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On the use of deep learning for phase recovery
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George Barbastathis5, Renjie Zhou 3, Jianlin Zhao 2✉ and Edmund Y. Lam 1✉

Abstract
Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified
from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing
the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In
recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented
support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first
briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following
three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase
image processing. Finally, we summarize the work in DL for PR and provide an outlook on how to better use DL to
improve the reliability and efficiency of PR. Furthermore, we present a live-updating resource (https://github.com/
kqwang/phase-recovery) for readers to learn more about PR.

Introduction
Light, as an electromagnetic wave, has two essential

components: amplitude and phase1. Optical detectors,
usually relying on photon-to-electron conversion (such as
charge-coupled device sensors and the human eye),
measure the intensity that is proportional to the square of
the amplitude of the light field, which in turn relates to
the transmittance or reflectance distribution of the sample
(Fig. 1a, b). However, they cannot capture the phase of the
light field because of their limited sampling frequency2.
Actually, in many application scenarios, the phase rather

than the amplitude of the light field carries the primary
information of the samples3–6. For quantitative structural
determination of transparent and weakly scattering sam-
ples3 (Fig. 1c), the phase delay is proportional to the
sample’s thickness or refractive index (RI) distribution,
which is critically important for bioimaging because most
living cells are transparent. For quantitative

characterization of the aberrated wavefront5 (Fig. 1d, e), the
phase aberration is caused by atmospheric turbulence with
an inhomogeneous RI distribution in the light path, which
is mainly used in adaptive aberration correction. Also, for
quantitative measurement of the surface profile6 (Fig. 1f),
the phase delay is proportional to the surface height of the
sample, which is very useful in material inspection.
Since the phase delay across the wavefront is necessary for

the above applications, but the optical detection devices can
only perceive and record the amplitude of the light field,
how can we recover the desired phase? Fortunately, as the
light field propagates, the phase delay also causes changes in
the amplitude distribution; therefore, we can record the
amplitude of the propagated light field and then calculate
the corresponding phase. This operation generally comes
under different names according to the application domain;
for example, it is quantitative phase imaging (QPI) in bio-
medicine3, phase retrieval in coherent diffraction imaging
(CDI)4 which is the most commonly used term in X-ray
optics and non-optical analogs such as electrons and other
particles, and wavefront sensing in adaptive optics (AO)5 for
astronomy and optical communications. Here, we collec-
tively refer to the way of calculating the phase of a light field
from its intensity measurements as phase recovery (PR).
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As is common in inverse problems, calculating the
phase directly from an intensity measurement after pro-
pagation is usually ill-posed7. Suppose the complex field
at the sensor plane is known. We can directly calculate the
complex field at the sample plane using numerical pro-
pagation8 (Fig. 2a). However, in reality, the sensor only
records the intensity but loses the phase, and, moreover, it
is necessarily sampled by pixels of finite area size. Because
of these complications, the complex field distribution at
the sample plane generally cannot be calculated in a
straightforward manner (Fig. 2b).
We can transform phase recovery into a well-posed/

deterministic problem by introducing extra information,
such as holography or interferometry at the expense of
having to introduce a reference wave8,9, Shack-Hartmann
wavefront sensing which introduces a microlens array at
the conjugate plane10,11, and transport of intensity equa-
tion requiring multiple through-focus amplitudes12,13.
Alternatively, we can solve this ill-posed phase recovery
problem in an iterative manner by optimization, i.e., the
so-called phase retrieval such as Gerchberg-Saxton-
Fienup algorithm14–16, multi-height algorithm17–19, real-
space ptychography20–22, and Fourier ptychography23,24.
Next, we introduce these classical phase recovery meth-
ods in more detail.
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Holography/interferometry
By interfering the unknown wavefront with a known

reference wave, the phase difference between the object
wave and the reference wave is converted into the
intensity of the resulting hologram/interferogram due to
alternating constructive and destructive interference of
the two waves across their fronts. This enables direct
calculation of the phase from the hologram8.
In in-line holography, where the object beam and the

reference beam are along the same optical axis, four-step
phase-shifting algorithm is commonly used for phase
recovery (Fig. 3)25. At first, the complex field of the object
wave at the sensor plane is calculated from the four
phase-shifting holograms. Next, the complex field at the
sample plane is obtained through numerical propagation.
Then, by applying the arctangent function over the final
complex field, a phase map in the range of (−π, π] is
obtained, i.e., the so-called wrapped phase. The final
sample phase is obtained after phase unwrapping. Other
multiple-step phase-shifting algorithms are also possible
for phase recovery26. Spatial light interference microscopy
(SLIM), as a well-known QPI method, combines the
phase-shifting algorithm with a phase contrast micro-
scopy for phase recovery over transparent samples27.
In off-axis holography, where the reference beam is

slightly tilted from the optical axis, the phase is modulated
into a carrier frequency that can be recovered through
spatial spectral filtering with only one holographic mea-
surement (Fig. 4)28. By appropriately designing the carrier
frequency, the baseband that contains the reference beam
can be well separated from the object beam. After trans-
forming the measured hologram into the spatial frequency
domain through a Fourier transform (FT), one can select
the +1st or −1st order beam and move it to the baseband.
By applying an inverse FT, the object beam can be

recovered. One has to be careful, however, not to exceed
the Nyquist limit on the camera as the angle between
reference and object increases. Moreover, as only a small
part of the spatial spectrum is taken for phase recovery,
off-axis holography typically wastes a lot of spatial band-
width product of the system. To enhance the utilization of
the spatial bandwidth product, the Kramers-Kronig rela-
tionship and other iterative algorithms have been recently
applied in off-axis holography29–31.
Both the in-line and off-axis holography discussed

above are lensless, where the sensor and sample planes are
not mutually conjugated. Therefore, a backward numer-
ical propagation from the former to the latter is necessary.
The process of numerical propagation can be omitted if
additional imaging components are added to conjugate
the sensor and sample planes, such as digital holographic
microscopy32.

Shack-Hartmann wavefront sensing
If we can obtain the horizontal and vertical phase gra-

dients of a wavefront in some ways, then the phase can be
recovered by integrating the phase gradients in these
orthogonal directions. Shack-Hartmann wavefront sen-
sor10,11 is a classic way to do so from the perspective of
geometric optics. It usually consists of a microlens array
and an image sensor located at its focal plane (Fig. 5). The
phase gradient of the wavefront at the surface of each
microlens is calculated linearly from the displacement of
the focal point on the focal plane, in both horizontal and
vertical (x-axis and y-axis) directions. The phase can then
be computed by integrating the gradient at each point,
whose resolution depends on the density of the microlens
array. In addition, quantitative differential interference
contrast microscopy33, quantitative differential phase
contrast microscopy34, and quadriwave lateral shearing
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interferometry35 also recover the phase from its gradients.
They may achieve higher resolution than the Shack-
Hartmann wavefront sensor.

Transport of intensity equation
For a light field, the wavefront determines the axial

variation of the intensity in the direction of propagation.
Specifically, there is a quantitative relationship between
the gradient and curvature of the phase and the axial
differentiation of intensity, the so-called transport of
intensity equation (TIE)12. This relationship has an ele-
gant analogy to fluid mechanics, approximating the light
intensity as the density of a compressible fluid and the
phase gradient as the lateral pressure field36. TIE can be
derived from three different perspectives: the Helmholtz
equations in the paraxial approximation, and the Fresnel
diffraction and Poynting theorem in the paraxial and
weak-defocusing approximation13. The gradient and
curvature of the phase together determine the wavefront
shape, whose normal vector is then parallel to the wave-
vector at each point of the wavefront, and consequently to

the direction of energy propagation. In turn, variations in
the lateral energy flux also result in axial variations of the
intensity. Convergence of light by a convex lens is an
intuitive example (Fig. 6): the wavefront in front of the
convex lens is a plane, whose wavevector is parallel to the
direction of propagation. As such, the intensity distribu-
tion on different planes is constant; that is, the axial
variation of the intensity is equal to zero. Then, the
convex lens changes the wavefront so that all wavevectors
are directed to the focal point, and therefore, as the light
propagates, the intensity distribution becomes denser and
denser, meaning that the intensity varies in the axial
direction (equivalent, its axial derivative is not zero).
As there is a quantitative relationship between the

gradient and curvature of the phase and the axial differ-
entiation of intensity, we can exploit it for phase recovery
(Fig. 7). By shifting the sensor axially, intensity maps at
different defocus distances are recorded, which can be
used to approximate the axial differential by numerical
difference, and thus calculate the phase through TIE. Due
to the addition of the imager, the sensor and sample
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planes are conjugated. Besides, TIE can also be used in
lensless systems to recover the phase at the defocus plane,
which thus requires an additional numerical
propagation13.
It is worth noting that TIE is suitable for a complete and

partially coherent light source, and the resulting phase is
continuous and does not require phase unwrapping, while
it is only effective in the case of paraxial and weak-
defocusing approximation13.

Phase retrieval
If extra information is not desired to be introduced,

then calculating the phase directly from a propagated
intensity measurement is an ill-posed problem. We can
overcome such difficulty through incorporating prior
knowledge. This is also known as regularization. In the
Gerchberg-Saxton (GS) algorithm14, the intensity at the
sample plane and the far-field sensor plane recorded by
the sensor are used as constraints. A complex field is
projected forward and backward between these two
planes using the Fourier transform and constrained by the
intensity iteratively; the resulting complex field will gra-
dually approach a solution (Fig. 8a). Fienup changed the
intensity constraint at the sample plane to the aperture
(support region) constraint, so that the sensor only needs
to record one intensity map, resulting in the error

reduction (ER) algorithm and the hybrid input-output
(HIO) algorithm (Fig. 8b)15,16. In addition to the aperture
constraint, one can introduce other physical constraints
such as histogram37, atomicity38, and absorption39 to
reduce the ill-posedness of phase retrieval. Furthermore,
many types of sparsity priors such as spatial domain40,
gradient domain41,42, and wavelet domain43 are effective
regularizers for phase retrieval.
Naturally, if more intensity maps are recorded by the

sensor, there will be more prior knowledge for regular-
ization, further reducing the ill-posedness of the problem.
By moving the sensor axially, the intensity maps of dif-
ferent defocus distances are recorded as an intensity
constraint, and then the complex field is computed
iteratively like the GS algorithm (Fig. 9a), the so-called
multi-height phase retrieval17–19. In this axial multi-
intensity alternating projection method, the distance
between the sample plane and the sensor plane is usually
kept as close as possible, so that numerical propagation is
used for projection instead of Fourier transform. Mean-
while, with a fixed position of the sensor, multiple
intensity maps can also be recorded by radially moving
the aperture near the sample, and then the complex field
is recovered iteratively like the ER and HIO algorithms
(Fig. 9b), the so-called real-space ptychography20–22. In
this radial multi-intensity alternating projection method,
each adjoining aperture constraint overlaps one another
and expands the field of view in real space. Furthermore,
angular multi-intensity alternating projection is also
possible. By switching the aperture constraint from the
spatial domain to the frequency domain with a lens sys-
tem, multiple intensity maps with different frequency
information are recorded by changing the angle of the
incident light (Fig. 9c), the so-called Fourier ptycho-
graphy23,24. Due to the change of illumination angle, high-
frequency information that originally exceeds the
numerical aperture is recorded, expanding the Fourier
bandwidth in reciprocal space. Recently, synthetic
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aperture ptychography44 was proposed to simultaneously
expand the bandwidth in real space and reciprocal space,
in which an extended plane wave is used to illuminate a
stationary object and subsequently a coded image sensor
is translated within the far field to record data.
In addition to alternating projections, there are two

most representative non-convex optimization methods,
namely the Wirtinger flow45 and truncated amplitude
flow algorithms46. They can be transformed into convex
optimization problems through semidefinite program-
ming, such as the PhaseLift algorithm47.

Recovery of low-frequency phase component
As mentioned at the beginning, because the phase

information of the light field is converted into amplitude
variations during propagation, one can recover the phase
from the recorded amplitude distribution. However, low-
frequency phase component causes less amplitude varia-
tions, which is difficult for detection. A more quantitative
analysis can be performed through the phase transfer
function13, which characterizes the transfer response of
phase content at different spatial frequencies for an
imaging system. For holography and Shack-Hartmann
wavefront sensing, due to the interference phenomenon
or the microlens array, the low-resolution phase compo-
nent is converted into a fringe pattern or focus transla-
tion, which can be easily detected. For other lensless
methods of recovering phase from propagation intensity
maps, such as lensless TIE, Gerchberg-Saxton-Fienup
algorithm, multi-height algorithm, and real-space pty-
chography with an unknown probe beam, their phase
transfer function of the low-frequency component is close
to zero. That is to say, the slow-varying phase gradient
cannot induce sufficient intensity contrast to be detected
and thus cannot be recovered through subsequent algo-
rithms. Coded ptychography48 is an effective solution, in
which the coded layer (such as disorder-engineered

surface49 or fixed blood-cell layer50,51) effectively con-
verts the phase information of different spatial frequencies
into detectable distortions in the diffraction patterns.
Similarly, the coded layer can also be used in the multi-
height algorithm to recover the slow-varying phase pro-
files52. As for the lens-based case, such as lens-based
TIE53,54, Fourier ptychography55, and quantitative differ-
ential phase contrast microscopy56, the phase transfer
function of the imaging system can be modulated by
changing the illumination angle, thereby collecting more
low-frequency phase information.

Deep learning (DL) for phase recovery
In recent years, as an important step towards true

artificial intelligence (AI), deep learning57 has achieved
unprecedented performance in many tasks of computer
vision with the support of graphics processing units
(GPUs) and large datasets. Similarly, since it was first used
to solve the inverse problem in imaging in 201658, deep
learning has demonstrated promising potential in the field
of computational imaging59. In the meantime, there is a
rapidly growing interest in using deep learning for phase
recovery (Fig. 10).
For the vast majority of “DL for PR”, the implementa-

tion of deep learning is based on the training and infer-
ence of artificial neural networks (ANNs)60 through
input-label paired dataset, known as supervised learning
(Fig. 11). In view of its natural advantages in image pro-
cessing, the convolutional neural network (CNN)61 is the
most widely used ANN for phase recovery. Specifically, in
order for the neural network to learn the mapping from
physical quantity A to B, a large number of paired
examples need to be collected to form a training dataset
that implicitly contains this mapping relationship (Fig.
11a). Then, the gradient of the loss function is propagated
backward through the neural network, and the network
parameters are updated iteratively, thus internalizing this
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mapping relationship (Fig. 11b). After training, the neural
network is used to infer Bx from an unseen Ax (Fig. 11c).
In this way, deep learning has been used in all stages of
phase recovery and phase processing.
In fact, the rapid pace of deep-learning-based phase

recovery has been documented in several excellent review
papers. For example, Barbastathis et al.59 and Rivenson

et al.62 reviewed how supervised deep learning powers the
process of phase retrieval and holographic reconstruction.
Zeng et al.63 and Situ et al.64 mainly focused on the use of
deep learning in digital holography and its applications.
Zhou et al.65 and Wang et al.66 reviewed and compared
different usage strategies of AI in phase unwrapping.
Dong et al.67 introduced a unifying framework for various
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algorithms and applications from the perspective of phase
retrieval and presented its advances in machine learning.
Park et al.68 discussed AI-QPI-based analysis methodol-
ogies in the context of life sciences. Differently, depending
on where the neural network is used, we review various
methods from the following four perspectives:

● In the section “DL-pre-processing for phase
recovery”, the neural network performs some pre-
processing on the intensity measurement before
phase recovery, such as pixel super-resolution (Fig.
12a), noise reduction, hologram generation, and
autofocusing.
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● In the section “DL-in-processing for phase recovery”,
the neural network directly performs phase recovery
(Fig. 12b) or participates in the process of phase
recovery together with the physical model or
physics-based algorithm by supervised or
unsupervised learning modes.

● In the section “DL-post-processing for phase
recovery”, the neural network performs post-
processing after phase recovery, such as noise
reduction (Fig. 12c), resolution enhancement,

aberration correction, and phase unwrapping.
● In the section “Deep learning for phase processing”,

the neural network uses the recovered phase
for specific applications, such as segmentation
(Fig. 12d), classification, and imaging modal
transformation.

Finally, we summarize how to effectively use deep
learning in phase recovery and look forward to potential
development directions (see the section “Conclusion and
outlook”). To let readers learn more about phase recovery,
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we present a live-updating resource (https://github.com/
kqwang/phase-recovery).

DL-pre-processing for phase recovery
A summary of “DL-pre-processing for phase recovery”

is presented in Table 1 and is described below, including
the “Pixel super-resolution”, “Noise reduction”, “Holo-
gram generation”, and “Autofocusing” sections.

Pixel super-resolution
A high-resolution image generally reveals more detailed

information about the object of interest. Therefore, it is
desirable to recover a high-resolution image from one or
multiple low-resolution measurements of the same field
of view, a process known as pixel super-resolution.
Similarly, from multiple sub-pixel-shifted low-resolution
holograms, a high-resolution hologram can be recovered
by pixel super-resolution algorithms69. Luo et al.70 pro-
posed to use the U-Net for this purpose. Compared with
iterative pixel super-resolution algorithms, this deep
learning method has an advantage in inference time while
ensuring the same level of resolution improvement. It
maintains high performance even with a reduced number
of input low-resolution holograms.
After the pixel super-resolution CNN (SRCNN) was

proposed for single-image super-resolution in the field of
image processing71, this type of deep learning method was
also used in other optical super-resolution problems, such
as bright-field microscopy72 and fluorescence micro-
scopy73. Similarly, this method of inferring corresponding
high-resolution images from low-resolution versions via
deep neural networks can also be used for holograms
pixel super-resolution before doing phase recovery by
conventional recovery methods (Fig. 13).
Byeon et al.74 first applied the SRCNN to hologram

pixel super-resolution, and named it HG-SRCNN. Com-
pared with conventional focused-image-trained SRCNN
and bicubic interpolation, this method, trained with
defocus in-line holograms, can infer higher-quality high-
resolution holograms. Xin et al.75 used an improved fast
SRCNN (FSRCNN) to do pixel super-resolution for
white-light holograms, significantly improving the iden-
tification and accuracy of three-dimensional (3D) mea-
surement results. Under the premise of improved
accuracy, the inference speed of FSRCNN is nearly ten
times faster than that of SRCNN.
Ren et al.76 proposed to use a CNN, incorporating the

residual network (ResNet) and sub-pixel network (Sub-
PixelNet), for pixel super-resolution of a single off-axis
hologram. They found that compared to l1-norm and
structural similarity index (SSIM)77, the neural network
trained using l2-norm as the loss function performed best.
Moreover, this deep learning method reconstructs high-
resolution off-axis holograms with better quality than

conventional image super-resolution methods, such as
bicubic, bilinear, and nearest-neighbor interpolations.

Noise reduction
Most phase recovery methods, especially holography,

are performed with a coherent light source; therefore,
coherent noise is unavoidable. In addition, noise can be
caused by environmental disturbances and the recording
process of the image sensor. Therefore, reducing the noise
from the hologram before phase recovery is essential.
Filter-based methods, such as windowed Fourier trans-
form (WFT)78, have been widely used in hologram noise
reduction, but most of these methods face a trade-off
between good filtering performance and time cost.
In 2017, Zhang et al.79 opened the door to image

denoising using the deep CNN, called DnCNN. Subse-
quently, the DCNN was introduced to the field of fringe
analysis for fringe pattern denoising (Fig. 14).
Yan et al.80 first applied the DnCNN to fringe pattern

denoising, which has higher precision around image
boundaries and needs less inference time than WFT.
Similar conclusions can also be seen in the work of Lin
et al.81. Then, inspired by the FFDNet82, Hao et al.83

downsampled the input fringe pattern into four sub-
images before using the DnCNN for denoising, leading to
a faster inference speed. Furthermore, Zhou et al.84,85

converted this batch-denoising DnCNN into the fre-
quency domain. Specifically, they first computed the
Fourier transform of the downsampled sub-images, then
used the DnCNN to achieve noise reduction in the fre-
quency domain, and finally applied upsampling and
inverse Fourier transform to obtain the denoised fringe
pattern. From the comparison results, their method out-
performs that of Yan et al. and Hao et al. at different noise
levels. Reyes-Figueroa et al.86 further showed that the
U-Net and its improved version (V-Net) are better than
DnCNN for fringe pattern denoising, because their pro-
posed V-Net has more channels on the outer side than on
the inner side, retaining more details. Given the U-Net’s
outstanding mapping capabilities, Gurrola-Ramos et al.87

also improved it for fringe pattern denoising, where dense
blocks are leveraged for reusing feature layers, local resi-
dual learning is used to address the vanishing gradient
problem, and global residual learning is used to estimate
the noise of the image instead of the denoised image
directly. Compared with other neural networks men-
tioned above, it has a minor model complexity while
maintaining the highest accuracy.

Hologram generation
As mentioned in the Introduction, in order to recover

the phase, multiple intensity maps are needed in many
cases, such as phase-shifting holography and axial multi-
intensity alternating projection. Given its excellent
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mapping capability, the neural network can be used to
generate other relevant holograms from known ones, thus
enabling phase recovery that requires multiple holograms
(Fig. 15). In this approach, the input and output usually
belong to the same imaging modality with high feature
similarity, so it is easier for the neural network to learn.
Moreover, the dataset is collected only by experimental
record or simulation generation, without the need for
phase recovery as ground truth in advance by conven-
tional methods.
Zhang et al.88,89 first proposed the idea of generating

holograms with holograms before phase recovery with the
conventional method (Fig. 15a). From a single hologram,
the other three holograms with π/2, π, and 3π/2 phase shifts
were simultaneously generated by the Y-Net90, and then
phase recovery was implemented by the four-step phase-
shifting method. The motivation to infer holograms instead
of phase via a network is that for different types of samples,
the spatial differences between their holograms were sig-
nificantly lower than that of their phase. Accordingly, this
phase recovery based on the hologram generation has better
generalization ability than recovering phase from holograms
directly with the neural network, especially when the spatial
characteristics differences of the phase between the training
and testing datasets are relatively large89. Since the phase-
shift between the generated holograms is equal, Yan et al.91

proposed to generate noise-free phase-shifting holograms
using a simple end-to-end generative adversarial network
(GAN) in a manner of sequential concatenation. Subse-
quently, for better performance in balancing spatial details
and high-level semantic information, Zhao et al.92 applied
the multi-stage progressive image restoration network
(MPRNet)93 for phase-shifting hologram generation. Huang

et al.94 and Wu et al.95 then expanded this approach from
four-step to three-step and two-step phase-shifting meth-
ods, respectively.
Luo et al.96 proposed to generate holograms with dif-

ferent defocus distances from one hologram via a neural
network, and then achieve phase recovery with alternating
projection (Fig. 15b). Similar to the work of Zhang et al.89,
they proved that the use of neural networks with less
difference between the source domain and the target
domain could enhance the generalization ability. As for
multi-wavelength holography, Li et al.97,98 harnessed a
neural network to generate a hologram of another wave-
length from one or two holograms of known wavelength,
thereby realizing two-wavelength and three-wavelength
holography. At the same time, Xu et al.99 realized a one-
shot two-wavelength and three-wavelength holography by
generating the corresponding single-wavelength holo-
grams from a two-wavelength or three-wavelength holo-
gram with information crosstalk.

Autofocusing
In lensless holography, the phase of the sample plane

can only be recovered if the distance between the sensor
plane and the sample plane is known. Defocus distance
estimation thus becomes a fundamental problem in
holography, which is also known as autofocusing.
Deep learning methods for autofocus essentially use the

neural network to estimate the defocus distance from the
hologram (Fig. 16), which can be regarded as either a
classification problem100–103 or a regression problem104–110.
From the perspective of classification, Pitkäaho et al.100

first proposed to estimate the defocus distance from the
hologram by a CNN. In their scheme, the zero-order and

0

0

Phase

0

Hologram

�/2
� 4�

4�

3�/2

Phase

Z1

Z2
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Conventional 
recovery
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a

Trained network

Trained network

Fig. 15 Description of deep-learning-based hologram generation. a Phase-shifting method. b Axial multi-intensity alternating
projection method
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twin-image terms need to be removed before the trained
neural network classifies the holograms into different
discrete defocus distances. Meanwhile, Ren et al.101

advocate directly using raw holograms collected at dif-
ferent defocus distances as the input of the neural net-
works. Furthermore, they revealed the advantages of
neural networks over other machine learning algorithms
in the task of autofocusing. Immediately afterward, Son
et al.102 also verified the feasibility of autofocus by clas-
sification through numerical simulations. Subsequently,
Couturier et al.103 improved the accuracy of defocus dis-
tance estimation by using a deeper CNN for categorizing
defocus distance into a greater number of classes.
Nevertheless, no matter how many classes there are, the

defocus distance estimated by these classification-based
methods is also discrete, which is still not precise enough in
practice. Thus, Ren et al.104 further developed an approach
to treat the defocus distance estimation as a regression
problem, where the output of the neural network is con-
tinuous. They verified the superiority of this deep-learning-
based regression method with amplitude samples and phase
samples, respectively, and tested the adaptability under
different exposure times and incident angles. Later, Pit-
käaho et al.105 also extended their previous classification-
based work100 to this regression-based approach. While
these methods estimate the defocus distance of the entire
hologram, Jaferzadeh et al.106 and Moon et al.107 proposed
to take out the region of interest from the whole hologram
as the input to estimate the defocus distance. In order to get
rid of the constraint of known defocus distance as the label
of the training dataset, Tang et al.111 proposed to iteratively
infer the defocus distance by an untrained network with a
defocus hologram and its in-focus phase. Later on, Cuenat
et al.108 demonstrated the superiority of the Vision Trans-
former112 over typical CNNs in defocus distance estimation.
Because the spatial spectrum information is also helpful for
the defocus distance estimation113, Lee et al.109 and Shi-
mobaba et al.110 proposed to use the spatial spectrum or
power spectrum of holograms as the network input to
estimate the defocus distance.

DL-in-processing for phase recovery
In “DL-in-processing for phase recovery”, the neural

network directly performs the inference process from the

measured intensity image to the phase (see the “Network-
only strategy” section), or together with the physical
model or physics-based algorithm to achieve the inference
(see the “Network-with-physics strategy” section).

Network-only strategy
The network-only strategy uses a neural network to

perform phase recovery, where the network input is the
measured intensity image and the output is the phase. A
summary of various methods is presented in Table 2 and
described below, where we classify them into dataset-
driven (DD) and physics-driven (PD) approaches.

Dataset-driven approach
As a supervised learning mode, data-driven deep

learning phase recovery methods presuppose a large
number of paired input-label datasets. Usually, it is
necessary to experimentally collect a significant number
of intensity images (such as diffraction images or holo-
grams) as input, and use conventional methods to cal-
culate the corresponding phase as ground truth (Fig. 17a).
The key lies in that this paired dataset implicitly contains
the mapping relationship from intensity to phase. Then,
an untrained/initialized neural network is iteratively
trained with the paired dataset as an implicit prior, where
the gradient of the loss function propagates into the
neural network to update the parameters (Fig. 17b). After
training, the network is used as an end-to-end mapping to
infer the phase from intensity (Fig. 17c). Therefore, the
DD approach is to guide/drive the training of the neural
network with this implicit mapping, which is internalized
into the neural network as the parameters are iteratively
updated.
Sinha et al.114 were among the first to demonstrate this

end-to-end deep learning strategy for phase recovery, in
which the phase of objects is inferred from corresponding
diffraction images via a trained deep neural network. In
dataset collection, they used a phase-only spatial light
modulator (SLM) to load different public image datasets
to generate the phase as ground truth, and after a certain
distance, place the image sensor to record the diffraction
image as input. The advantage is that both the diffraction
image and the phase are known and easily collected in
large quantities. Through comparative tests, they verified

0

4�

Phase

Conventional recovery

Defocus distance 

Hologram Trained network

Fig. 16 Description of deep-learning-based hologram numerical refocusing
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the adaptability of the deep neural network to unseen
types of datasets and different defocus distances.
Although this scheme cannot be used in practical appli-
cation due to the use of the phase-type spatial light
modulator, their pioneering work opens the door to deep-
learning-inference phase recovery. For instance, Li
et al.115 introduced the negative Pearson correlation
coefficient (NPCC)116 as a loss function to train the neural
network, and enhanced the spatial resolution by a factor
of two by flattening the power spectral density of the
training dataset. Deng et al.117 found that the higher the
Shannon entropy of the training dataset, the stronger the
generalization ability of the trained neural network. Goy
et al.118 extended the work to phase recovery under weak-
light illumination.
Meanwhile, Wang et al.119 extended the diffraction

device of Sinha et al.114 to an in-line holographic device by
adding a coaxial reference beam, and used the in-line
hologram instead of the diffraction image as the input to a
neural network for phase recovery. Nguyen et al.120

applied this end-to-end strategy for Fourier ptychography,
inferring the high-resolution phase from a series of low-
resolution intensity images via a U-Net, and Cheng
et al.121 further used a single low-resolution intensity
image under optimized illumination as the neural network
input. Cherukara et al.122 extended this end-to-end deep
learning strategy to CDI, in which they trained two neural
networks with simulation datasets to infer the amplitude
or phase of objects from far-field diffraction intensity
maps, respectively. Ren et al.123 demonstrated the time
and accuracy superiority of this end-to-end deep learning
strategy over conventional numerical algorithms in the
case of off-axis holography. Yin et al.124 introduced the
cycle-GAN to extend this end-to-end deep learning
strategy to the application scenario of unpaired datasets.
Lee et al.125 replaced the forward generator of the cycle-
GAN by numerical propagation, improving the phase
recovery robustness of neural networks in highly pertur-
bative configurations. Hu et al.126 applied this end-to-end
deep learning strategy to the Shack-Hartmann wavefront

Intensity
(Input)

Ii

a

b

c

Intensity
Ii

Intensity
Ix

Initialized network
ƒω (�)

Trained network

F (�)

Update ω

Loss function

Phase
θi = ƒω (Ii)

Phase
θx = F (Ix)

Target phase
(Ground truth)

θi

Target phase
θi

i = 1,2,3, ..., n

Implicit mapping relationship as prior

n n

		ƒω(Ii) – θi 		
n

2
2

i=1

ˆ

ˆ

Fig. 17 Description of dataset-driven network-only phase recovery. a Dataset collection. b Network training. c Inference via a trained network
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sensor, inferring the phase directly from a spot intensity
image after the microlens array. Wang et al.127 extended
this end-to-end deep learning strategy to TIE, using a
trained neural network to infer the phase of the cell object
from a defocus intensity image illuminated by partially
coherent light. Further, Zhou et al.128 used neural net-
works to infer high-resolution phase from a low-
resolution defocus intensity image. Pirone et al.129

applied this hologram-to-phase deep learning strategy to
improve the reconstruction speed of 3D optical diffraction
tomography (ODT) from tens of minutes to a few sec-
onds. Chang et al.130 expanded the illumination source
from photons to electrons, recovering the phase images
from electron diffraction patterns of twisted hexagonal
boron nitride, monolayer graphene, and Au nanoparticles.
Tayal et al.131 demonstrated the use of data augmentation
and a symmetric invariant loss function to break the
symmetry in the end-to-end deep learning phase recovery.
In addition to expanding the application scenarios of this

end-to-end deep learning strategy, some researchers focused
on the performance and advantages of different neural
networks in phase recovery. Xue et al.132 applied Bayesian
neural network (BNN) into Fourier ptychography for infer-
ring model uncertainty while doing phase recovery. Li
et al.133 applied GAN for phase recovery, inferring the phase
from two symmetric-illumination intensity images. Wang
et al.90,134 proposed a one-to-multi CNN, Y-Net90, from
which the amplitude and phase of an object can be inferred
from the input intensity simultaneously. Zeng et al.135

introduce the capsule network to overcome information loss
in the pooling operation and internal data representation of
CNNs. Compared with conventional CNNs, their proposed
capsule-based CNN (RedCap) saves 75% of network para-
meters while ensuring higher holographic reconstruction
accuracy. Wu et al.136 applied the Y-Net90 to CDI for
simultaneous inference of phase and amplitude. Huang
et al.137 introduced a recurrent convolution module into U-
Net, trained using GAN, for holographic reconstruction
with autofocus. Uelwer et al.138 used a cascaded neural
network for end-to-end phase recovery. Castaneda et al.139

and Jaferzadeh et al.140 introduced GAN into off-axis holo-
graphic reconstruction. Luo et al.141 added dilated con-
volutions into a CNN, termed mixed-context network
(MCN)141, for phase recovery. By comparing in a one-
sample-learning scheme, they found that MCN is more
accurate and compact than the conventional U-Net. Ding
et al.142 added Swin Transformer143 into U-Net and trained
it with low-resolution intensity as input and high-resolution
phase as ground truth using cycle-GAN. The trained neural
network can do phase recovery while enhancing the reso-
lution and has higher accuracy than the conventional U-Net.
In CDI, Ye et al.144 used a multi-layer perceptron for feature
extraction before a CNN, considering the property of the
far-field (Fourier) intensity images where the data are

globally correlated. Chen et al.145,146 combined the spatial
Fourier transform module with ResNet, termed Fourier
imager network (FIN), to achieve holographic reconstruc-
tion with superior generalization to new types of samples
and faster inference speed (9-fold faster than their previous
recurrent neural network, 27-fold faster than conventional
iterative algorithms). Shu et al.147 applied neural architecture
search (NAS) to automatically optimize the network archi-
tecture for phase recovery. Compared with the conventional
U-Net, the peak signal-to-noise ratio (PSNR) of their NAS-
based network is increased from 34.7 dB to 36.1 dB, and the
inference speed is increased by 27-fold.
As a similar deep learning phase recovery strategy in

adaptive optics, researchers demonstrated that neural net-
works could be used to infer the phase of the turbulence-
induced aberration wavefront or its Zernike coefficient from
the distortion intensity of target objects148. In these appli-
cations, only the wavefront subsequently used for aberra-
tion correction is of interest, not the RI distribution of
turbulence that produces this aberration wavefront.

Physics-driven approach
Different from the dataset-driven approach that uses input-

label paired dataset as an implicit prior for neural network
training, physical models, such as numerical propagation, can
be used as an explicit prior to guide/drive the inference or
training of neural networks, termed physics-driven (PD)
approach. It only requires measurements of samples as an
input-only dataset and is therefore an unsupervised learning
mode. On the one hand, this explicit prior can be used to
iteratively optimize an untrained neural network to infer the
corresponding phase and amplitude from the measured
intensity image as input, referred to as the untrained PD
(uPD) scheme (Fig. 18a). On the other hand, this explicit
prior can be used to train an untrained neural network with a
large number of intensity images as input, which then can
infer the corresponding phase from unseen intensity images,
an approach called the trained PD (tPD) scheme (Fig. 18b).
In order to more intuitively understand the difference

and connection between the DD and PD approaches, let
us compare the loss functions in Fig. 17 and Fig. 18:

LossDD ¼
Xn

i¼1

kf ωðIiÞ � θik22 ð1Þ

LossuPD ¼ kIx � Hðf ωðIxÞÞk22 ð2Þ

LosstPD ¼
Xn

i¼1

kIi � Hðf ωðIiÞÞk22 ð3Þ

where k � k22 denotes the square of the l2-norm (or other
distance functions), f ωð�Þ is a neural network with trainable
parameters ω, Hð�Þ is a physical model (such as numerical
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propagation, Fourier transform, or Fourier ptychography
measurement model), Ii is the measured intensity image in
the training dataset, θi is the phase in the training dataset,
Ix is the measured intensity image of a test sample, and n is
the number of samples in the training dataset. In Eq. (1) for
the DD approach, the priors used for network training are
the measured intensity image and corresponding ground-
truth phase. Meanwhile, in Eqs. (2) and (3) for the PD
approaches, the priors used for network inference or
training are the measured intensity image and physical
model, instead of the phase. It should be noted that the
uPD scheme is free from numerous intensity images as a
prerequisite, but requires numerous iterations for each
inference; while the tPD scheme completes the inference
only passing through the trained neural network once, but
requires a large number of intensity images for pretraining.

This PD approach was first implemented in the work on
Fourier ptychography by Boominathan et al.149. They

proposed it in the higher overlap case, including the
scheme of directly using an untrained neural network for
inference (uPD) and the scheme of training first and then
inferring (tPD), and demonstrated the former by
simulation.
For the uPD scheme, Wang et al.150 used a U-Net-based

scheme to iteratively infer the phase of a phase-only
object from a measured diffraction image whose de-focus
distance is known. Their method demonstrates higher
accuracy than conventional algorithms (such as GS and
TIE) and the DD scheme, at the expense of a longer
inference time (about 10minutes for an input with 256 ×
256 pixels). Zhang et al.151 extended this work to the case
where the defocus distance is unknown by including it as
another unknown parameter together with the phase to
the loss function. Yang et al.152,153 found that after
expanding the tested sample from phase-only to complex-
amplitude, obvious artifacts and noise appeared in the
recovered results. Therefore, they proposed to add an

Intensity
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Intensity
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ƒω (�)
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Fig. 18 Description of physics-driven network-only phase recovery. a Untrained PD (uPD) scheme. b Trained PD (tPD) scheme
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aperture constraint into the loss function to reduce the ill-
posedness of the problem. Regarding the timeliness, they
pointed out that it would cost as much as 600 hours to
infer 3,600 diffraction images with this uPD scheme.
Meanwhile, Bai et al.154 extended this from a single-
wavelength case to a dual-wavelength case. Galande
et al.155 found that this way of neural network optimiza-
tion with a single-measurement intensity input lacks
information diversity and can easily lead to overfitting of
the noise, which can be mitigated by introducing an
explicit denoiser. It is worth pointing out that this way of
using the object-related intensity image as the neural
network input makes it possible to internalize the mapping
relationship between intensity and phase into the neural
network through pre-training. In addition, some
researchers proposed to make adjustments to the uPD
scheme, using the initial phase and amplitude recovered
by backward numerical propagation as the neural network
input156–158, which reduces the burden on the neural
network to obtain higher inference accuracy.
Although the phase can be inferred from the measured

intensity image through an untrained neural network
without any ground truth, the uPD scheme inevitably
requires a large number of iterations, which excludes its
use in many dynamic applications. Therefore, to adapt the
PD scheme to dynamic inference, Yang et al.152,153

adjusted their previously proposed uPD scheme to the
tPD scheme by pre-training the neural network using a
small part of the measured diffraction images, and then
using the pre-trained neural network to infer the
remaining ones. Yao et al.159 trained a 3D version of the
Y-Net90 with simulated diffraction images as input, and
then used the pre-trained neural network for direct
inference or iterative refinement, which is 100 and 10
times faster than conventional iterative algorithms,
respectively. Li et al.160 proposed a two-to-one neural
network to reconstruct the complex field from two axially
displaced diffraction images. They used 500 simulated
diffraction images to pre-train the neural network, and
then inferred an unseen diffraction image by refining the
pre-trained neural network for 100 iterations. Bouchama
et al.161 further extended the tPD scheme to Fourier
ptychography of low overlap cases by simulated datasets.
Different from the above ways of generating training
datasets from natural images or real experiments, Huang
et al.162 proposed to generate holograms as training
datasets from randomly synthesized artificial images with
no connection or resemblance to real-world samples.
They further trained a neural network with the generated
holograms and the tPD scheme, which showed superior
external generalization to holograms of real tissues with
arbitrarily defocus distances. It is worth mentioning that
the PD strategy can also be used in computer-generated
holography, generating the corresponding hologram from

the target phase or amplitude via a physics-driven neural
network163,164.

Network-with-physics strategy
Different from the network-only strategy, in the

network-with-physics strategy, either the physical model
and neural network are connected in series for phase
recovery (physics-connect-network, PcN), or the neural
network is integrated into a physics-based algorithm for
phase recovery (network-in-physics, NiP), or the physical
model or physics-based algorithm is integrated into a
neural network for phase recovery (physics-in-network,
PiN). A summary of the network-with-physics strategy is
presented in Table 3 and is described below.

Physics-connect-network (PcN)
In this scheme, the role of the neural network is to

extract and separate the pure phase from the initial esti-
mate that may suffer from spatial artifacts or low reso-
lution, which allows the neural network to perform a
simpler task than the network-only strategy; typically, the
initial phase is calculated using a physical model (Fig. 19).
This scheme requires paired input-label datasets to teach
the neural network and therefore belongs to supervised
learning.
Rivenson et al.165 first applied this PcN scheme in

holographic reconstruction in 2018. They used numerical
propagation to calculate the initial complex field
(including real and imaginary parts) from a single
intensity-only hologram, which contained twin-image and
self-interference-related spatial artifacts, and then used a
data-driven trained neural network to extract the pure
complex field from the initial estimate. Compared with
the axial multi-intensity alternating projection algo-
rithm17–19, their PcN scheme reduces the number of
required holograms by 2–3 times while improving the
computation time by more than three times. Wu et al.166

then extended the depth of field (DOF) based on this work
by training a neural network with pairs of randomly de-
focused complex fields and the corresponding in-focus
complex field. Meanwhile, Huang et al.137 proposed the
use of a recurrent CNN167 for the PcN scheme and the
network-only strategy. They compared the performance
of neural networks using either a hologram or an initial
complex field as input within the same background and
discovered that the network-only strategy is more robust
for sparse samples, while the PcN scheme demonstrates
better inference capabilities on dense samples. Goy
et al.118 applied the PcN scheme to phase recovery under
weak-light illumination, which is more ill-posed than
conventional phase recovery. They showed that the
inference performance of the PcN scheme is stronger than
that of the network-only strategy under weak-light illu-
mination, especially for dense samples in the extreme
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photon level case (1 photon). Further, Deng et al.168

introduced a default feature perceptual loss of the VGG
layer into the loss function for neural network training,
which inferred more fine details than that of the NPCC
loss function. They also improved the spatial resolution
and noise robustness by learning the low-frequency and
high-frequency bands, respectively, through two neural
networks and synthesizing these two bands into full-band
reconstructions with a third neural network169. By intro-
ducing random phase modulation, Kang et al.170 further
improved the phase recovery ability of the PcN scheme
under weak-light illumination. Zhang et al.171 extended
the PcN scheme to Fourier ptychography, inferring high-
resolution phase and amplitude using the initial phase and
amplitude synthesized from the intensity images as input
to a neural network. Moon et al.172 extended the PcN
scheme to off-axis holography, using numerical propa-
gation to obtain the initial phase from the Gaber holo-
gram as the input to the neural network.

Network-in-physics (NiP)
In this scheme, trained or untrained neural networks are

used in physics-based iterative algorithms as denoisers,
structural priors, or generative priors. Regarding phase
recovery as one of the most general optimization pro-
blems, this approach can be expressed as

argmin
θ

kIx � HðθÞk22 þ RðθÞ ð4Þ

where Hð�Þ is the physical model, θ is the phase, Ix is the
measured intensity image of a test sample, and RðθÞ is a
regularized constraint. According to the Regularization-
by-Denoising (RED)173 framework, a pre-trained neural
network for denoising can be used as the regularized
constraint:

argmin
θ

kIx � HðθÞk22 þ λθT ½θ � DðθÞ� ð5Þ

where DðθÞ is a pre-trained neural network for denoising,
and λ is a weight factor to control the strength of
regularization. Metzler et al.174 used the above algorithm
for phase recovery and called it PrDeep. They used a
DnCNN trained on 300,000 pairs of data as a denoiser and
FASTA175 as a solver. In comparison with other conventional

iterative methods, PrDeep demonstrates excellent robustness
to noise. Wu et al.176 proposed an online extension of
PrDeep, which adopts the online processing of data by using
only a random subset of measurements at a time. Bai et al.177

extended PrDeep to incorporate a contrast-transfer-function-
based forward operator in Hð�Þ for phase recovery. Wang
et al.178 improved PrDeep by changing the solver from
FASTA to ADMM, which further improved the noise
robustness. Chang et al.179 used a generalized-alternating-
projection solver to further expand the performance of
PrDeep and made it suitable for the recovery of complex
fields. Işıl et al.180 embedded a trained neural network
denoiser into HIO, removing artifacts from the results after
each iteration. On this basis, Kumar et al.181 added total-
variation prior together with the denoiser for regularization.
In addition, according to the deep image prior

(DIP)182,183, even an untrained neural network itself can
be used as a structural prior for regularization (Fig. 20):

argmin
ω

kIx � Hðgωðzf ÞÞk22 ð6Þ

where gωð�Þ is an untrained neural network with trainable
parameters ω that usually takes a generative decoder
architecture, Ix is the measured intensity image of a test
sample, and zf is a fixed vector, which means that the
input of the neural network is independent of the sample,
and therefore the neural network cannot be pre-trained
like the PD approach.

This DIP-based approach was first introduced to phase
recovery by Jagatap et al.184. They solved Eq. (6) using the
gradient descent and projected gradient descent algorithms
by optimizing over trainable parameters ω, both of which
outperform sparse truncated amplitude flow (SPARTA)
algorithm. In follow-up work, they provided rigorous theo-
retical guarantees for the convergence of their algorithm185.
Zhou et al.186 applied this DIP-based algorithm to ODT,
alleviating the effects of the missing cone problem. Sham-
shad et al.187 extended this DIP-based algorithm to sub-
sampled Fourier ptychography, achieving better
reconstructions at low subsampling ratios and high noise
perturbations. In order to make the algorithm adaptive to
different aberrations, Bostan et al.188 added a fully connected
neural network with Zernike polynomials as the fixed input,

Intensity Phase and amplitude Phase and amplitude 
with artifacts

Trained network

Numerical 
propagation

Fig. 19 Description of physics-connect-network phase recovery
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and used it as the second structural prior. In the holographic
setting with a reference beam, Lawrence et al.189 demon-
strated the powerful information reconstruction ability of
the DIP-based algorithm in extreme cases such as low
photon counts, beamstop-obscured frequencies, and small
oversampling. Niknam et al.190 used the DIP-based algo-
rithm to recover complex fields from an in-line hologram.
They further improved the twin-image artifacts suppression
capability through some additional regularization, such as
bounded activation function, weight decay, and parameter
perturbation. Ma et al.191 embed an untrained generation
network into the ADMM algorithm to solve the phase
recovery at low subsampling ratios, and achieved better
results than the gradient descent and projected gradient
descent algorithms of Jagatap et al.184. Chen et al.192

extended the DIP-based algorithm to Fourier ptychography,
in which four parallel untrained neural networks were used
for generating phase, amplitude, pupil aberration, and illu-
mination fluctuation factor correction, respectively.
Similarly, a pre-trained generative neural network can

also be used as a generative prior, assuming that the target
phase is in the range of the output of this trained neural
network (Fig. 21):

argmin
z

kIx � HðGðzÞÞk22 ð7Þ

where Gð�Þ is a pre-trained fixed neural network that
usually takes a generative decoder architecture, Ix is the

measured intensity image of a test sample, and z is a latent
vector to be searched. Due to the use of the generative
neural network, the multi-dimensional phase that originally
needed to be iteratively searched is converted into a low-
dimensional vector, and the solution space is also limited
within the range of the trained generative neural network.
Hand et al.193 used the generative prior for phase

recovery with rigorous theoretical guarantees for ran-
dom Gaussian measurement matrix, showing better
performance than SPARTA at low subsampling ratios.
Later on, Shamshad et al.194 experimentally verified the
robustness of the generative-prior-based algorithm to
low subsampling ratios and strong noise in the coded
diffraction setup. Then, Shamshad et al.195 extended this
generative-prior-based algorithm to subsampled Fourier
ptychography. Hyder et al.196 improved this by com-
bining the gradient descent and projected gradient
descent methods with AltMin-based non-convex opti-
mization methods. As a general defect, the trained
generative neural network will limit the solution space
to a specific range related to the training dataset, so that
the iterative algorithm cannot search beyond this range.
Therefore, Shamshad et al.197 set both the input and
previously fixed parameters of the trained generative
neural network to be trainable. As another solution,
Uelwer et al.198 extended the range of the trained gen-
erative neural network by intermediate layer
optimization.

Fixed vector
zƒ

Intensity
Ix

Initialized
network

gω (�)

Update ω

H (�)

Phase and amplitude
θx, Ax = gω (z�)

Intensity
Ix = H (θx, Ax) = H (gω (z�))

ˆ ˆ

ˆ ˆ ˆ

				H (gω (z�)) – Ix 				
2
2

Fig. 20 Description of structural-prior network-in-physics phase
recovery

Latent vector
z

Intensity
Ix

				H (G (z)) – Ix 				

Update z

2
2

Trained
network

G (�)

H (�)

Phase and amplitude
θx, Ax = G (z)

Intensity
Ix = H (θx, Ax) = H (G (z))

ˆ ˆ

ˆ ˆˆ

Fig. 21 Description of generative-prior network-in-physics phase
recovery
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Physics-in-network (PiN)
According to the algorithm unrolling/unfolding technique

proposed by Gregor and LeCun199, physics-based iterative
algorithms can be unrolled as an interpretable neural net-
work architecture (Fig. 22). Although this scheme integrates
physics prior knowledge into neural networks, it still requires
input-label paired datasets for neural network training and
thus falls under the category of supervised learning. Wang

et al.200 unrolled an algorithm called decentralized general-
ized expectation consistent signal recovery (deGEC-SR) into
a neural network with trainable parameters, which exhibits
stronger robustness using fewer iterations than the original
deGEC-SR. Naimipour et al.201,202 used the algorithm
unrolling technique in reshaped Wirtinger flow and
SPARTA. Zhang et al.203 unrolled the iterative process of the
alternative projection algorithm into complex U-Nets. Shi
et al.204 used a deep shrinkage network and dual frames to
unroll the proximal gradient algorithm in coded diffraction
imaging. Wu et al.205 integrated the Fresnel forward operator
and TIE inverse model into a neural network, which can be
efficiently trained with a small number of datasets and is
suitable for transfer learning. Yang et al.206 unrolled the
classic HIO algorithm into a neural network that combines
information both in the spatial domain and frequency
domain. Since PiN-based networks are embedded with
physical knowledge, good performance can usually be
achieved with a small training dataset. It is worth mentioning
that, as another type of PiN scheme, physics-informed neural
networks mainly solves partial differential equations by
embedding initial conditions, boundary conditions, and
equation constraints into the loss function of neural
networks207.

Summary of “DL-in-processing for phase recovery”
At the end of this section, we provide a summary of

“DL-in-processing for phase recovery” in Table 4, where
“supervised learning mode” requires paired datasets,
“weak-supervised learning mode” requires unpaired
datasets, and “unsupervised learning mode” requires
input-only, phase-only, or no datasets.

DL-post-processing for phase recovery
A summary of “DL-post-processing for phase recovery”

is presented in Table 5 and is described below, including

…

Phase

Intensity

h (�, ω)

h1 (�, ω1)

h2 (�, ω2)

hn (�, ωn)
Iterations

In
te

rp
re

ta
bl

e 
La

ye
rs

Phase

Intensity

Unroll

ba

Fig. 22 Description of physics-in-network phase recovery. a A
physics-based iterative algorithm. b A corresponding unrolled neural
network. The iteration step h with algorithm parameters ω in (a) is
unrolled and transferred to the network layers h1, h2,…, hn with
network parameters ω1, ω2,…, ωn in (b). The unrolled neural network
is trained with the dataset in an end-to-end manner

Table 4 Summary of all strategies in “DL-in-processing for phase recovery”

Strategy Network task Input Output Dataset Learning mode

Network-only by dataset-driven Phase recovery Hologram Phase Paired dataset Supervised

Unpaired dataset Weak-supervised

Network-only by untrained physics-driven Phase recovery Hologram Phase No requirement Unsupervised

Network-only by trained physics-driven Phase recovery Hologram Phase Input-only dataset Unsupervised

Physics-connect-network Artifacts removal Initial phase Phase Paired dataset Supervised

Network-in-physics with denoisers Regularization Noisy phase Phase Paired dataset Supervised

Network-in-physics with structural priors Regularization Fixed vector Phase No requirement Unsupervised

Network-in-physics with generative priors Regularization Latent vector Phase Phase-only dataset Unsupervised

Physics-in-network with interpretability Phase recovery Hologram Phase Fewer paired dataset Supervised
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the “Noise reduction”, “Resolution enhancement”,
“Aberration correction”, and “Phase unwrapping”
sections.

Noise reduction
In addition to being part of the pre-processing in “Noise

reduction” under the section “DL-pre-processing for
phase recovery”, noise reduction can also be performed
after phase recovery (Fig. 23). Jeon et al.208 applied the
U-Net to perform speckle noise reduction on digital
holographic images in an end-to-end manner. Their deep
learning method takes only 0.92 s for a reconstructed
hologram of 2048 × 2048, while other conventional
methods take tens of seconds because of the requirement
of multiple holograms. Choi et al.209 introduced the cycle-
GAN to train neural networks for noise reduction by
unpaired datasets. They demonstrated the advantages of
this un-paired-data-driven method with tomograms of
different cell samples in optical diffraction chromato-
graphy: the non-data-driven ways either remove coherent
noise by blurring the entire images or perform no effective
denoising, whereas their method can simultaneously
remove the noise and preserve the features of the sample.
Zhang et al.210 first proposed to suppress noise directly

on the wrapped phase via a neural network. However, this
direct way may lead to many wrong jumps in the wrapped
phase, which results in larger errors in the unwrapped
phase. Thus, Yan et al.211,212 proposed to do noise
reduction on the sine and cosine (numerator and
denominator) images of the phase via a neural network,
and then calculated the wrapped phase from denoised
sine and cosine images by the arctangent function. Almost
simultaneously, Montresor et al.213 introduced the
DnCNN into speckle noise reduction for phase data by
their sine and cosine images. As it is difficult to

simultaneously collect the phase data with and without
speckle noise in an experimental manner, they used a
simulator based on a double-diffraction system to
numerically generate the dataset. Furthermore, their
method yields comparable standard deviation to the WFT
and better peak-to-valley, while costing less time. Building
on this work, Tahon et al.214 designed a dataset
(HOLODEEP) for speckle noise reduction in soft condi-
tions and used a shallower network for faster inference.
To go further, they released a more comprehensive
dataset for conditions of severe speckle noise215. Fang
et al.216 applied GAN to do speckle noise reduction for
phase. Murdaca et al.217 applied this deep-learning-based
phase noise reduction to interferometric synthetic aper-
ture radar (InSAR)218. The difference is that in addition to
the sine and cosine images of the phase, the neural net-
work also reduces noise for the amplitude images at the
same time. Tang et al.219 proposed to iteratively reduce
the coherent noise in phase with an untrained U-Net. In
the above works, various loss functions were employed
alongside the conventional l2-norm and l1-norm to
enhance performance. These additional functions include
the edge function208, which sharpens the edges of the
denoised image, as well as gradient and variance func-
tions219 that further suppress noise while preventing
excessive smoothing.

Resolution enhancement
Similar to the section “Pixel super-resolution”, resolu-

tion enhancement can also be performed after phase
recovery as post-processing (Fig. 24). Liu et al.220 first
used a neural network to infer the corresponding high-
resolution phase from the low-resolution phase. They
trained two GANs with both a pixel super-resolution
system and a diffraction-limited super-resolution system,

Hologram

Conventional 
recovery

PhaseNoisy phase

0

4�

Trained network

Fig. 23 Description of deep-learning-based phase noise reduction

Low-resolution
hologram

Conventional 
recovery

Low-resolution
phase

PhaseTrained network

0

4�

Fig. 24 Description of deep-learning-based phase resolution enhancement
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which was demonstrated on biological thin tissue slices
with the analysis of spatial frequency spectrum. Moreover,
they pointed out that this idea can be extended to other
resolution-limited imaging systems, such as using a neural
network to build a passageway from off-axis holography
to in-line holography. Later, Jiao et al.221 proposed to infer
the high-resolution noise-free phase from an off-axis-
system-acquired low-resolution version with a trained
U-Net. To collect the paired dataset, they developed a
combined system with diffraction phase microscopy
(DPM)222 and spatial light interference microscopy
(SLIM)27 to generate both holograms from the same field
of view. After training, the U-Net retains the advantages
of both the high acquisition speed of DPM and the high
transverse resolution of SLIM.
Subsequently, Butola et al.223 extended this idea to

partially spatially coherent off-axis holography, where the
phase recovered at low-numerical-apertures objectives was
used as input, and the phase recovered at high-numerical-
apertures objectives was used as ground truth. Since low-
numerical-apertures objectives have a larger field of view,
they aim to obtain a higher resolution at a larger field of
view, i.e., a higher spatial bandwidth product. Meng
et al.224 used structured-illumination digital holographic
microscopy (SI-DHM)225 to collect the high-resolution
phase as ground truth. To supplement more high-
frequency information by two cascaded neural networks,
they used the low-resolution phase along with the high-
resolution amplitude inferred from the first neural net-
work both as inputs of the second neural network. Sub-
sequently, Li et al.226 extended this resolution-enhanced
post-processing method to quantitative differential phase
contrast microscopy for high-resolution phase recovery
from the least number of experimental measurements. To
solve the problem of out-of-memory for the large size of
the input, they disassembled the full-size input into some
sub-patches. Moreover, they found that the U-Net trained
on the paired dataset has a smaller error than the paired
GAN and the unpaired GAN. For GAN, there is more
unreasonable information in the inferred phase, which is
absent in ground truth. Gupta et al.227 took advantage of
the high spatial bandwidth product of this method to
achieve a classification throughput rate of 78,000 cells
per second with an accuracy of 76.2%. All these works use
U-Net as the basic structure, where most neural networks
input and output phase maps of the same size and thus
have the same number of downsampling times and
upsampling times, whereas for the application where the
input size is smaller than the output227, the neural network
has more upsampling times.
For ODT, due to the limited projection angle imposed

by the numerical aperture of the objective lens, there are
certain spatial frequency components that cannot be
measured, which is called the missing cone problem. To

address this problem via a neural network, Lim et al.228

and Ryu et al.229 built a 3D RI tomogram dataset for 3D
U-Net training, in which the raw RI tomograms with poor
axial resolution were used as input, and the resolution-
enhanced RI tomograms from the iterative total variation
algorithm were used as ground truth. The trained 3D
U-Net can infer the high-resolution version directly from
the raw RI tomograms. They demonstrated the feasibility
and generalizability using bacterial cells and a human
leukemic cell line. Their deep-learning-based resolution-
enhanced method outperforms conventional iterative
methods by more than an order of magnitude in reg-
ularization performance.

Aberration correction
For holography, especially in the off-axis case, the lens

and the unstable environment of the sample introduce
phase aberrations superimposing on the phase of the
sample. To recover the pure phase of the sample, the
unwanted phase aberrations should be eliminated physi-
cally or numerically. Physical approaches compensate for
the phase aberrations by recovering the background phase
without the sample from anther hologram, which requires
more setups and adjustments230,231.
As for numerical approaches, the compensation of the

phase aberrations can be directly achieved by Zernike
polynomial fitting (ZPF)232 or principal-component ana-
lysis (PCA)233. Yet, in these numerical methods, the
aberration is predicted from the whole phase, where the
object area should not be considered as an aberration.
Thus, before using the Zernike polynomial fitting, the
neural network can be used to find out the object area and
the background area to avoid the influence of the back-
ground area and improve the compensation effect
(Fig. 25). This segmentation-based idea, namely CNN+
ZPF, was first proposed by Nguyen et al.234 in 2017. They
manually made binary masks as ground truth for each
phase to distinguish the area of the background and
sample. After comparison on different real samples, they
found that the compensated result of the CNN+ ZPF
contains a flatter background than that of PCA. However,
the aberration in the initial phase makes it more difficult
to do segmentation from the already weak phase dis-
tribution of the boundary features, especially for the large
tilted phase aberrations. To address this problem, Ma
et al.235 proposed to do segmentation with hologram
instead of phase as neural network input. Lin et al.236

applied the CNN+ ZPF to real-time phase compensation
with a phase-only SLM.
In addition to the way of CNN+ ZPS, Xiao et al.237

directly inferred the Zernike coefficient of aberration from
the initial phase via a neural network, which costs less
computation. They trained a neural network specifically
for bone cells, and used this efficient method to achieve
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long-term morphological observation of living cells.
Zhang et al.238 used a trained neural network to infer the
in-focus phase from the de-focus aberrated intensity and
phase. Tang et al.239 introduced the sparse constraint into
the loss function and iteratively inferred the correspond-
ing phase aberrations from the initial phase or fixed vector
with an untrained neural network and Zernike model.

Phase unwrapping
In the interferometric and optimization-based phase

recovery methods, the recovered light field is in the form
of complex exponential. Hence, the calculated phase is
limited in the range of (-π, π] on account of the arctangent
function. Therefore, the information of the sample cannot
be obtained unless the absolute phase is first estimated
from the wrapped phase, the so-called phase unwrapping.
In addition to phase recovery, the phase unwrapping
problem also arises in magnetic resonance imaging240,
fringe projection profilometry241, and InSAR. Most con-
ventional methods are based on the phase continuity
assumption, and some cases, such as noise, breakpoints,
and aliasing, all violate the Itoh condition and affect the
effect of the conventional methods242. The advent of deep
learning has made it possible to perform phase unwrap-
ping in the above cases. According to the different uses of
the neural network, these deep-learning-based phase
unwrapping methods can be divided into the following
three categories (Fig. 26)66. Deep-learning-performed
regression method (dRG) estimates the absolute phase
directly from the wrapped phase by a neural network (Fig.
26a)243–256. Deep-learning-performed wrap count method
(dWC) first estimates the wrap count from the wrapped
phase by a neural network, and then calculates the abso-
lute phase from the wrapped phase and the estimate wrap
count (Fig. 26b)210,257–267. Deep-learning-assisted method
(dAS) first estimates the wrap count gradient or dis-
continuity from the wrapped phase by a neural network;
next, either reconstruct the wrap count from the wrap

count gradient and then calculate the absolute phase like
dWC268,269, or directly use optimization-based or branch-
cut algorithms to obtain the absolute phase from the warp
count gradient or the discontinuity (Fig. 26c)270–274.

Deep-learning-performed regression method (dRG)
Dardikman et al.243 presented the dRG method, which

utilizes a residual-block-based CNN with a dataset of
simulated steep cells. They also validated the dRG method
post-processed by congruence in actual cells and com-
pared it with the performance of the dWC method244.
Then, Wang et al.245 introduced the U-Net and a phase
simulation generation method into the dRG method,
wherein they evaluated the trained network on real
samples, examined the network’s generalization ability
through middle-layer visualization, and demonstrated the
superiority of the dRG method over conventional meth-
ods in noisy and aliasing cases. In the same year, He
et al.246 and Ryu et al.247 evaluated the ability of the 3D-
ResNet and recurrent neural network (ReNet) to perform
phase unwrapping using magnetic resonance imaging
data. Dardikman et al.248 released their real sample
dataset as open-source. They demonstrated that the
congruence could enhance the accuracy and robustness of
the dRG method, particularly when dealing with a limited
number of wrap count. Qin et al.249 utilized a Res-UNet
with a larger capacity to achieve higher accuracy and
introduced two new evaluation indices. Perera et al.250

and Park et al.251 introduced the long short-term memory
(LSTM) network and GAN into phase unwrapping. Zhou
et al.252,275 enhanced the robustness and efficiency of the
dRG method by doing preprocessing and postprocessing
steps for the U-Net with EfficientNet275 backbone. Xu
et al.253 improved the accuracy and robustness of the
U-Net by adding more middle-layers and skip connec-
tions and using a composite loss function. Zhou et al.254

used the GAN in the InSAR phase unwrapping and
avoided the blur in the unwrapped phase by combining

Hologram

Conventional 
recovery

Phase Segmentation

FittingAberration compensation

Background phaseAberration phasePhase

Trained network

Fig. 25 Description of deep-learning-based phase aberration correction
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the l1 loss and adversarial loss. Xie et al.255 trained four
networks for different noise levels, which made each
network more focused on a specific noise level. Zhao
et al.256 added a weighted map as the prior to the neural
network to make it more focused on the area near the
jump edge, similar to an additional attention mechanism.
Different from the above methods, Vithin et al.276,277

proposed to use the Y-Net90 to infer the phase gradients
from a wrapped phase and then calculate the
absolute phase.

Deep-learning-performed wrap count method (dWC)
Liang et al.257 and Spoorthi et al.258 first proposed this

idea in 2018. Spoorthi et al.258 proposed a phase dataset
generation method by adding and subtracting Gaussian
functions with randomly varying mean and variance
values, and used the clustering-based smoothness to
alleviate the classification imbalance of the SegNet. Fur-
ther, the prediction accuracy of their methods was
improved by introducing the prior of absolute phase
values and gradients into the loss function, which they
called Phase-Net2.0259. Zhang and Liang et al.210,260

sequentially used three networks to perform phase
unwrapping by wrapped phase denoising, wrap count

predicting, and post-processing. In addition, they pro-
posed to generate a phase dataset by weighted adding
Zernike polynomials of different orders. Immediately
after, Zhang and Yan et al.261 verified the performance of
the network DeepLab-V3+, but the resulting wrap count
still contained a small number of wrong pixels, which will
propagate error through the whole phase maps in the
conventional phase unwrapping process. They thus pro-
posed to use refinement to correct the wrong pixels. To
further improve the unwrapped phase, Zhu et al.262 pro-
posed to use the median filter for the second post-
processing to correct wrong pixels in the wrap count
predictions. Wu et al.263 enhanced the simulated phase
dataset by adding the noise from real data. They also used
the full-resolution residual network (FRRNet) with U-Net
to further optimize the performance of the U-Net in the
Doppler optical coherence tomography. By comparison
with real data, their proposed network holds a higher
accuracy than that of the Phase-Net and DeepLab-V3+.
As for applying the dWC to point diffraction inter-
ferometer, Zhao et al.264 proposed an image-analysis-
based post-processed method to alleviate the classification
imbalance of the task and adopted the iterative-closest-
point stitching method to realize dynamic resolution.

Wrap count

0 1 2

Conventional
recovery

–� 4�

2�

2�

0�

Wrapped phase PhaseHologram

–1 0 1

Wrap count gradient
or  discontinuity

Optimization-based algorithms

a

b

c

Trained network

Trained network

Trained network

Fig. 26 Description of deep-learning-based phase unwrapping. a Deep-learning-performed regression method. b Deep-learning-performed
wrap count method. c Deep-learning-assisted method
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Vengala et al.90,265,266 used the Y-Net90 to reconstruct the
wrap count and pure wrapped phase at the same time.
Zhang et al.267 added atrous spatial pyramid pooling
(ASPP), positional self-attention (PSA), and edge-
enhanced block (EEB) to the U-Net to get higher accu-
racy and stronger robustness than the networks used in
the above methods. Huang et al.278 applied the HRNet to
the dWC methods. Their method still needs the median
filter for post-processing, although the performance is
better than that of the Phase-Net and DeepLab-V3+.
Wang et al.279 proposed another EEB based on Laplacian
and Prewitt edge enhancement operators for the network,
which further enhances classification accuracy and avoids
the use of post-processing.

Deep-learning-assisted method (dAS)
The conventional methods estimate the wrap count

gradient under the phase continuity assumption, which
hence is disturbed by unfavorable factors such as noise.
To get rid of it, Zhou et al.270 proposed to estimate the
wrap count gradient via a neural network instead of
conventional methods. Since the noisy wrapped phase and
the corresponding correct wrap count gradient are used
as training datasets, the trained neural network is able to
estimate the correct wrap count gradient from the noisy
wrapped phase without being limited by the phase con-
tinuity assumption. The correct result can be obtained by
minimizing the difference between the unwrapped phase
gradients and the network-output wrap count gradient.
Further, Wang et al.271 proposed to input a quality map,
as the prior, together with the wrapped phase into the
neural network to improve the accuracy of the estimated
wrap count gradient. Almost simultaneously, Sica et al.268

directly reconstructed the wrap count from the network-
output wrap count gradient and then calculated the
absolute phase, like dWC. On this basis, Li et al.269

improved neural network estimation efficiency by using a
single fusion gradient instead of the vertical and hor-
izontal gradients. In addition to estimating the wrap count
gradient via a neural network, Wu et al.272,273 chose to
estimate the horizontal and vertical discontinuities with a
neural network, and recover the absolute phase by the
optimization-based algorithms. Instead of using the
wrapped phase as the network input, Zhou et al.274

embedded the neural network into the branch-cut algo-
rithm to predict the branch-cut map from the residual
image, which reduced the computational cost of the
branch-cut algorithm.

Deep learning for phase processing
A summary of “Deep learning for phase processing” is

presented in Table 6 and is described below, including the
“Segmentation”, “Classification”, and “Imaging modal
transformation” sections.

Segmentation
Image segmentation, aiming to divide all pixels into

different regions of interest, is widely used in biomedical
analysis and diagnosis. For un-labeled cells or tissues, the
contrast of the bright-field intensity is low and thus
inefficient to be used for image segmentation. Therefore,
segmentation according to the phase distribution of cells
or tissues becomes a potentially more efficient way. Given
the great success of CNNs in semantic segmentation280, it
seems that we can easily transplant it for phase segmen-
tation, that is, doing segmentation with the phase as input
of the neural network (Fig. 27).
To the best of our knowledge, early in 2013, Yi et al.281

first proposed to do segmentation from the phase dis-
tribution for the red blood cells, although using a non-
learning image-processing-based algorithm. To improve
the segmentation accuracy in the case of heavily over-
lapped and multiple touched cells, they first introduced the
fully convolutional network (FCN)280 into phase segmen-
tation282. Earlier in the same year, Nguyen et al.283 used the
random forest algorithm to segment prostate cancer tissue
from the phase distribution. Ahmadzadeh et al.284 used the
FCN-based phase segmentation to do nucleus extraction
for cardiomyocyte characterization. Subsequently, the
U-Net was used for phase segmentation in multiple bio-
medical applications, such as segmentation of the sperm
cells’ ultrastructure for assisted reproductive technolo-
gies285, SARS-CoV-2 detection286, cells live-dead assay287,
and cells cycle-stage detection288. In addition, other types
of neural networks were used for phase segmentation,
including the mask R-CNN for cancer screening289 and the
DeepLab-V3+ for cytometric analysis290.
Further than the phase, the RI from ODT can be used to

segment a sample in three dimensions. Lee et al.291

obtained the 3D shape and position of the organelles by
2D segmentation of the RI tomograms at different depths,
which are respectively used for the analysis of the mor-
phological and biochemical parameters of breast cancer
cells’ nuclei. As a more direct and efficient way, Choi
et al.292 used a 3D U-Net to segment subcellular com-
partments directly from a single 3D RI tomogram.

Classification
Similar but different from the segmentation, the clas-

sification task is only responsible for giving the overall
category of the input sample image, regardless of the
specific pixels in the image. For the classification task, the
phase provides more information related to the RI and
three-dimensional topography of the sample, making it
ideal for transparent samples such as cells, tissues, and
microplastics293,294. Conventional machine learning
algorithms first manually extract tens of features from the
phase and then do classification with different models.
Support vector machine295, as one of the most popular
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conventional machine learning strategies, is the most used
strategy in phase classification296–303. In addition, some
researchers used other conventional machine learning
strategies, such as k-nearest neighbor304,305, fully-
connected neural networks306,307, random forest308,309,
and random subspace310. More generally, some
researchers compared the accuracy of different conven-
tional machine learning strategies in the same application
context306,311–313.
Different from conventional machine learning strategies

that require manual feature extraction, deep learning
usually takes the phase or its further version directly as
input, in which the deep CNNs will automatically perform
feature extraction (Fig. 28). This automatic feature
extraction strategy tends to achieve higher accuracy, but
usually requires a larger number of paired input-label
datasets as support. The use of phase as input to deep
CNNs for classification was first reported in the work of
Jo et al.293. They revealed that, for cells like anthrax
spores, the accuracy of the neural network using phase as
input is higher than that of the neural network using
binary morphology image obtained by conventional
microscopy as input. Subsequently, this deep-learning-
based phase classification method has been used in mul-
tiple applications, including assessment of T cell activa-
tion state314, cancer screening315, classification of sperm
cells under different stress conditions316, prediction of
living cells mitosis317, and classification of different white
blood cells318. Accuracy in these applications is generally
higher than 95% for the binary classification, but cannot
achieve comparable accuracy in multi-type classification.
On the one hand, combining the automatically extrac-

ted features of the neural network and the manually
extracted features for classification can effectively
improve the accuracy, which is because the manually
extracted features add the prior of human experts to the
classifier319–321. For instance, after adding the manual

morphological features, the accuracy and area under the
curve of healthy and sickle red blood cells classification
are improved from 95.08% and 0.9665 to 98.36% and
1.0000, respectively320. On the other hand, the classifica-
tion accuracy can also be enhanced by using higher
dimensional data of the phase or other data together with
the phase as the input of the neural network, such as 3D
RI tomogram from the phase322,323, more phase in tem-
poral dimension324–326, more phase in wavelength
dimension327,328, and amplitude together with the
phase329–334.

3D RI tomogram from the phase (Fig. 29a)
Ryu et al.322 used the 3D RI tomogram as the input of a

neural network to classify different types of cells, and
achieved an accuracy of 99.6% in the binary classification
of lymphoid and myeloid cells, and of 96.7% even in five-
type classification of white blood cells. For the multi-type
classification, they also used the amplitude or phase of the
same sample as input to train and test the same neural
network, but only achieved an accuracy of 80.1% and
76.6%, respectively. Afterward, Kim et al.323 from the
same group applied this technology to microbial identi-
fication and reached 82.5% accuracy from an individual
bacterial cell or cluster for the identification of 19 bac-
terial species.

More phase in temporal dimension (Fig. 29b)
Wang et al.324 used the amplitude and phase from time-

lapse holograms as inputs to a pseudo-3D CNN to classify
the type of growing bacteria, shortening the detection
time by >12 h compared with the environmental-
protection-agency-approved methods. Likewise, Liu
et al.325 used the phase from time-lapse holograms as
neural network inputs to infer the plaque-forming units
probability for each pixel, achieving >90% plaque-forming
units detection rate in <20 h. By contrast, Batuch et al.326

Hologram
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Cytoplasm

Trained network

Fig. 27 Description of deep-learning-based segmentation from the phase
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Type B

Type A
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Fig. 28 Description of deep-learning-based classification from the phase
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proposed to use the phase at a specific moment and the
corresponding spatiotemporal fluctuation map as the
inputs of a neural network to improve the accuracy of
cancer cell classification.

More phase in wavelength dimension (Fig. 29c)
Singla et al.327 used the amplitude and phase of the red-

green-blue color wavelengths as inputs of a neural net-
work, thereby achieving a classification accuracy of 97.7%
for healthy and malaria-infected red blood cells, and
classification accuracy of 91.2% even for different stages of
malaria-infection. Similarly, With the blessing of infor-
mation from the red-green-blue color holograms, Isil
et al.328 achieved the high-accuracy four-type classifica-
tion of algae, including accuracy of 94.5%, 96.7%, and
97.6% for D. tertiolecta, Nitzschia, and Thalassiosira algae,
respectively.

Amplitude together with the phase (Fig. 29d)
Lam et al.330,331 used the amplitude and phase as the

inputs of a neural network to do the classification of
occluded and/or deformable objects, and achieved accu-
racy over 95%. With the same strategy, they performed a
ten-type classification for biological tissues with an
accuracy of 99.6%332. Further, Terbe et al.333 proposed to
use a type of volumetric network input by supplementing
more amplitude and phase in different defocus distances.
They built a more challenging dataset with seven classes
by alga in different counts, small particles, and debris. The
network with volumetric input outperforms the network
with a single amplitude and phase inputs in all cases by
~4% accuracy. Similarly, Wu et al.334 used real and ima-
ginary parts of the complex field as network input to do a

six-type classification for bioaerosols, and achieved an
accuracy of over 94%.
In pursuit of extreme speed for real-time classification,

some researchers also choose to directly use the raw
hologram recorded by the sensor as the input of the
neural network to perform the classification tasks335–339.
Since the information of amplitude and phase are enco-
ded within a hologram, the hologram-trained neural
network should achieve satisfactory accuracy with the
support of sufficient feature extraction capabilities, which
has been proven in practices including molecular diag-
nostics335, microplastic pollution assessment336–338, and
neuroblastoma cells classification339.

Imaging modal transformation
Let us start this subsection with image style trans-

fer340,341, which aims to transfer a given image to another
specified style under the premise of retaining the content
of this image as much as possible. For a type of biological
sample or its tissue slice, different parts have different RI
properties, different absorption properties, and different
chemical or fluorescent staining properties. These four
corresponding properties point to phase recovery/ima-
ging, bright-field imaging, and chemical- or fluorescent-
staining imaging, respectively, which makes it possible to
achieve image style transfer from phase recovery to other
imaging modals (Fig. 30).

From phase recovery to bright-field imaging
The bright-field images of some color biological sam-

ples have sufficient contrast due to their strong absorption
of visible light, so for such samples, bright-field imaging
can be used as the target imaging modality, in which a
neural network is used to transfer the complex-value
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Fig. 29 Description of deep-learning-based classification from higher dimensional data of phase. a Classification from 3D RI tomogram.
b Classification from more phase in the temporal dimension. c Classification from more phase in wavelength dimension. d Classification from
amplitude together with the phase. a Adapted from ref. 322 under Creative Commons (CC BY 4.0) license
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image of the sample into its virtual bright-field image. In
2019, Wu et al.342 presented the first implementation of
this idea, called bright-field holography, in which a neural
network was trained to transfer the back-propagated
complex-value images from a single hologram to their
corresponding speckle- and artifact-free bright-field
images (Fig. 31a). This type of “bright-field holography” is
able to infer a whole 3D volumetric image of a color
sample like pollen from its single-snapshot hologram.
Further, Terbe et al.343 implemented “bright-field holo-
graphy” with a cycle-GAN in the case of unpaired
datasets.

From phase recovery to chemical-staining imaging
For most transparent/colorless biological samples,

chemical staining enables them to be clearly observed or
imaged under bright-field microscopy. This allows the
above “bright-field holography” to be used for transparent
biological samples as well, which is called virtual staining.
It directly infers the corresponding digital stained image
from the phase recovered by label-free methods, which
avoids the complicated, time-consuming, and con-
taminating staining processes. Rivenson et al.344 applied
this virtual staining technique to the inspection of histo-
logically stained tissue slices and named it PhaseStain, in

which a well-trained neural network was used to directly
transfer the phase of tissue slices to their bright-field
image of virtual staining (Fig. 31b). Using label-free slices
of human skin, kidney, and liver tissue, they conducted an
experimental demonstration of the efficacy of “PhaseS-
tain” by imaging them with a holographic microscope.
The resulting images were compared to those obtained
through bright-field microscopy of the same tissue slices
that were stained with HandE, Jones’ stain, and Masson’s
trichrome stain, respectively. The reported “PhaseStain”
greatly saves time and costs associated with the staining
process. Similarly, Wang et al.345 applied the “PhaseStain”
in Fourier ptychographic microscopy and adapted it to an
unpaired dataset with a cycle-GAN. Further, by introdu-
cing the phase attention guidance, Jiang et al.49 addressed
the ambiguity problem of intensity- or phase-only net-
works for virtual staining. Liu et al.346 used six images of
amplitude and phase at three wavelengths as network
input to infer the corresponding virtual staining version.
In addition to tissue slices, Nygate et al.347 demonstrated
the advantages and potential of this deep learning virtual
staining approach on a single biological cell like sperm
(Fig. 31c). To improve the effectiveness of virtual staining,
they used the phase gradients as an additional hand-
engineered feature along with the phase as the input of
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Fig. 30 Description of deep-learning-based imaging modal transformation
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Fig. 31 Description of deep-learning-based virtual staining. a Inferring bright-field image from real and imaginary parts. b Inferring stained
bright-field image from the phase. c Inferring stained bright-field image from the phase and its gradients. a, b Adapted from refs. 342,344 under
Creative Commons (CC BY 4.0) license. c Adapted from ref. 347 under Creative Commons (CC BY-NC-ND 4.0) license
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the neural network. In order to assess the effectiveness of
virtual staining, they used virtual staining images, phase,
phase gradients, and stain-free bright-field images as
input data for the five-type classification of sperm, and
found that the recall values and F1 scores of virtual
staining images were higher than those of other data twice
or even four times. This type of single-cell staining
approach provides ideal conditions for real-time analysis,
such as rapid stain-free imaging flow cytometry.

From phase recovery to fluorescent-staining imaging
Apart from imaging color or chemical-stained biological

samples with bright-field microscopy, fluorescence
microscopy can provide molecular-specific information
by imaging fluorescence-labeled biological samples. As a
labeled imaging method, fluorescence microscopy has
insurmountable disadvantages, including phototoxicity
and photobleaching. Guo et al.348 proposed the concept of
“transferring the physical-specific information to the
molecular-specific information via a trained neural net-
work” (Fig. 32a). Specifically, they used the phase and
polarization of cell samples as multi-channel inputs to
infer the corresponding fluorescence image, and further
demonstrated its performance by imaging the architecture
of brain tissue and prediction myelination in slices of a
developing human brain. Almost simultaneously, Kandel
et al.349 used a neural network to infer the fluorescence-
related subcellular specificity from a single phase, which
they called phase imaging with computational specificity
(Fig. 32b). With these label-free methods, they monitored
the growth of both nuclei and cytoplasm for live cells and
the arborization process in neural cultures over many
days without loss of viability350. Guo et al.351 further
inferred the fluorescence images from the phase at dif-
ferent depths and performed 3D prediction for mito-
chondria. The above methods are performed on wide-field

fluorescence microscopes, which cannot provide high-
resolution 3D fluorescence data for neural networks as
ground truth. Hence, Chen et al.352 presented an artificial
confocal microscopy consisting of a commercial confocal
microscope augmented by a laser scanning gradient light
interference microscopy system. It can provide the phase
of the samples in the same field of view as the fluores-
cence channel to obtain paired datasets. With the support
of deep learning, their proposed artificial confocal
microscopy combines the benefits of non-destructive
phase imaging with the depth sectioning and chemical
specificity of confocal fluorescence microscopy.
The aforementioned imaging modal transformation

methods use phase as the input of neural networks, but
the phase, in addition to being related to RI, also depends
on the thickness of the biological sample or its tissue slice.
Therefore, a neural network trained on the dataset of a
biological type is difficult to generalize to another differ-
ent one. Unlike inferring the fluorescence image from the
phase, RI is an absolute and unbiased quantity of biolo-
gical samples, so a neural network trained with RI as input
is naturally applicable to new species. Jo et al.353 thus built
a bridge from ODT to fluorescence imaging via deep
learning (Fig. 32c). They trained a neural network with the
3D RI tomogram as input and the corresponding fluor-
escence image as ground truth. With the trained neural
network, they performed various applications within the
endogenous subcellular structures and dynamics profiling
of intact living cells at unprecedented scales.

Conclusion and outlook
The introduction of deep learning provides a data-driven

approach to various stages of phase recovery. Based on
where they are used, we provided a comprehensive review of
how neural networks work in phase recovery. Deep learning
can provide pre-processing for phase recovery before it is
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Fig. 32 Description of deep-learning-based label-free virtual fluorescence imaging. a Inferring fluorescence image from the phase, retardance,
and orientation. b Inferring fluorescence image from the phase. c Inferring 3D fluorescence image from a 3D RI tomogram. a, b Adapted from
refs. 348,349 under Creative Commons (CC BY 4.0) license. c Adapted from ref. 353 with permission of Springer Nature
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performed, can be directly used to perform phase recovery,
can post-process the initial phase obtained after phase
recovery, or can use the recovered phase as input to
implement specific applications. Despite the fact that deep
learning provides unprecedented efficiency and convenience
for phase recovery, there are some common general points
to keep in mind when using this learn-based tool.

Datasets
For the supervised learning mode, a paired dataset

provides enough rich and high-quality prior knowledge
as a guide for neural network training. As one of the
most common ways, some researchers choose to collect
the intensity image of the real sample through the
experimental setup as the input, and calculate the cor-
responding phase through conventional model-based
methods as ground truth (label). Numerical simulations
can be a convenient and efficient way to generate data-
sets for some cases, such as phase unwrapping66, holo-
gram resolution enhancement74 and diffractive
imaging130. The paired dataset thus implicitly contains
the input-to-label mapping relationship in a large num-
ber of specific samples, which determines the upper limit
of the ability of the trained neural network. For instance,
if the dataset is collected under fixed settings, the trained
neural network can only target a fixed device parameter
(such as defocus distance, off-axis angle, and wavelength)
or a certain class of samples, but cannot adapt to other
situations that are not implied in the dataset. Of course,
one can ameliorate this by using different settings and
different types of samples when collecting datasets,
thereby including various cases in the paired training
samples, such as adapting to a certain range of defocus
distance114,166, adapting to different aberrations119,129,
adapting to different off-axis angles123 and adapting to
more types of samples127. One can use Shannon entropy
to quantitatively represent the richness of the amount of
information contained in the dataset, which directly
affects the generalization ability of the trained neural
network117. In addition, the spatial frequency content of
the training samples in datasets also limits the ability of
the trained neural network to resolve fine spatial fea-
tures, which can be improved to some extent by pre-
processing the power spectral density of the training
samples115. For the weak-supervised learning mode, the
cycle-GAN-based method trains neural networks with
an unpaired dataset for learning the mapping relation-
ship between the input domain and the target domain,
including phase recovery124,125,142, noise reduction209,
resolution enhancement227, and imaging modal trans-
formation343,345. As for the unsupervised learning mode,
under the guidance of forward physical models and
input-only datasets, neural networks learn the inverse
process152,153,159–162.

Networks and loss functions
Guided/Driven by the dataset, the neural network is

trained to learn the mapping relationship from the input
domain to the target domain by minimizing the difference
between the actual output and ground truth (loss func-
tions). Therefore, the fitting ability of the neural network
itself and the perception ability of the loss function
determines whether the implicit mapping relationship in
the dataset can be well internalized into the neural net-
work. Conventional encoder-decoder-based neural net-
works have sufficient receptive fields and strong fitting
capabilities, but down-sampling operations such as max-
pooling lose some high-frequency information. Dilated
convolutions can improve the receptive field while
retaining more high-frequency information141. Convolu-
tion in the Fourier frequency domain guarantees a global
receptive field, since each pixel in the frequency domain
contains contributions from all pixels in the spatial
domain145,146. In order to make the neural network more
focused on different spatial frequency information, one
can also use two neural networks to learn the high- and
low-frequency bands, respectively, and then use the third
neural network to merge them into a full spatial frequency
version169. Neural architecture search is another potential
technology that automatically searches out the optimal
network structure from a large structure space147. In
addition to the aforementioned CNNs, due to the excel-
lent global feature perception, Vision Transformer112 and
Swin Transformer143 achieved better inference perfor-
mance than classic CNNs in autofocusing108 and phase
recovery142. However, it should be noted that Transfor-
mer does not have inherent translational equivariance and
invariance like CNNs, and thus requires corresponding
data enhancement. The recently proposed local condi-
tional neural fields framework is expected to achieve
highly generalized multi-scale phase recovery, in which
generalization ability comes from measurement-specific
information in latent space while multi-scale ability comes
from local representation354. As the most commonly used
loss functions, l2-norm and l1-norm are more responsive
to low-frequency information and less sensitive to high-
frequency information. That is to say, the low-frequency
information in the output of the neural network con-
tributes more to the l2-norm and l1-norm loss functions
than the high-frequency information. Therefore, some
researchers have been trying to find more efficient loss
functions, such as NPCC115, GAN loss132,139,140, and
default feature perceptual loss of VGG layer168. So far,
what kind of neural network and loss function is the best
choice for phase recovery is still inconclusive.

Network-only or physics-connect-network (PcN)
Network-only strategy aims to infer the final phase from

the raw measured intensity image in an end-to-end
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fashion using a neural network. It’s a one-shot approach,
letting the neural network do it all in one go. Neural
networks not only need to perform regularization to
remove twin-image and self-interference-related spatial
artifacts but also undertake the task of free-space light
propagation. Therefore, the inference results of the
network-only strategy are not satisfactory in some
severely ill-posed cases, including weak-light illumina-
tion118 and dense samples137. Since free-space light pro-
pagation is a well-characterized physical model that can
be reproduced and enforced numerically, using numerical
propagation in front can relieve the burden on the neural
network and allow it to focus on learning regularization.
In fact, PcN can indeed infer better results than network-
only in the above ill-posed cases118,137. In another similar
scheme, the neural network only performs the task of
hologram generation before the phase-shifting algorithm,
thus achieving better generalization ability than network-
only89. In addition, using speckle-correlation processing
before the neural network makes the trained neural net-
work suitable for unknown scattering media and target
objects355.

Interpretability
In phase recovery, learning-based deep learning tech-

niques usually attempt to automatically learn a specific
mapping relationship by optimizing/training neural net-
work parameters with the real-world paired dataset. Deep
neural networks usually adopt a multi-layer architecture
and contain a large number of trainable parameters (even
greater than millions), and are thus capable of learning
complicated mapping relationships from datasets. Unlike
physics-based algorithms, such network architectures that
are general to various tasks often lack interpretability,
meaning that it is difficult to discover what the neural
network has learned internally and what the role of a
particular parameter is by examining the trained para-
meters. This makes one helpless in practical applications
when encountering a failure of neural network inference,
in which they can neither analyze why the neural network
failed for that sample nor make targeted improvements
for the neural network to avoid this failure in subsequent
uses. The algorithm unrolling/unfolding technique pro-
posed by Gregor and LeCun gives hope for the inter-
pretability of neural networks199, in which each iteration
of physics-based iterative algorithms is represented as one
layer of the neural network. One inference through such a
neural network is equivalent to performing a fixed num-
ber of iterations of the physics-based iterative algorithm.
Usually, physics-based parameters and regularization
coefficients are transferred into the unrolled network as
trainable parameters. In this way, the trained unrolled
network can be interpreted as a physics-based iterative
algorithm with a fixed number of iterations. In addition,

the unrolled network naturally inherits prior structures
and domain knowledge from a physics-based iterative
algorithm, and thus its parameters can be efficiently
trained with a small dataset.

Uncertainty
When actually using a trained neural network to do

inference for a tested sample, its ground truth is usually
unknown, which makes it impossible to determine the
reliability of the inferred results. To address this, Bayesian
CNNs perform phase inference while giving uncertainty
maps to describe the confidence measure of each pixel of
the inferred result132,356–358. This uncertainty comes from
both the model itself and the data, called epistemic
uncertainty and aleatoric uncertainty, respectively. The
network-output uncertainty maps are experimentally
verified to be highly consistent with the real error map,
which makes it possible to assess the reliability of inferred
results in practical applications without any ground
truth132,358. In addition to Bayesian neural networks, there
are three other uncertainty estimation techniques,
including single deterministic methods, ensemble meth-
ods, and test time augmentation methods359.

From electronic neural networks to optical neural
networks
So far, the artificial neural networks involved in this

review mostly run in the hardware architecture with
electronics as the physical carrier, such as the graphic
processing unit, which is approaching its physical limit.
Replacing electrons with photons is a potential route to
high-speed, parallel, and low-power artificial intelligence
computing, especially optical neural networks360,361.
Among them, spatial-structure-based optical neural net-
works, represented by the diffractive deep neural net-
work362, are particularly suitable for image processing and
computational imaging363–365. Some examples have
initially demonstrated the potential of using optical neural
networks for phase recovery366–368.

Inherent limitations of the hardware imaging system
In addition to considering how to use neural networks

to better recover phases from measured intensity maps,
the capabilities of the hardware imaging system itself to
detect and capture information are also essential. This is
because a clear understanding exists that even the most
advanced deep learning techniques cannot recover
information that the hardware imaging systems have not
recorded. In the case of lensless systems, incorporating
additional light field modulation devices, such as coded
layers, can transform otherwise imperceptible low- and
high-frequency information into detectable levels49–52. A
potential research direction involves using deep learning
to design coded layer distributions that optimally consider
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information across all frequencies. For lens-based sys-
tems, the illumination strategy dictates the frequency
content entering the effective numerical aperture. Hard-
ware parameters, such as illumination patterns, can be
integrated as trainable parameters within the PiN-based
phase-recovery neural network, allowing for joint opti-
mization through training datasets369,370.
Learning-based deep neural networks have enormous

potential and efficiency, while conventional physics-based
methods are more reliable. We thus encourage the
incorporation of physical models with deep neural net-
works, especially for those well modeling from the real
world, rather than letting the deep neural network per-
form all tasks as a black box. A possible way is to thor-
oughly consider the network structure, loss function, and
priors from both the dataset and physical model during
the training stage to obtain an effective pre-trained neural
network; in actual use, the pre-trained neural network can
be employed for one-time inference to address situations
requiring high real-time requirements, or alternatively,
the physical model can be used to iteratively fine-tune the
pre-trained neural network to achieve higher accuracy.
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