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Nanocomposites based on lanthanide-doped
upconversion nanoparticles: diverse designs and
applications
Kaimin Du1,2, Jing Feng1,3✉, Xuan Gao1,3 and Hongjie Zhang1,3,4✉

Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique
physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and
achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various
fields based on the specific design and components. This review presents a summary of diverse designs and synthesis
strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the
emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss
the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.

Introduction
Lanthanide-doped upconversion nanoparticles (UCNPs)

which can absorb two or more low-energy photons and
radiate a high-energy photon are favored by researchers in
various fields1,2. The 4f electrons of rare-earth ions con-
stitute the rich metastable energy levels, which makes the
upconversion process of rare-earth-doped nanocrystals
diversified. In general, the upconversion luminescence
(UCL) processes associated with rare-earth ions mainly
involve five types of energy transfer (ET) pathways: excited
state absorption (ESA), energy transfer upconversion
(ETU), cooperative energy transfer (CET), photon ava-
lanche (PA), and energy migration upconversion (EMU), as
shown in Fig. 1a3,4. In UCNPs, lanthanide ions (Ln3+) with
ladder-like electronic energy levels are often co-doped as
activators for UCL process. Before in-depth understanding
of EMU process, efficient activators were limited to Er3+,

Tm3+, and Ho3+ (especially Er3+ and Tm3+). For UCNPs
co-doped with Yb3+–Er3+, the energy transitions of
2H11/2→

4I15/2,
4S3/2→

4I15/2, and 4F9/2→
4I15/2 occurred

under 980 nm excitation, green (525 nm and 542 nm) and
red (655 nm) UCL were observed. For Tm3+ ions, under
980 nm excitation, ultraviolet (UV) emissions (290, 345,
and 362 nm), visible (Vis) emissions (450, 475, 644, and
694 nm) and near infrared (NIR) emission (800 nm) could
be observed. The UCL spectral of Er3+ and Tm3+ in
UCNPs are shown in Fig. 1b, and the photograph of UCL is
shown in Fig. 1c3. As the EMU process is proposed, the
UCL of rare-earth ions (Ce3+, Gd3+, Tb3+, Dy3+, Eu3+,
Sm3+, and Sm2+ ions) without suitable intermediate energy
levels has been realized through the construction of
core–shell structures (Fig. 1d)5,6. The modulation of
emission wavelengths in UV-to-NIR spectral region could
be easily achieved by selecting appropriate Ln3+ within
UCNPs. As known, Ln3+ have inherent limitations such as
narrow absorption cross-sections and inefficient nonlinear
multiphoton processes. Many strategies, including host
lattice modulation, photonic crystal and microlens magni-
fication, molecular sensitization, plasmon resonance
enhancement, energy transfer/transfer manipulation,
core–shell engineering, etc., are currently used to overcome
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these difficulties (Fig. 1e)7. Reassuringly, compared with
conventional materials with downshifting luminescence
(DSL), such as luminescent complexes, organic dyes, and
quantum dots (QDs), upconversion materials have excel-
lent physical, chemical and biological characteristics, such
as narrow-band emission, long fluorescence lifetime, large
anti-Stokes shifts, superior light and chemical stability,
low biological toxicity, and so on8–12. Due to the above
advantages, UCNPs have a wide range of applications in
three-dimensional display13,14, solar spectrum conver-
sion15, anti-counterfeiting technology16, optical sensing17,
and biomedicine18–20.
On account of the restricted features, single nanomaterial

is often unable to meet the needs of practical applications.
During the last decade, the design and fabrication of mul-
tifunctional nanocomposites have aroused immense
research interests. Particularly, scientists have made much
effort to develop UCNPs-based nanocomposites, which are

composed of UCNPs and other functional materials. In
terms of design and synthesis, self-assembly and in-situ
growth are usually used to obtain UCNPs-based nano-
composites with core/satellite structures. In addition,
UCNPs-based nanocomposites with core–shell structure
could be prepared by epitaxial growth. In terms of multi-
functional properties, UCNPs-based nanocomposites often
retain the unique photoluminescence properties of UCNPs,
and could be endowed with variable properties of other
various functional materials. In terms of applications,
combine UCNPs with bioimaging contrast agents, che-
motherapy drugs, photothermal agents, photodynamic
agents, and chemodynamic agents could be used for diag-
nosis and treatment of malignant tumor; UCNPs integrated
with other fluorescent materials are potential candidates for
multi-modal anti-counterfeiting; The integration of UCNPs
and semiconductor photocatalysts have great potentials in
NIR light-induced photocatalysis.
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Fig. 1 Upconversion processes and optical modulation. a Schematic diagrams of five upconversion processes4. b Representative UCL emissions
of UCNPs doped with Yb–Er and Yb–Tm ranging from UV to NIR region under irradiation at 980 nm. c Photographs of UCL of UCNPs in colloidal
solution. (I) Total UCL of NaYF4:Yb,Er sample. (II, III) The UCL of NaYF4:Yb,Er sample through red and green filters, respectively. (IV) Total UCL of NaYF4:
Yb,Tm sample3. d By selecting the proper type of doping Ln3+ within UCNPs, a broad range of emission wavelengths from UV to NIR spectral region
that could be modulated5. e Several photoluminescence enhancement strategies in Ln3+-doped UCNPs. (I) host lattice modulation, (II) photonic
crystal and microlens magnification, (III) molecular sensitization, (IV) plasmon resonance enhancement, (V) energy transfer/transfer manipulation, (VI)
core–shell engineering7. a Reprinted with permission from ref. 4 Copyright 2020, Elsevier. b, c Reprinted with permission from ref. 3 Copyright 2015,
The Royal Society of Chemistry. d Reprinted with permission from ref. 5 Copyright 2019, Elsevier. e Reprinted with permission from ref. 7 Copyright
2020, American Chemical Society.
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In this review, we firstly summarize the synthesis
methods of UCNPs-based nanocomposites for various
design purposes, i.e., self-assembly (electrostatic adsorp-
tion, specific recognition reaction, and covalent bonding),
in-situ growth, and epitaxial growth. Then, we system-
atically introduce the applications of such nanocompo-
sites, i.e., bioimaging, cancer treatments (chemotherapy,
photothermal therapy, photodynamic therapy, synergistic
cancer therapeutics), anti-counterfeiting, and photo-
catalysis. Finally, we discuss the challenges, future direc-
tions, and suggestions for UCNPs-based nanocomposites.

Strategies toward design and synthesis of UCNPs-
based nanocomposites
To integrate UCNPs and other functional materials into

one nanosystem, many strategies have been developed.
Herein, we review the recent studies on the construction
strategies and synthesis approaches of UCNPs-based
nanocomposites, mainly classified into three categories:
self-assembly, in-situ growth, and epitaxial growth.

Self-assembly
Self-assembly methods play an important role in the

construction of multifunctional nanocomposites, mainly
preparing various monomer components in advance and
then combining such different components to form
one nanosystem21. Recently, the common self-assembly
methods for preparing UCNPs-based nanocomposites
primarily contain electrostatic adsorption, specific recog-
nition reaction, and covalent bonding.

Electrostatic adsorption
Electrostatic adsorption is a typical strategy for the synth-

esis of nanocomposites. Specifically, nano-monomers with
different charges were synthesized separately, and then
combined through electrostatic interaction to form nano-
composites22–27. Shi et al. 22 reported a core/satellite nano-
composite by decorating negatively charged CuS
nanoparticles onto positively charged UCNPs@SiO2–NH2

nanoparticles. Yang et al.24 developed an intelligent nano-
platform by conjugating mesoporous silica (mSiO2)-coated
UCNPs (UCNPs@mSiO2) with CuS nanoparticles and black
phosphorus (BP) nanosheets. In Fig. 2a, positively charged
UCNPs@mSiO2–NH2 were obtained by (3-aminopropyl)
triethoxysilane (APTES) modification. Then, CuS was con-
jugated further through electrostatic adsorption and PEG
was introduced to improve the water solubility. Finally, BP
nanosheets with negative charges were coupled with
UCNPs@mSiO2–CuS–PEG (USCs–PEG). This study takes
full advantage of electrostatic adsorption to integrate several
components with different charge modifications into one
nanoplatform. Liu et al. 25 reported a novel NaYF4:Yb/Tm-
PLL@g-C3N4 nanoplatform. In Fig. 2b, NaYF4:Yb/Tm core
was decorated with positive ligand poly(L-lysine) (PLL).

Graphitic carbon nitride (g-C3N4) with negatively charged
COO− groups could combine with NaYF4:Yb/Tm-PLL
through electrostatic interaction. Recently, new nanomater-
ials have been developed by combining metal-organic fra-
meworks (MOFs) with UCNPs26,27. Huang et al. 26 used
electrostatic interactions to spread UCNPs onto MOFs sur-
faces (Fig. 2c1). Various MOFs such as UiO-66-NH2, UiO-
66, MOF-801, and PCN-223 are paved with UCNPs through
this method (Fig. 2c2). Furthermore, MOF@UCNPs@MOF
with sandwich structure could be obtained through the
epitaxial growth of MOF (Fig. 2c3). This work provides a
simple route to construct the nanocomposites combined
MOFs and UCNPs with unique structures.

Specific recognition reaction
Specific recognition reaction mainly uses certain specific

biological molecules (DNA and RNA aptamers28,29, avidin
and biotin30, antigens and antibodies31, etc.) to combine
multiple components together. DNA is an ideal program-
mable self-assembling agent due to its precise length and
well-known Watson–Crick base pairing. Lu et al. 32 fabri-
cated DNA-modified UCNPs directly by a simple method,
and then integrated with AuNPs modified with com-
plementary DNA strand. In Fig. 3a1, T30 oligonucleotides
modified UCNPs (T30-UCNPs) could assemble with com-
plementary DNA strand modified AuNPs (A27-AuNPs).
The satellite structure could be constructed by surrounding
T30-UCNPs with several A27-AuNPs (Fig. 3a2). In contrast,
when non-complementary DNA-modified AuNPs were
incubated with T30-UCNPs, the self-assembly could not be
achieved owing to lack of specific recognition between
the two parts (Fig. 3a3). This work proposes a novel com-
binatorial approach and further extend the applications in
biomimetic nano-assembly and biomedicine. Huang et al. 33

proved the molecular recognition and programmable
assembly capabilities of the as-prepared monodispersed
DNA-UCNPs by mixing them with DNA-AuNPs together.
DNA strands on UCNPs and AuNPs will hybridize to form
the duplex, forming the satellite-like structure with UCNPs
in the center and AuNPs outside (Fig. 3b1). AuNPs can be
uniformly coated on NaYF4:Yb/Er nanospheres and
NaYF4:Gd/Yb/Er nanorods through DNA-guided assembly
(Fig. 3b2). The obtained nanocomposites could realize the
adjustment of the distance between nanoparticles, which
provides new thought for the subsequent synthesis of other
nanocomposites. Kuang et al. 34 assembled nanopyramids
with Au–Cu9S5, UCNPs, and Ag2S by using the com-
plementary DNA hybridization between the recognition
sequences and DNA skeleton (Fig. 3c1). When miR-21 and
miR-203b appeared, the recognition sequences connected to
Ag2S and UCNPs in the pyramid were completely com-
plementary and separated from DNA framework based on
competitive hybridization. Two luminescent signals could
be restored simultaneously under 808 nm excitation,
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which arise from UCNPs at 541 nm and Ag2S at 1227 nm in
the Vis and second window of NIR (NIR-II) region,
respectively (Fig. 3c2). This proposed strategy opens
extensive opportunities for self-assembled nanostructures in
the biological field.

Covalent bonding
In some UCNPs-based nanocomposites, UCNPs are

coupled with other components through amidation reac-
tion, in which the two parts containing functional groups
could share electron pairs to form stable covalent bonds.
In the amidation reaction, 1-ethyl-3-(3’-dimethylamino-
propyl)carbodiimide (EDC) and N-hydroxysuccinimide
(NHS) are usually served as cross-linking agents to acti-
vate the carboxyl group (EDC/NHS method)35–38. Our
group35 constructed ZnO-gated UCNPs@mSiO2 nano-
platform. EDC was acted as the cross-linking agent to

facilitate the formation of amide bonds between carboxylic
acid-functionalized UCNPs@mSiO2 and amine-capped
ZnO nanodots, enabling ZnO nanodots to be firmly
anchored to UCNPs surface. Shan et al. 36 covalently
combined amino-functionalized UCNPs with carboxylated
nanodiamond by using EDC and NHS as cross-linking
agents to prepare multifunctional nanoplatform. Com-
pared with the electrostatic adsorption, the nanocompo-
sites obtained by covalent bonding have high structural
stability and biocompatibility.

In-situ growth
In-situ growth strategy is mainly summarized as a

method of first synthesizing one of the components, and
then uniform growing the other component to its sur-
face39–49. Up to now, most nanocomposites based on
UCNPs and single “element” nanoparticles (such as Au
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and Bi) have been synthesized through in-situ growth
strategy39–41. You et al. 41 used in-situ growth method to
synthesize UCNPs@Bi and finally obtain UCNPs@Bi@-
SiO2 nanocomposites through surface modification of
SiO2. Oleic acid (OA) coated UCNPs were first obtained
and ligand-free UCNPs were prepared through the acid-
induced ligand removal process. Then, Bi nanoparticles
could be well decorated on UCNPs through in-situ
growth. Finally, the outermost layer of UCNPs@Bi
nanoparticles is coated with dense SiO2 shell to improve
the stability (Fig. 4a). Nowadays, conjugating transition-
metal chalcogenide (Mn+S/Se) and UCNPs has aroused
immense research interests42–47. Chitosan (CS) with glu-
cosamine and hydroxyl groups could chelate metal ions
(Ag+, Cu2+, Cd2+, etc.) and improve the biocompatibility
of UCNPs. Our group43 reported a general in-situ growth
method that can make (Mn+S, M=Ag, Cu, Cd) nanodots
to uniformly conjugate on CS-coated UCNPs (Fig. 4b).
First, OA-modified NaYF4:Yb/Er UCNPs were prepared

and transferred into hydrophilic phase with the assistance
of cetyltrimethylammonium bromide (CTAB). Then, CS
was introduced to further immobilize Mn+. Finally, Mn+S
QDs could be well decorated on UCNPs@CS through in-
situ growth after adding the sulfur source. Such facile in-
situ growth strategy could also be used to combine Ag2Se
nanodots with CS-coated UCNPs, only using selenium
source instead of sulfur source44. Besides, Hao et al. 47

synthesized NaLnF4@Cu2-xS nanocomposites using in-
situ growth strategy (Fig. 4c). OA-coated NaLnF4 was
firstly synthesized by hydrothermal method. The oil-phase
core could be transferred to the water phase and nega-
tively charged by PAA modification. Then, Cu2+ could be
absorbed by PAA-NaLnF4. Finally, Cu2−xS grow uni-
formly in-situ on NaLnF4 by adding sulfur source. For in-
situ growth strategy, polymers or complexes are firstly
modified on UCNPs, which will then act as nucleation and
growth centers to induce further growth of other nano-
dots. This method simplifies the multi-step additional
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n+S nanocomposites43. c Schematic illustration of designing NaLnF4@Cu2-xS theranostic nanoplatform47.
a Reprinted with permission from ref. 41 Copyright 2019, American Chemical Society. b Reprinted with permission from ref. 43 Copyright 2020, The
Royal Society of Chemistry. c Reprinted with permission from ref. 47 Copyright 2019, John Wiley and Sons
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loading steps, and could control the growth behavior of
nanodots on UCNPs by adjusting the feeding ratio.

Epitaxial growth
Growing homogeneous shell on UCNPs through epitaxial

growth is generally considered to be an effective approach to
reduce the original nanocrystal surface defect density,
thereby improving the UCL efficiency. Various core–shell
UCNPs have been constructed, such as inert core–shell
structures (NaYF4:Yb/Ln@NaYF4 (Ln= Er, Tm)50–52,
NaGdF4:Yb/Tm@NaGdF4

53,54, LaF3:Yb/Tm@LaF3
55) or

active core–shell structures (NaYF4:Yb/Tm@NaYF4:Yb/Er
56,

NaGdF4:Yb/Er@NaGdF4:Yb
57, NaGdF4:Yb/Tm@NaGdF4:

Eu58, and BaGdF5:Yb/Er@BaGdF5:Yb
59). The heterogeneous

core–shell structure refers to the different host lattices
between the core and shell, which has been proven to be an
effective strategy to form hybrid nanostructures60–69. Yan
et al. 61 found that the UCL efficiency of NaYF4:Ln

3+@CaF2
nanoparticles with heterogeneous core–shell structure could
be increased by more than 300 times compared with shell-
free NaYF4:Ln

3+ nanoparticles. This indicates that hetero-
geneous core–shell structure can effectively prevent the
influence of nanoparticle surface defects and environmental
quenching effects. Han et al. 62 found that UCL intensity
of NaYF4:(20–100%)Yb/Tm@CaF2 was enhanced by two
orders of magnitude compared with the nanoparticles
without CaF2 shell. Yang et al. 63 developed α-NaYbF4:
Tm@CaF2:Nd@ZnO nanoplatform via hetero-epitaxial
growth manner. CaF2 shell grow epitaxially on α-NaYbF4:
Tm core, which can not only effectively control the particle
size, but also greatly promote UCL intensity. Cubic ZnO
layer firmly assembled on α-NaYbF4:Tm@CaF2:Nd via the
epitaxy manner to form core–shell–shell nanostructure. Gao
et al. 64 epitaxially grown ZnS on KMnF3:Yb/Er based on the
high affinity of Mn2+ for chalcogen ions. The formation of
KMnF3:Yb,Er@ZnS enhances UCL by suppressing the
surface-quenching effects. The core–shell particles also
exhibit intense DSL of Mn2+ under UV excitation, attri-
buting to Mn2+ doping into the ZnS lattice through the
core–shell interface.

Emerging applications of UCNPs-based
nanocomposites
Scientific interest in UCNPs-based nanocomposites has

rapidly increased and some newly emerging sectors have
seen the applications of them including bioimaging, can-
cer treatments, anti-counterfeiting, photocatalysis, etc.

Bioimaging
UCNPs with good chemical and optical stability, low

toxicity and good biocompatibility could normally be radi-
ated by NIR light, which have higher tissue penetration
depth than short-wavelength UV or Vis light and avoid
interference from organism background fluorescence70–74.

Li’s group70 designed phosphatidylcholine (PC) modified
dye-sensitized UCNPs-based nanocomposite for biological
UCL imaging. A sulfonic functionalized cyanine dye
derivative (Cy7) attached on NaYF4:30%Yb,1%Nd,0.5%
Er@NaYF4:20%Nd (CS:Nd) was used as the antenna dye,
which could broadly harvest NIR energy and enhance the
UCL (Fig. 5a1). The intense UCL signal could be detected in
HeLa cells incubated with CS:Nd-Cy7@PC nanocomposite
(Fig. 5a2). Moreover, CS:Nd-Cy7@PC was successfully
applied in lymphatic imaging (Fig. 5a3), suggesting the fea-
sibility of dye-sensitized upconversion nanocomposite for
bioimaging. However, optical imaging still has the limits of
resolution and three-dimensional reconstruction. It is
necessary to combine other imaging technologies widely
used in the medical field, such as magnetic resonance (MR)
imaging (MRI), X-ray computed tomography (CT), single-
photon emission computed tomography (SPECT), and
photoacoustic imaging (PAI), to improve the accuracy and
sensitivity of imaging. UCNPs-based nanocomposites offer
great opportunities for multi-modal imaging. Especially,
UCNPs themselves could achieve various imaging such as
UCL imaging, CT imaging, MRI, etc. by modulating lan-
thanide elements and structure of UCNPs. Li et al. 75

developed NaLuF4:Yb,Tm@NaGdF4:
153Sm as an optimized

multi-modal imaging probe, in which Lu was used for CT
imaging, Tm was used for UCL imaging, Gd was applied for
MRI and radioisotope 153Sm for improving SPECT imaging
(Fig. 5b1–b3). It is worth noting that the desired sensitivity
and resolution in vivo could be greatly improved by com-
bining MRI and UCL imaging. UCNP-based nanocompo-
sites for UCL/MR dual-modal imaging have been well
studied76–80. Yang et al. 76 synthesized Fe3O4@Mn2+-doped
NaYF4:Yb/Tm nanoplatform, which can not only offer
contrast signal in T1/T2-weighted MRI due to the co-
existence of Fe3O4 and Mn2+, but also exhibit pronounced
NIR-to-NIR UCL (Yb3+–Tm3+) in vivo fluorescence ima-
ging, (Fig. 5c). As known, MRI is more proper for soft tissue
examination, while CT shows great advantages in bone,
lung, and chest imaging, as well as cancer detection.
Therefore, the combination of MRI, CT, and UCL imaging
can undoubtedly provide more comprehensive information
of tissues81,82. Li’s group81 developed Fe3O4@NaLuF4:Yb,Er/
Tm nanocomposites as multi-modal (MR, CT and UCL)
imaging probe, which could provide the detailed imaging
information of tumor-bearing mice. NaGdF4:Yb,Er–Ag
hybrid nanocomposites were designed for UCL/CT/MR
multi-modal bioimaging82. PAI with characteristics of non-
invasiveness, rapidness, and accurate quantification has
attracted immense attention specifically in diagnosis of
tumor pathophysiological status. Indocyanine Green (ICG)
exhibits strong PAI signal at low concentration owing to the
strong absorbance in the range of 740–800 nm83,84. Nie et al.
83 synthesized high-efficiency UCNPs with 800 nm excita-
tion, and then ICG was loaded onto UCNPs to enhance the
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total absorption and UCL, achieving PAI and UCL imaging,
as well as MRI (Fig. 5d).

Cancer treatments
How to achieve accurate treatment of cancer has always

been a difficult problem and research hotspot in the
medical field. After careful modification, UCNPs could be
used as promising carriers of multiple functional probes
(such as chemotherapeutic agents, NIR photothermal
agents, photosensitizer, Fenton nanocatalysts, etc.) for
cancer treatments.

Chemotherapy
Chemotherapy is the way of destroying cancer cells

with one or more anti-cancer drugs, which have
achieved great success in improving the prognosis of
patients. However, its severe toxic side effects are life-
threatening, which present new challenges to people to
alleviate the risk85,86. Various drug vectors such as
polymer micelles87, vesicles88, and inorganic nano-
particles89 have been extensively studied in drug loading
to reduce adverse reactions. Chemotherapeutic appli-
cations of UCNP-based nanocomposites have been
studied extensively90–98. Our group35 designed ZnO-
gated UCNPs@mSiO2@DOX (DOX= doxorubicin)
nanoplatform for specific pH-triggered on-demand drug
release. The “gatekeeper” ZnO exists stably in normal
tissue environment to prevent premature drug leakage
and decomposes in the acidic tumor microenvironment
to realize pH-triggered on-demand release of DOX. Li
et al. 94 designed UC@Si-DOX@TA–Cu (TA= tannic
acid) nanoplatform to realize real-time UCL monitoring
of pH-responsive drug release in live cells (Fig. 6a).
UC@Si-DOX exhibits rapid release behavior at pH 7.4
while UC@Si-DOX@TA–Cu shows negligible DOX
leakage, which indicates that TA–Cu protective shell
can effectively encapsulate DOX within the mesopores
(Fig. 6b). For UC@Si-DOX@TA–Cu, DOX release
increases with decreasing pH, attributing to the efficient
decomposition of TA–Cu complexes under acidic con-
dition (Fig. 6c). Moreover, the luminescence resonance
energy transfer from UCNPs to DOX occurs, resulting
in the emission quenching of UCNPs (Fig. 6d). Upon pH
triggered DOX release, the luminescence resonance
energy transfer is gradually eliminated, resulting in an
increase in UCL to monitor DOX release in real-time
(Fig. 6e). The real-time monitoring of intracellular DOX
release from UC@Si-DOX@TA–Cu exhibits that time-
dependent enhancement of DOX fluorescence could be
detected with the extension of incubation time. The
significant recovery of UCL can be clearly detected
under 980 nm excitation (Fig. 6f). The cytotoxicity assay
proves that UC@Si-DOX@TA–Cu shows good cancer
therapeutic effect (Fig. 6g).

Photothermal therapy
Photothermal therapy (PTT) is an efficient noninvasive

therapy approach, based on the photothermal conversion
effect of photothermal agents to increase the temperature
of tumor site for killing the tumor cells under the irra-
diation of external light. Compare with UV and Vis light,
NIR light possesses much higher tissue penetration abil-
ity99. To date, various organic or inorganic NIR-absorbed
photothermal agents have been developed for PTT100–109.
NIR light-activated nanocomposites combining UCNPs

with photothermal agents show great prospects in PTT of
tumor45,110–115. Our group44 reported multifunctional
UCNPs@CS@Ag2Se nanocomposites for multi-modal
imaging-guided PTT of tumor. Benefiting from the
excellent absorption coefficient of Ag2Se, the nano-
composites exhibit high photothermal conversion effi-
ciency, and excellent photothermal killing effect. You
et al. 45 designed UCNP–Bi2Se3 nanohybrid for UCL/CT
imaging-guided PTT. Bi2Se3 nanodots connected on
UCNPs possess strong NIR absorption and efficient
photothermal performance as well as distinct cancer cell
ablation under single-wavelength NIR laser irradiation.
Additionally, Shi et al. 110 reported novel UCNP@Al
(OH)3/Au nanohybrids for synergistic-targeted PTT and
UCL imaging under NIR light irradiation.

Photodynamic therapy
Photodynamic therapy (PDT) is a noninvasive and site-

specific cancer treatment based on photochemistry.
Typical PDT system involves three major elements:
photosensitizer, suitable excitation of light, and oxygen
molecules at the site of the disease tissue. Upon light
excitation at specified wavelength, photosensitizer could
be selectively activated to generate reactive oxygen species
(ROS), which can induce cancer cell death, nevertheless,
its application is limited by the penetration depth of the
excitation light116.
As UCNPs could convert NIR light to UV/Vis light, the

tissue penetration depth in their PDT application could be
improved. Based on this, UCNPs-based nanocomposites
become the ideal candidates for PDT of deep tissue can-
cer117–124. Kong et al. 118 designed NIR light switchable
PUCNPs@TiO2 nanocomposites to realize imaging
guided accurate PDT of tumor (Fig. 7a1). PUCNPs
(NaErF4@NaYF4@NaYbF4:0.5%Tm@NaYF4) possess the
superior photoswitching feature. The intense UV-blue
emission of Tm3+ could be observed under 980 nm
excitation while it could be completely turned off when
irradiated by 800 nm light. Additionally, red emission
could be detected under 800 nm laser irradiation, attri-
buting to the multi-wavelength excitation (800, 980, and
1530 nm) property of NaErF4 (Fig. 7a2). Using this
switching characteristic, TiO2 photosensitizer could
absorb UV light selectively resulting from PUCNPs.
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The ET efficiency between PUCNPs and TiO2 is calcu-
lated as 63% based on the UV/red emission ratio
(Fig. 7a3). In vivo results show that the upconversion
photoswitching nanocomposites are appropriate for UCL
imaging in real-time and PDT of cancer under spatio-
temporal control (Fig. 7a4, a5). This work promotes the
application of UCNPs optical switching nanomaterials in
biological field. Tang et al. 119 developed switchable DNA/
UCNPs nanocomposite with chlorin e6 (Ce6) functiona-
lization, which could produce singlet oxygen (1O2) and
perform effective PDT for cancer under 980 nm excita-
tion, providing new insights for precise targeting and
highly efficient cancer therapy. At present, photo-
sensitizers with aggregation-induced emission (AIE) fea-
tures do not need to rely on O2 and have better

therapeutic effects on the hypoxic regions of tumors125.
However, AIE-active photosensitizers could often be
irradiated by UV light with limited tissue penetration and
the preparation of AIE-active photosensitizers with long-
wavelength optical windows tends to be very compli-
cated126. To optimize the diagnosis and treatment per-
formance of AIE active photosensitizers, Tang et al. 127

constructed tumor microenvironment-responsive multi-
functional nanoplatform (MUM NPs), which is composed
of AIE-active photosensitizer (MeOTTI), UCNPs, and
MnO2. The fluorescence resonance energy transfer
(FRET) between UCNPs and MeOTTI could extend the
wavelength of excitation light from UV–Vis to NIR
region, which greatly enhances the tissue penetration
depth and hydroxyl radicals (•OH) production efficiency.
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In the tumor microenvironment, MnO2 shells could
decompose and effectively reduce the expression of
intracellular glutathione (GSH), thereby increasing the
level of intracellular •OH. Mn2+ generated by the reaction
can catalyze the generation of •OH from intracellular
H2O2, and finally realize the “triple jump” of ROS level
and effective PDT guided by UCL/MR imaging (Fig. 7b1).
Both the intracellular ROS generation assay and the cor-
responding live–dead staining assay demonstrated the
extraordinary PDT performance of MUM NPs (Fig. 7b2).
MUM NPs can strongly inhibit tumor proliferation
and destroy tumor tissue, achieving highly effective anti-
tumor therapy (Fig. 7b3–b6). This work inspires
researchers to further explore therapeutic nanoplatforms
with diversified AIE-active photosensitizers for pro-
spective clinical translation.

Synergistic cancer therapeutics
Except chemotherapy, PTT and PDT mentioned above,

UCNPs-based nanocomposites could also be applied for
radiotherapy (RT), chemodynamic therapy (CDT), gas
therapy as well as immunotherapy. In order to better
control tumor progression and prevent tumor metastasis
and recurrence, the combination of multiple treatments
has become an inevitable trend in cancer treatment.
RT is one of the most commonly used therapies using

high energy electromagnetic radiation to inhibit tumor
growth, which has better results in patients who cannot
undergo surgical treatment or have difficult resec-
tion128,129. As known, the combination of RT and PTT
will counteract the disadvantages of PTT alone for deep
tumors. To improve therapeutic effect of cancer by
integrating photothermal ablation (PTA) with RT, Shi
et al. 22 designed UCNPs@SiO2@CuS (CSNT) nano-
composites for UCL/CT/MR imaging guided RT/PTA
synergistic therapy (Fig. 8a1). Such nanocomposites
possess distinct photothermal conversion performance
under 980 nm excitation through the adherence of CuS
satellites (Fig. 8a2). CSNT can be used as a radiation
sensitizer to produce dose enhancement effect due to the
existence of high Z elements (Yb, Gd, and Er) (Fig. 8a3).

The applicability of CSNT as efficient photothermal
conversion agent and radiosensitizer was well demon-
strated (Fig. 8a4, a5). Through the synergistic therapeutic
effect of RT/PTA, tumor tissue could be completely
eradicated without late recurrence (Fig. 8a6, a7), laying a
foundation for future early diagnosis and multi-modal
imaging-guided synergistic tumor therapy.
CDT, as a burgeoning type of technology for tumor

treatment, has aroused great research interest. CDT takes
the acidic microenvironment in the tumor as the reaction
condition, over expressed H2O2 as the reaction raw
material and transition metal nanomaterials as the cata-
lyst to trigger Fenton or Fenton-like reaction in cancer
cells, catalyze H2O2 to produce highly cytotoxic •OH and
induce irreversible mitochondrial damage, DNA strand
breakage, and protein and membrane oxidation130–132.
Lin et al. 133 designed UCNPs–Pt(IV)–ZnFe2O4 nano-
platform for collaborative PDT/CDT/chemotherapy of
cancer. NaGdF4:Yb/Tm@NaGdF4:Yb UCNPs triggered
by NIR light could serve as UV–Vis light source to induce
PDT effect and Fenton reaction of ZnFe2O4. Pt(IV) pro-
drugs could be reduced to highly toxic Pt(II) through
GSH in tumor cells. This nanoplatform provide a com-
prehensive way for synergetic anticancer therapy.
Besides, our group134 designed Cu2−xS decorated NaYF4:
Yb/Er@NaYF4:Yb UCNPs to achieve synergistic
enhanced CDT/PTT of cancer.
Gas therapy is promising for the treatment of many

diseases due to its inherent biosafety and insignificant
side effects. So far, gaseous molecules including NO, H2,
H2S, SO2, and CO have shown significant anticancer
effect135–137. Yang et al. 137 reported a versatile Cu2+-
initiated NO nanotheranostic system (UMNOCC–PEG)
for UCL/CT/MR imaging guided CDT/PDT/gas combi-
nation therapy. When UMNOCC–PEG nanocomposite is
endocytosed by tumor cells, pH-sensitive CuO2 nanodots
are decomposed, allowing the release of Cu2+ ions and
H2O2. This not only triggers the Fenton-like reaction of
Cu2+ and H2O2, but also realizes efficient CDT by solving
the problem of limited endogenous H2O2 content. It can
alleviate the antioxidant capacity and hypoxia of tumor

(see figure on previous page)
Fig. 8 Synergistic cancer therapeutics. a1 Schematic illustration of CSNT for imaging-guided RT/PTA synergistic therapy. a2 Temperature variation
of CSNT solutions irradiated by a 980 nm NIR laser (1.5 W cm−2, 5 min). a3 The impact of CSNT on the X-ray radiation dose. a4 Viability of HeLa cells
incubated with CSNTs at different concentrations with or without 980 nm laser irradiation and RT. a5 Viability of HeLa cells that have taken up CSNTs
treated with RT, PTA, and RT/PTA. a6 Relative tumor growth curves of different groups. a7 Digital photographs of mice from group 7 after 30, 60, 90,
and 120 days of treatment22. b1 Schematic illustration of UMNOCC-PEG for imaging-guided tumor therapy. b2 CLSM images of HeLa cells co-stained
with calcein AM (live cells, green) and PI (dead cells, red) after different treatments (0.5 W cm−2, 500 μgmL−1). b3 Photographs of the representative
mice and excised tumors137. c1 Schematic illustration of synergistic phototherapy to enhance antitumor immunity. Tumor growth curve (c2), tumor
weight (c3), and representative H&E staining (c4) of 4T1 tumor-bearing mice after different treatments. Detection of DC maturity (CD80+CD86+

gated on CD11c+) in tumor-draining lymph nodes (c5) and CTLs (CD4−CD8+ gated on CD3+) in the spleen (c6) by flow cytometry. Mean tumor
growth kinetics (c7) and corresponding survival rates (c8) of mice after different treatments139. a1–a7 Reprinted with permission from ref. 22

Copyright 2013, American Chemical Society. b1–b7 Reprinted with permission from ref. 137 Copyright 2020, The Royal Society of Chemistry. c1–c8
Reprinted with permission from ref. 139 Copyright 2019, John Wiley and Sons
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through NO production and GSH consumption, to fur-
ther boost the therapeutic effect of CDT and PDT
(Fig. 8b1). In vitro and in vivo experimental results
demonstrate that UMNOCC–PEG has excellent syner-
gistic anticancer ability (Fig. 8b2, b3).
Immunotherapy is a treatment mode to improve the

intrinsic ability against tumor by activating the body’s own
immune system, which can not only effectively inhibit
tumor recurrence and metastasis, but also specifically kill
tumor cells that have relapsed and metastasized138–140. Liu
and co-authors synthesized polydopamine (PDA) coated
with NaGdF4:Yb/Er shell, and then loaded the photo-
sensitizer Ce6 on its surface (PDA@UCNP–PEG/Ce6)139.
The nanocomposites could elicit robust systemic and
humoral antitumor immune responses by synergistic pho-
totherapy (Fig. 8c1). The synergistic treatment group (group
4) could effectively eradicate tumors (Fig. 8c2–c4), con-
firming that synergistic phototherapy performed better than
PDT or PTT alone in tumor ablation. The cell maturation
efficacy and cytotoxic T lymphocytes (CTLs) in the spleen
in the synergistic treatment group were much higher than
those in the control group (Fig. 8c5, c6), proving that
synergistic phototherapy could induce systemic antitumor
immune response. Importantly, the combination of
PDA@UCNP–PEG/Ce6 and PD-1 blocking antibody can
effectively inhibit tumor recurrence and metastasis
(Fig. 8c7) and prolong the survival period of tumor-bearing
mice (Fig. 8c8). This study establishes an innovative para-
digm for increasing immunogenic cell death by synergistic
phototherapeutic nanoplatforms.

Anti-counterfeiting applications
Counterfeit and shoddy currencies, drugs and valuables

are increasingly damaging to the market economy, bringing
immeasurable economic loss to consumers and copyright
holders. Therefore, a variety of anti-counterfeiting materi-
als such as digital watermark, diffraction grating, photonic
structure, stimulus response materials and luminescent
materials have been developed and widely used in the
current anti-counterfeiting technology. However, the
security level of traditional anti-counterfeiting materials is
relatively low and easy to be copied141–143.
Lanthanide-doped UCNPs are especially suitable for

anti-counterfeiting because of their rich intermediate
state energy levels and distinguishable spectral char-
acteristics144–149. Multicolor dual-modal excitation can be
realized simultaneously by controlling the species and
distribution of Ln3+ ions in the core and shells or devel-
oping new nanocomposites in combination with other
luminescent materials150–152. Recently, Wu et al. 150

introduced UCNPs in photoresponsive azobenzene-
containing polymer (azopolymer) to form PAzo/UCNPs
nanocomposites, which have the characteristics of various
anti-counterfeiting manners and read-out methods, as

well as easy processing. First, different color patterns were
prepared by using the photoisomerization properties of
PAzo/UCNPs. Based on the differences of mechanical
features between trans- and cis-azopolymers, the periodic
arranged photonic crystal structures could be obtained by
embossing. Due to Bragg diffraction, a pattern with
structural color is finally presented. According to photo-
induced orientation properties of azopolymers, macro-
scopic and microscopic polarization related patterns were
further prepared (Fig. 9a1–a4). Because cis-azopolymers
can absorb upconversion blue light, the photochromic
pattern can be recognized under irradiation of NIR light
according to the synergistic effect of azopolymers and
UCNPs (Fig. 9a5). According to practical needs of anti-
counterfeiting, the nanocomposites could be coated with
various patterns on flexible substrates and applied in
banknotes, medicine boxes, wine bottles, and medicine
bottles (Fig. 9a6). The research work is important for
designing the high-end anti-counterfeiting materials.
Recently, a series of nanocomposites have been

developed by coupling UCNPs with perovskite quantum
dots, which play the important roles in multi-modal
anti-counterfeiting153–158. Our group153 designed
UCNPs–CsPbX3 (UCX3) nanocomposites, emitting
multicolor UCL/DSL under 980 nm laser or 365 nm
lamp excitation. In addition, UCX3/polystyrene with
multicolor fluorescence and dual-modal luminescence
features could be used as a quick drying fluorescent ink
for writing and printing, which greatly increase the
difficulty of fraud and provide insight for the practical
application in anti-counterfeiting. Lin et al. 158 synthe-
sized UCNP@CsMnCl3 nanocomposites, which play
an important role in high-quality optical anti-
counterfeiting. NaYF4:Yb

3+,Er3+ was used as core, fol-
lowed by heteroepitaxial growth of CsMnCl3 to obtain
the core–shell structure (Fig. 9b1). UCNP@CsMnCl3
exhibits the characteristic UCL of Er3+ (980 nm exci-
tation, Fig. 9b2, top). Broad blue DSL of CsMnCl3 is
realized upon excitation with 365 nm light (Fig. 9b2,
bottom). To verify the anti-counterfeiting capability,
CsMnCl3 and UCNP@CsMnCl3 are used initially to
prepare dot-based patterns. Fig. 9b3 shows the relevant
encryption and decryption process, and Fig. 9b4 shows
the three anti-counterfeiting modes based on this
design. The decryption cannot be completed under
sunlight and UV light irradiation. Under excitation at
980 nm, only UCNP@CsMnCl3 exhibits green emission,
enabling decryption. Subsequently, they utilize
UCNP@CsMnCl3 to make more complex graphs, and
use CsMnCl3 to fill the blank space, then encryption
mode with high encryption level could be obtained. It is
concluded that UCNP@CsMnCl3 are undoubtedly sui-
table for high-level anti-counterfeiting and high-
capacity information encryption.
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UCNPs/CDs (CDs= carbon dots) dual-modal lumi-
nescent materials have attracted extensive attention159,160.
Xu et al. 160 prepared UCNPs@CDs@mSiO2 nano-
composites that can produce red, green, and blue UCL
(980 nm laser irradiation) and blue DSL (365 nm light
excitation). The nanocomposites could be further manu-
factured into different luminescent inks to produce highly
safe anti-counterfeiting barcodes. Besides, luminescent
composites with DSL and UCL such as Gd2O3:Yb

3+/Er3+/
Eu(DBM)3Phen

161, YVO4:Er
3+,Yb3+@YPO4:Eu

3+ 162, and
Y2O3:Er

3+,Yb3+@SiO2@HPU-19b@Eu3+(Tb3+)163, have
been used as dual-modal fluorescent inks and barcode,
which are potential nanomaterials for anti-counterfeiting.

Photocatalysis
Recently, the preparation of photocatalysts with broad-

spectrum (UV to NIR range) absorption properties to
realize the effective utilization of solar energy in various
fields (photocatalytic hydrogen production, elimination of
environmental pollutants, antibacterial, etc.) has been a
hot topic of research164–168. Upconversion luminescent
materials could absorb NIR light and convert it into UV/
Vis light. Therefore, the photocatalysts can be constructed
by combining the upconversion material and semi-
conductor. The resulting nanocomposites could be exci-
ted by NIR light and generate photogenerated holes (h+)
and electrons (e−), which could take advantage of sunlight
and enhance the photocatalytic efficiency. A variety of
UCNPs/semiconductor nanocomposites have been fabri-
cated, such as UCNPs/TiO2, UCNPs/CdS, UCNPs/ZnO,
etc. complex systems.

UCNPs/TiO2

TiO2 has been widely studied in photocatalytic degra-
dation of organic and inorganic pollutants due to its high
catalytic activity, non-toxic and low cost. However, TiO2

could only be excited by UV light resulting from its band
gap (3.2 eV), which greatly limits its application of pho-
tocatalysis. UCNPs/TiO2 nanocomposites could avoid the
above problem and be served as the photocatalytic
materials irradiated by NIR light169–174. Huang et al. 171

designed NaYF4:Yb
3+,Tm3+@NaYF4:Yb

3+,Nd3+@TiO2

(Tm@Nd@TiO2) nanocomposites for NIR photocatalysis.
When Tm@Nd was modified with TiO2, UV emission of
nanocomposites was greatly reduced irradiated at 980 or
808 nm (Fig. 10a1, a2). The Rhodamine B degradation rate
constants of nanocomposites under 980, 808, and 980+
808 nm laser excitation are 4.40, 5.84 and 9.83 times as
high as that of Tm@TiO2 under 980 nm excitation,
respectively (Fig. 10a3). Under 980+ 808 nm laser exci-
tation, the ethylene degradation rate constant of
Tm@Nd@TiO2 is 6.4 times higher than that of Tm@TiO2

(Fig. 10a4). The enhanced photocatalytic activity of
nanocomposites could be attributed to strong NIR

absorption of Nd3+ and intense upconversion emission of
UCNPs (Fig. 10a5). This study provides the route for
further improving NIR light-mediated photocatalytic
activity of TiO2-based upconversion photocatalysts. Song
and co-workers172 prepared D-TiO2/Au@UCN nano-
composites and antibiotic drug ampicillin sodium (AMP)
was loaded into D-TiO2/Au@UCN, which can be used as
NIR-activated photocatalytic platform for bacterial inac-
tivation (Fig. 10b1). Under 980 nm excitation, the UCL of
D-TiO2/Au@UCN is significantly lower than that of
pristine UCN, resulting from the efficient Vis light har-
vesting of D-TiO2@Au (Fig. 10b2). D-TiO2/Au@UCN can
decompose more than 60% of rhodamine 6G (Fig. 10b3),
which is much higher than that of the control and
D-TiO2/UCN groups (degradation rate: 13.3%). Under
NIR-light irradiation, almost no viable E. coli could be
observed after incubation for 60min, showing stronger
bactericidal activity of AMP-loaded D-TiO2/Au@UCN
(Fig. 10b4, b5). Such NIR light-triggered system exhibits
excellent photocatalytic bactericidal performance under
deep tissue penetration conditions (Fig. 10b6). The neg-
ligible cytotoxicity of AMP-loaded D-TiO2/Au@UCN was
verified by cytotoxicity assay (Fig. 10b7). It could greatly
expand TiO2-based photocatalysis in destroying
antibiotic-resistant and heat-resistant microorganisms.

UCNPs/ZnO
ZnO with a wide bandgap of ~3.37 eV is also widely

used in photocatalytic and antibacterial fields. ZnO pro-
duces photocatalytic effect under UV light excitation,
which restricts its applications in Vis and NIR range. To
date, UCNPs@ZnO heterojunction structures have been
constructed, which have widened the light response range
of ZnO-based photocatalytic materials and improved the
photocatalytic activity under NIR light irradiation175–178.
Li’s group175 developed NaYF4:Yb/Tm@SiO2@ZnO
nanocomposites with ideal NIR photocatalytic activity in
degradation of organic pollutants and antibacterial activ-
ity. Qiao et al. 176 prepared NaYF4:Yb,Tm,Nd@NaYF4:Yb,
Nd@SiO2@ZnO (UCN@SiO2@ZnO), which presented
good NIR-induced photocatalytic activity. The UV UCL of
UCN@SiO2@ZnO could be effectively harvested by ZnO
to activate photocatalytic process (Fig. 11a1). UCN@-
SiO2@ZnO shows high degradation rate of Rhodamine B
(61.2%) after 808 nm irradiation for 250 min (Fig. 11a2).
The upconversion UV emission absorbed by ZnO could
effectively generate photogenerated e− and h+. With the
oxidation–reduction reaction occurs between the sub-
stances adsorbed on the surface of ZnO and photo-
generated carrier, •OH radicals could be generated to
participate in the photocatalytic reaction process as an
active substance (Fig. 11a3). This study has important
value for developing composite photocatalysts with
excellent NIR photoresponsive properties.
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UCNPs/CdS
CdS with narrow band gap is used to replace TiO2 or

ZnO and coated on UCNPs, which can make full use of the
converted UV and Vis light, improve the utilization of light
and enhance the photocatalytic effect46,179,180. Li et al. 46

developed NaYF4:Yb,Tm@C@CdS nanocomposites for
NIR-light enhanced photocatalysis. The photocatalytic
activity of such nanocomposite was higher than that of CdS
and the mixture of NaYF4:Yb,Tm and CdS. Liu et al. 179

prepared NaYF4:Yb/Er@Au@CdS (NYF/Au/CdS) for H2
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production by photoreforming of bio-ethanol, where Au
component promoted the electron–hole separation through
FRET and plasmonic resonance energy transfer (PRET)
(Fig. 11b1). The UCL of NaYF4:Yb/Er significantly reduced
after modification with Au or CdS. For NYF/Au/CdS, the
upconversion emissions further diminish (Fig. 11b2). NYF/
Au/CdS exhibits promoted NIR light-induced photo-
catalytic bio-ethanol-reforming activity and has the highest
H2 yield (0.59 μmol g−1 h−1) compared with NYF, NYF/Au,
and NYF/CdS (Fig. 11b3). Furthermore, NYF/Au/CdS
exhibits the largest H2 evolution rate under simulated
sunlight illumination (Fig. 11b4). This work provides new
strategy for developing efficient NIR-driven UC photo-
catalytic systems.

Other UCNPs/semiconductor nanocomposite photocatalysts
Recently, Jiang’s group164 prepared UCNPs-Pt@MOF/

Au with broad-spectrum absorption characteristic. MOF
mainly responds to UV light and Au nanoparticles with
plasma resonance effect absorb Vis light, while UCNPs
convert NIR light into UV and Vis light, which could be
captured by adjacent MOF and Au again, to realize the
absorption and utilization of composite materials from
UV to NIR range (Fig. 11c1). UCNPs–Pt@MOF/Au
nanocomposites show considerable H2 production rate
irradiated by UV, Vis, and even NIR laser (Fig. 11c2).
Importantly, UCNPs–Pt@MOF/Au exhibits good recov-
ery performance under simulated sunlight irradiation, and
H2 production rate do not change significantly during
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four catalytic cycles of 16 h (Fig. 11c3). This work opens a
way to harness NIR light for photocatalysis. g-C3N4 has
become one of the most promising photocatalysts
driven by Vis light. Park et al. 181 designed UCNPs/g-
C3N4 nanocomposites with photocatalytic activity much
better than pure g-C3N4.

Conclusions and outlook
In summary, UCNPs-based nanocomposites are versatile

candidates to utilize the UCL characteristics and have great
potentials in various applications. This review summarizes
the main methods for constructing UCNPs-based nano-
composites, and the applications of such nanocomposites
in bioimaging, cancer treatments, anti-counterfeiting, and
photocatalysis. Notably, although promising advance has
been made in the preparation strategies and applications of
UCNPs-based nanocomposites, there are still great chal-
lenges in the following aspects.
1. The existing synthesis methods for UCNPs-based

nanocomposites still have shortcomings and
improvements. Self-assembly method often has
disadvantages of time-consuming, easy aggregation,
weak adsorption, and the structure is easily to be
destroyed under the action of some solvents. In-situ
growth method often needs to modify or coat
polymers or complexes on UCNPs as precursors,
and then the precursors act as nucleation and growth
centers to induce other nanodots to be grown further.
This also motivates us to develop more novel modified
materials, which can not only ensure that the
luminescence of UCNPs will not be quenched too
much, but also pave the way for the further growth of
other materials. The epitaxial growth method usually
uses toxic, expensive precursors or organic solvents,
and the products are hydrophobic, and the synthesis
temperature is relatively high. Heteroepitaxial growth
method requires more severe conditions, and is
impossible to track the reaction process in situ.
Thus, it is difficult to expound the reaction
mechanism exactly. Other facile methods to
synthesize UCNPs-based nanocomposites remain to
be optimized and explored.

2. The biological applications of UCNPs-based
nanocomposites are still in the preliminary stage of
research, and there are many problems to be solved
before realizing clinical transformation. It is necessary
to further rationally optimize the chemical composition
and structure, reasonable particle size, and surface
properties of UCNPs-based nanocomposites to
construct nanoplatforms with high uniformity and
excellent biocompatibility. Most importantly, to
quantitatively load functional molecules (such as
photosensitive molecules, anticancer drugs, etc.) and

achieve the controllable release are of great significance.
It cannot be ignored that reducing the biotoxicity,
improving metabolic efficiency in vivo, and ensuring
the reproducibility of diagnosis and treatment effects
are the prerequisites for the future biological
applications of UCNPs-based nanocomposites.

3. The development of superior luminescent
nanomaterials and high-tech fluorescent anti-
counterfeiting technologies is of great significance for
the global economy, security, and human health, which
has been proven to be a huge challenge. Tunable
multicolor, multi-modal luminescent nanocomposites
have been achieved by combining UCNPs with other
luminescent components, which could greatly improve
the anti-counterfeiting level. Although multiple anti-
counterfeiting materials could be used simultaneously
to impart multiple security features, the
implementation process is complex and leads to low
efficiency of production. This motivates researchers to
develop novel UCNPs-based nanocomposites with
multiple anti-counterfeiting features, different
identification methods and easy processing to
promote their practical applications. To improve the
overall photostability of UCNPs-based nanocomposites
is an important direction.

4. UCNPs@semiconductor photocatalysts have unique
core-shell structure and good photocatalytic activity
under sunlight. Although researchers have made great
progress in UCNPs-based nanocomposites with certain
photocatalytic activity in the UV, Vis and NIR regions
by enhancing UCL of UCNPs, introducing
semiconductors, and constructing heterostructures,
etc., the utilization rate of Vis and NIR light is still
unsatisfactory. The following problems need to be
considered and solved: (a) The photocatalytic
mechanism of nanocomposites needs to be further
studied. (b) The photocatalytic efficiency is not
satisfactory. The fluorescence intensity of UCNPs
needs to be improved. The surface-enhanced
fluorescence phenomenon can be generated by
introducing nano-precious metals to improve its
fluorescence intensity; new fluorescent materials
should be developed to absorb much NIR energy and
improve the conversion rate.

The design and applications of UCNPs-based nano-
composites are still in the infancy, the research of fun-
damental theoretical and practical applications will face
complex challenges. This requires close collaboration
between researchers from different disciplines to over-
come the problems. It is believed that UCNPs-based
nanocomposites will lead to major changes in life sci-
ences, anti-counterfeiting technology, optoelectronics,
energy catalysis, and other fields.
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