynamic

compression process are shown in Fig. 4a, and the applied
model and parameters are described in the Experimental
Section. Figure 4b displays the theoretical results of the
compression height change based on the hyperelastic
model, the Hertzian contact model, and the corresponding
FEA simulations. It was found that in the region of
0–250 kPa, the Hertzian height change increased at a
certain rate without any sign of saturation, indicating that
constant Young’s moduli existed during the whole loading
process that did not conform to the intrinsic properties of
hyperelastic materials. Our developed contact model cor-
rected the above defects, and the calculated results were
well correlated with the simulations. This can be further
demonstrated with the contact area, as depicted in Fig. 4c.
In summary, the PDMS substrate is a typical hyperelastic
material whose Young’s modulus will increase with greater
deformation in a nonlinear fashion (Fig. 4d).
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To evaluate the linear sensitivity of the programable
pressure sensor, Hertzian contact theory was then applied
to the procedure of positive design (Text S2) in compar-
ison with our proposed contact model. Figure 4e presents
the Hertzian sensitivity performance over a predesigned
working range (~200 kPa). We compared this perfor-
mance with that of our prepared sensor with a sensitivity
of 1.0 kPa−1 at the modified contact line based on
hyperelastic mechanisms, and the actual output response
curve of the Hertzian contact deviated considerably from
the expectation for an elastic contact shift. Specifically, in
the range of 0–60 kPa, the Hertzian contact sensitivity
remained at only 0.1184 kPa−1, and the turning point (i.e.,
the point at which the former-staged structure is com-
pressed to the top of the latter one) was also more delayed
than the preset pressure, as Fig. 4f illustrates, from 30, 60,
and 90 kPa to 70, 150, and 200 kPa, naturally extending
the predesigned range from ~200 to ~250 kPa. It was
suggested that the elastic contact shift occurred on the
Hertz model with large deformations, which is detailed in
Text S3.

Application demonstration of the proposed sensor
Low-frequency physiological signals play a significant

role in human‒machine interactions and medical reha-
bilitation, for example, in ambulatory activity recogni-
tion51 or hand gesture recognition52. Our prototype
pressure sensor featuring superior flexibility was attached
to several parts of subjects for real-time signal detection
and recognition. Figure 5a, b shows the changes in the
physiological signals of lower limb joints as the subjects
performed different motions. Specifically, when the sensor
was mounted on the knee of a volunteer (61 kg) per-
forming walking, running, and high knee exercises (Fig.
5a), the quick changes in sensing resistance, with average
readings of 7, 22, and 65, obviously reveal three actions
corresponding to the above motions with distinct ampli-
tudes, which can be employed to make a clear distinction.
Similarly, to recognize various gaits, including jumping as
the sensor was placed on an insole below the heel (Fig.
5b), which also demonstrates that the prototype sensor
can exhibit a prompt response with instant electrical
changes (approximately 50, 120, and 245, respectively)
during knee or foot exercises over a large working region
(~185 kPa). In addition, Fig. 5c shows that a sensor with
customized sensitivity is available for detecting and dis-
tinguishing different hand gestures when attached to the
pronator quadratus muscle, which helps to pronate whole
wrist movements53. Afterward, we also applied our flex-
ible sensor to identify hand motions, including fist, wave
in, hand opening, ok-sign, and one-sign (Fig. 5d). Notably,
the process of performing the predesigned gestures was
conducted over ten times to verify the signal repeatability
for identical actions, and Fig. 5e indicates that the actual

signals were capable of reflecting the differences in mus-
cular activities. For instance, the resistances captured
during the performance of the one-sign gesture show
significant peaks between 25.5 and 30.2 kΩ, with both
rising and falling, indicating the implementation of cur-
rent motion, such as from 1.5 to 2.5 s.
Machine learning combined with gestural pressure data

has been proven to be an effective approach to identifying
subjects’ intentions through specific hand move-
ments54–56. Herein, we have adopted a three-layer back
propagation (BP) neural network for gesture classification,
and raw signals have been captured previously to further
demonstrate the precise feedback that our proposed
sensor could achieve. With the assistance of the signal
preprocessing procedure, the raw data exhibited higher
robustness via feature extraction, including the peak-to-
peak value, mean value, root mean square, waveform
factor and peak factor. We then employed the K-fold
cross-validation method to evaluate our developed clas-
sification model by dividing the dataset into K categories,
utilizing each of them as a test set and the others as a
training set. In this work, the whole dataset was separately
tested 10 times, and the average prediction accuracy was
considered as the final performance evaluation in the
confusion matrix, as shown in Fig. 5f. The results show
that our pressure sensor integrated with the BP neural
network has an overall recognition accuracy of >86.0% for
all five gestures overall testing sessions, indicating classi-
fication performance via single-channel signals to achieve
five-gesture recognition superior to that of other multi-
channel input methods in similar cases57,58. To access the
effectiveness of the loss function in our classification
model, we established the binary cross-entropy loss, as
shown in Fig. 5g, which states that fast convergence can
be achieved under less than 30 epochs in both the training
and testing loss. The inset shows that the prediction
accuracy can also complete mathematical convergence
quickly (<90 epochs) while realizing impressive recogni-
tion performance. Notably, Fig. 5g reflects only the first
session of the 10-fold validation. Therefore, our prototype
sensor based on a positive strategy design can become a
preferable selection for human‒machine interaction by
means of machine learning.

Conclusion
A positive design strategy using a hyperelastic contact

theoretical model for developing customizable sensitiv-
ity- and linearity-tuned flexible piezoresistive pressure
sensors based on microhierarchical dome-like struc-
tures has been proposed based on our newly modified
contact theoretical model with hyperelastic mechanics.
Three prototype samples were designed and fabricated,
and they exhibited different sensitivities varying from
0.7 to 1.3 kPa−1 over a linear region of up to 200 kPa,
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featuring a sensitivity error <5% and linearity of ~0.99,
consistent with expectations. The potential applications
of the sensors in both ambulatory activity and hand
gesture recognition were successfully demonstrated.
Thus, our work highlights that sensors with the desired
sensitivity and the required linear region can be calcu-
lated, predesigned, and fabricated via such a positive
design scheme.

Experimental section
Preparation of a TPU solution and an MWCNT/PDMS
conductive solution
The precursor solution of TPU was prepared by dis-

solving 20 wt% TPU (Bayer MaterialScience) in N,N-
dimethylacetamide (DMAC, Sinopharm Chemical
Reagent Co., Ltd.), and stirring at 50 °C for 12 h in com-
plete dissolution. To prepare the MWCNT/PDMS
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solution, 1 wt% MWCNT powder was mixed into 5 mL of
N-hexane (Aladdin), and ultrasonic irradiation was con-
ducted at 53 kHz for 5 h. Then, 1 g of PDMS base (Slygard
184, DOW Corning, USA) and a curing agent in a weight
ratio of 10:1 were poured into the mixed MWCNT/N-
hexane solution and stirred at room temperature for 12 h.

Fabrication of a pure TPU die from a 3D printed template
3D-printed templates with gradient architectures were

adopted to prepare pure TPU dies for further manu-
facturing of the sensitive layer. The predesigned mold
with microhierarchical structures of certain orders was
fabricated by means of commercial high-precision
equipment (S240, Boston Micro Fabrication Material
Technology Inc., Shenzhen, China) and was characterized
by projection microstereolithography (PμSL) 3D printing
technology. After purification and UV curing of the
printed convex module, the second mold with reverse-
domed structures was obtained by casting the TPU
solution onto the mold to replicate the customized
microfeatures.

Fabrication of an MWCNT/PDMS conductive film for the
sensitive layer
For the secondary inversion to obtain the TPU film, the

prepared 20 wt% TPU solution was poured onto the
multistage hemispherical microstructure mold, kept at
100 °C for 1 h to cure, and then peeled off. Next, the
prepared MWCNT/PDMS conductive solution was
poured and coated on the TPU film and placed in a
vacuum environment for 5 min so that the conductive
solution could completely fill the micropits on the tem-
plate. Then, it was kept at 80 °C for another 1 h, and the
sensitive film was cured and peeled off from the template.

Finite element analysis
FEA analysis was conducted to study the contact

deformation between the upper electrodes and micro-
hierarchical sensitive layers under various compression
conditions. A two-dimensional model of protruding
microstructures of a half single pixel in accordance with
the equivalent strain relationship was built for simplicity.
The microstructured composite conductive film and PU/
Cu electrode as the rigid plates were modeled with iso-
topically elastic materials with Young’s moduli of 210 GPa
and a polynomial hyperelastic model (the set parameters
are listed in Table S5), respectively. In addition, frictionless
contact on tangential behavior was also assumed as the
contact interaction. The final compressed height and
contact area were recorded as the pressure increased up to
250 kPa with the simulation method of direct iteration.
The initial contact area was determined by the upper limit
of the normalized height (i.e., 0.9) in our proposed

modified hyperelastic contact model, and the corre-
sponding pressure in terms of sensor size is detailed in
Table S6.

Characterization and measurements
The 3D surface morphology of the MWCNT/PDMS

sensitive film was probed using a 3D laser scanning
confocal microscope (VK-X1000, KEYENCE). The SEM
images were obtained by means of a scanning electron
microscope (SU-70, Hitachi, Japan). The external stimuli
were induced by an electromechanical performance test-
ing machine (E43.104, MTS Co., Ltd.), and the output
resistances were recorded and measured via a digital
multimeter (Agilent 34410A, KEYSIGHT). The output
signals of the gesture recognition task were collected by
our homemade FPGA-based collection board with the
assistance of an ADC processor (AD7606, Liaoning
Kangwei Technology Co., Ltd.).

Prototype sensor test
The nominal height ;c cannot be integrated at the pole

position relative to the equator for whose area will be
reduced to zero, which means providing the preload to
create the initial contact area was the first necessary step
for evaluating the sensing sensitivity. In this work, we
preset the initial nominal height to 0.9, and the corre-
sponding preloading pressure for each sensor of different
sensitivities is listed in Table S6.
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