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Abstract
The Environmental Trace Gases Monitoring Instrument (EMI) is the first Chinese satellite-borne UV–Vis spectrometer
aiming to measure the distribution of atmospheric trace gases on a global scale. The EMI instrument onboard the
GaoFen-5 satellite was launched on 9 May 2018. In this paper, we present the tropospheric nitrogen dioxide (NO2)
vertical column density (VCD) retrieval algorithm dedicated to EMI measurement. We report the first successful
retrieval of tropospheric NO2 VCD from the EMI instrument. Our retrieval improved the original EMI NO2 prototype
algorithm by modifying the settings of the spectral fit and air mass factor calculations to account for the on-orbit
instrumental performance changes. The retrieved EMI NO2 VCDs generally show good spatiotemporal agreement with
the satellite-borne Ozone Monitoring Instrument and TROPOspheric Monitoring Instrument (correlation coefficient R
of ~0.9, bias < 50%). A comparison with ground-based MAX-DOAS (Multi-Axis Differential Optical Absorption
Spectroscopy) observations also shows good correlation with an R of 0.82. The results indicate that the EMI NO2

retrieval algorithm derives reliable and precise results, and this algorithm can feasibly produce stable operational
products that can contribute to global air pollution monitoring.

Introduction
The Environmental Trace Gases Monitoring Instrument

(EMI)1 is the first Chinese satellite-borne spectrometer
with the aim to measure atmospheric pollutants from
space. The EMI payload onboard the GaoFen-5 satellite
was successfully launched on 9 May 2018. The GaoFen-5
satellite has a polar orbit at an altitude of 706 km. The
Chinese EMI instrument is expected to contribute to the
understanding of global air quality and atmospheric
chemistry, similar to predecessor European and American
satellite missions, e.g., the Ozone Monitoring Instrument

(OMI)2 and TROPOspheric Monitoring Instrument
(TROPOMI)3. EMI has instrumental characteristics that
are similar to OMI and TROPOMI, e.g., the local overpass
time at ~13:30, spectral coverage, push-broom imaging
technique, and daily global coverage. Both EMI and
TROPOMI (launched in 2017) are new-generation satel-
lite-borne air pollutant sensors compared to the OMI that
was launched in 2004. TROPOMI follows the heritage of
OMI in both instrument design and trace gas retrievals,
but with higher spatial resolution and signal-to-noise ratio.
A prototype EMI nitrogen dioxide (NO2) retrieval algo-
rithm was developed before launch based on the OMI
NO2 retrieval. However, optimization of the NO2 retrieval
algorithm was necessary to adapt the unexpected issues of
EMI after launch, especially spectral calibration.
Nitrogen oxides (NOx), defined as the sum of nitrogen

oxide and NO2, are the major pollutants contributing to
ozone and secondary aerosol formation in the
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troposphere through photochemical reactions4. Sources
of NOx include fossil fuel combustion, vehicle emissions,
biomass burning, and lightning5. Due to rapid indus-
trialization and urbanization in the past few decades,
China has become one of the largest NOx emitters in the
world6. As a result, China is experiencing a series of severe
air pollution problems7,8. In addition to measuring NO2

distribution directly from space, applications of satellite
remote sensing may include estimations of pollutant
emissions9, air quality trend detection10, model validation,
and assimilation of satellite data11.
Figure 1a illustrates the optical design of the EMI

satellite instrument. The EMI instrument covers the
ultraviolet (UV) and visible (Vis) spectral ranges from 240
to 710 nm with a spectral resolution of 0.3–0.5 nm. Light
received by the telescope is depolarized by a scrambler
and subsequently split into four spectral channels, the
UV1 (240–315 nm), UV2 (311–403 nm), VIS1
(401–550 nm), and VIS2 (545–710 nm) channels. Each
spectrometer is equipped with a two-dimensional charge-
coupled device (CCD) detector, with one dimension used
for spectral coverage and the other dimension used for
spatial coverage. The EMI instrument scans in the nadir
direction toward the earth’s surface with an opening angle
of 114° corresponding to a swath width of 2600 km,
enabling daily global coverage with a nadir resolution of
12 × 13 km2 and a local overpass time of 13:30 (Fig. 1b).
The direct sun solar irradiance spectrum, typically used as
a reference spectrum in the spectral analysis of the nadir
radiance measurement, is introduced to the EMI tele-
scope once a day using the quartz volume diffuser12. By
using the unique absorption features of different trace
gases in the UV–Vis range, the abundances of atmo-
spheric pollutants can be retrieved from the difference
between atmospheric and solar spectra.

In this paper, we present a new tropospheric NO2 ver-
tical column density (VCD, i.e., the vertical integral of
NO2 concentration from the earth’s surface to the top of
the atmosphere) retrieval algorithm dedicated to the EMI
instrument. Details of the spectral retrieval,
stratospheric–tropospheric separation of the NO2 column
and slant to vertical column conversion are presented.
The first EMI retrieval of tropospheric NO2 columns is
compared to datasets from modern state-of-the-art Eur-
opean and American satellite sensors.

Results
NO2 retrieval overview
The retrieval of tropospheric NO2 VCDs from satellite

UV–Vis observations typically follows a state-of-the-art
three-step approach. First, the total NO2 slant column den-
sity (SCD) are retrieved from nadir radiance spectra nor-
malized by the solar irradiance, using the differential optical
absorption spectroscopy (DOAS) technique13. Subsequently,
the stratospheric NO2 columns are separated from the total
NO2 SCDs by assuming longitudinal homogeneity of stra-
tospheric NO2, while neglecting the minor contribution of
tropospheric NO2 (usually on the order of 1014 molecules
cm−2) over remote clean regions14,15. Last, tropospheric NO2

SCDs are converted to VCDs using air mass factors
(AMFs)16. The AMF is defined as the ratio between SCD and
VCD. It is a measure of the effective optical path length from
the top of the atmosphere to the earth’s surface and reflected
to the satellite through the atmosphere:

M ¼ S
V

ð1Þ

whereM is the AMF, S denotes the SCD, and V represents
the VCD. The AMF can be calculated with a radiative
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Fig. 1 Illustration of the operating principle of the EMI instrument. a Schematic diagram of the EMI optical system. b The on-orbit operation of
the EMI instrument onboard the GaoFen-5 satellite
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transfer model (RTM). The final tropospheric NO2 VCD
can be derived after subtracting the stratospheric
contribution and AMF conversion:

Vtropo ¼ S � Vstrat ´Mstrat

Mtropo
¼ S

Mstrat
� Vstrat

� �
´

Mstrat

Mtropo

ð2Þ
where Vtropo and Vstrat denote tropospheric and strato-
spheric V, respectively. Mtropo and Mstrat represent

tropospheric and stratospheric M, respectively. Details
of the stratospheric estimation and AMF calculation are
provided in the “Materials and methods” section.
Figure 2 shows an example of EMI NO2 retrieval of S,

Vstrat, and Vtropo on 1 January 2019. Enhanced NO2 levels
are observed in Eastern China, India, and the Middle East.

Algorithm improvements
A prototype EMI NO2 retrieval is developed before

launch. The prototype algorithm is very similar to the
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Fig. 2 An example of EMI NO2 retrieval on 1 January 2019. The total SCDs (S), stratospheric VCDs (Vstrat), and tropospheric VCDs (Vtropo) retrieval of
NO2 are shown in a, b, and c, respectively. Note that satellite ground pixels affected by clouds are indicated in white
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operational OMI NO2 retrieval17. However, due to
unexpected issues, i.e., low signal-to-noise ratio at the
edges of the spectral channels, bad irradiance measure-
ment due to a diffuser calibration issue, and spectral
saturation issue, the NO2 retrieval setting must be further
optimized to address these issues. A series of sensitivity
tests, including cloud correction, fitting wavelength range,
reference selection, and spectral precalibration, have been
performed to optimize the settings for tropospheric NO2

VCD retrieval. Table 1 lists the updated retrieval settings
of the EMI NO2 retrieval. Parameters used in the OMI
QA4ECV NO2 retrieval

17 are also listed for reference.
The EMI NO2 fitting range is shifted slightly from

405–465 nm (OMI operational NO2 setting17) to
420–470 nm to avoid the lower signal-to-noise ratio region
at the edges of the VIS1 channel12. Figure 3 illustrates an
example of the retrieval of NO2 SCD, i.e., the NO2 amount
integrated along the optical path in the atmosphere, by
applying the DOAS fit to the EMI-measured spectrum.
The spectral saturation issue (i.e., the analogue photon

signal reaches the maximum digital value of the CCD
detector) is critical for EMI observations over bright
clouds due to its high surface reflectance. Supplementary
Figure 1 shows the global spatial pattern of the root mean
square (RMS) of the spectral fitting residual, cloud radi-
ance fraction from TROPOMI observations, and the true
color image from the MODIS-Aqua instrument on 1
January 2019. The spatial pattern of the fitting residual
RMS is correlated to the cloud pattern. Therefore, we
filtered pixels with relatively large spectral fitting resi-
duals, i.e., the RMS values >0.004.

The key calibration data measured during the on-ground
calibration12 seem unsuitable for EMI on-orbit measure-
ments due to the degradation and stability of the instrument
in the complex space environment (e.g., cosmic radiation
exposure18 and possible instrument changes since launch19).
Therefore, we recalibrated the EMI earth radiance mea-
surements by comparing the EMI radiance to TROPOMI
measurements and RTM simulations. An advantage of
DOAS is that it does not rely on precisely calibrated radi-
ance and is less sensitive to the variability in radiometric
calibration than other methods based on discrete radiance
(e.g., SBUV and TOMS ozone retrieval algorithms20).
Figure 4 shows the comparisons of NO2 SCDs for one

orbit on 4 January 2019 retrieved using these spectral
fitting scenarios: (a) current settings of the EMI NO2

retrieval listed in Table 1; (b) using the measured irra-
diance spectrum as a reference; and (c) same as in (a) but
without spectral precalibration. Irradiance spectra mea-
sured by EMI are currently accounting for some calibra-
tion issues, and these issues are probably related to the
interference of the space environment on the hemispheric
reflectance of solar diffusers18. NO2 SCDs retrieved with
irradiance as a reference show large biases and errors,
particularly the central part of the measurement swath
(Fig. 4b). Therefore, it is not optimal to use the direct sun
irradiance spectra as a reference. To avoid the influence of
abnormal irradiance spectra, we use cloud-free earth
radiance measurements over the Pacific Ocean as a
reference21. Compared to using solar irradiance as a
reference, using earth radiance as a reference greatly
reduced the spectral noise in the fit residual (Fig. 4a, b),

Table 1 NO2 retrieval settings used in the EMI and OMI NO2 algorithms

Configurations and

parameters

OMI NO2 product (Boersma et al.17) EMI NO2 product (in this study)

NO2 SCDs fitting

Wavelength range 405–465 nm 420–470 nm

Radiometric calibration Using calibrated (ir)radiance30 Recalibrated the earth radiance measurements

Reference spectrum Solar irradiance averaged between 2005−2009

(ref. 30)

Daily earth radiance over the remote Pacific

Instrument slit function Preflight measured31 Calibrated online by using solar atlas22, Gaussian shape assumed.

NO2 AMF calculations

Radiative transfer

model (RTM)

Doubling-Adding KNMI (DAK) model17 Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model14

Calculation method Lookup table interpolation Lookup table interpolation

A priori NO2 profile The global chemistry Transport Model version 5

(TM5)32 simulations at 1 × 1°

The GEOS-Chem v10-01 at 2 × 2.5° for the global domain33, and WRF-

Chem v3.7 at ~20 km for the China domain34

Stratospheric–tropospheric

separation

Data assimilation17 Reference sector method14
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which is likely related to the differences between spectra
measured with the solar and earth-viewing modes21. The
mean RMS of fitting residual by using earth radiance as a
reference over cloud-free regions is 30% smaller than that
with irradiance as a reference, as shown in Fig. 4a, b.
Although using radiance as a reference improved the

spectral retrieval, the radiance reference also contains a
NO2 absorption signal. Therefore, we must calculate the
SCD offset to compensate for the residual NO2 signal in
the reference spectrum. The SCD offset is calculated
using the NO2 AMFs multiplied by the a priori NO2

profile taken from the GEOS-Chem model simulations
(Supplementary Fig. 2). The NO2 simulation over clean
remote regions is generally consistent with independent
satellite observations, with a monthly mean bias of
<0.26 × 1015 molecules cm−2 (Supplementary Fig. 3).
Then, the SCD offset is added back to the NO2 SCDs.
Note that the reference spectra are selected for each
cross-track row to minimize the cross-track bias due to
instrument artifacts. The systematic cross-track bias in
EMI NO2 SCDs (the so-called “stripes”, see Supplemen-
tary Fig. 4) is also observed for the OMI and TROPOMI
products, and this bias can also be mitigated by using
earth radiance as the reference spectrum21.

To account for the small variation in the spectral
alignment due to the thermal variation in space12, we
calibrated the additional spectral shift or squeeze and
instrument slit function through cross-correlation with a
high-resolution solar spectrum atlas22 prior to the NO2

DOAS fitting. The precalibrated measurement spectra
lead to an ~30% smaller SCD fitting uncertainty than
using initial calibration parameters (Fig. 4c), as well as a fit
residual, and the SCD is nearly unchanged (within ~3.3%).

Discussion
The tropospheric NO2 VCDs retrieved from EMI

spectra are first validated against the OMI QA4ECV NO2

products and the operational TROPOMI NO2 products
23.

EMI measurements are compared to the OMI and
TROPOMI products due to their similar instrument
characteristics, i.e., the push-broom design, spectral
bands, and near-noon overpass time at ~13:30. Note that
the TROPOMI NO2 product generally followed the OMI
QA4ECV NO2 retrieval algorithm, but TROPOMI has a
higher signal-to-noise ratio and spatial resolution23. Fig-
ure 5 shows the monthly averaged NO2 VCDs measured
by EMI, OMI, and TROPOMI in January 2019. EMI NO2

VCDs generally show similar spatial patterns and
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amplitudes of NO2 VCDs compared to OMI and TRO-
POMI, while finer-scale details of NO2 are captured by
the satellite instrument with a higher spatial resolution.
The EMI dataset overestimates NO2 VCDs by up to 50%
over polluted regions, such as the North China Plain
(NCP) and India (Fig. 5d) compared to the TROPOMI
observations. The spatiotemporal correlations between
EMI NO2 and TROPOMI NO2 were also evaluated. For
data taken from January to August 2019, the correlation
coefficient (R) of daily mean NO2 VCD time series over
NCP between EMI and TROPOMI is 0.90, while the
spatial correlation coefficient (R) of mean NO2 VCDs over
the NCP is 0.92 (Fig. 6). The remaining discrepancies
between EMI and TROPOMI are mainly due to the NO2

vertical profile used in the tropospheric AMF calculation,
while the spectral fitting method (<3%) and stratospheric

estimation method (<10%) only show a minor contribu-
tion (Supplementary Fig. 5).
The EMI tropospheric NO2 VCDs are also compared to

the ground-based NO2 measurements from the Multi-
AXis Differential Optical Absorption Spectroscopy
(MAX-DOAS) instruments over northern China. A good
agreement with a Pearson correlation coefficient (R) of
0.82 is found between the two datasets during
January–August 2019 (Fig. 7, Supplementary Fig. 6).
However, EMI generally underestimates tropospheric
NO2 VCDs by 30% compared to MAX-DOAS. The biases
can be explained by the difference in spatial coverage
between the ground-based and satellite observations24,25.
In general, both satellite and ground-based validations of
EMI NO2 measurements show good agreement with
correlation coefficients (R) of 0.8–0.9, indicating that a

50°N

a Current EMI NO2 retrieval

NO2 SCD [1015 molec · cm–2]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
Relative SCD error [%]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
RMS of fitting residual

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
RMS of fitting residual

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
RMS of fitting residual

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
Relative SCD error [%]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N
Relative SCD error [%]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N

using solar reference

NO2 SCD [1015 molec · cm–2]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

50°N

without pre-calibration

NO2 SCD [1015 molec · cm–2]

45°N

40°N

35°N

30°N
105°E 110°E 115°E 120°E 125°E 130°E 135°E

0

50

40

30

20

10

0

0.005

0.004

0.003

0.002

0.001

0.000

6

12

18

24

30

b c

Fig. 4 Comparisons of NO2 spectral retrieval results from orbit 03241 on 17 December 2018. a The current EMI NO2 retrieval in Table 1. b same
as in a but using solar reference. c same as in a, but without spectral precalibration. The resulting NO2 SCD, relative uncertainty, and RMS of the fitting
residual are shown in the upper, middle, and bottom panels, respectively. The fitted NO2 SCD and its uncertainty are masked in the white color when
RMS > 0.004

Zhang et al. Light: Science & Applications            (2020) 9:66 Page 6 of 9



new EMI tropospheric NO2 retrieval provides reliable
results for the investigation of air pollution distribution.

Materials and methods
The stratosphere–troposphere separation
The stratospheric contribution of NO2 must be sub-

tracted from the total NO2 column to derive the

tropospheric NO2 column. In the EMI NO2 retrieval, we
used the STRatospheric Estimation Algorithm from
Mainz14 to estimate the stratospheric contribution, which
is based on the assumption that there is negligible con-
tribution of tropospheric NO2 columns over the remote
Pacific and cloudy pixels in the middle latitudes. The
weighting factors based on cloud and polluted regions,
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which determines their impacts on the stratospheric
estimate, are assigned to each satellite pixel. Subsequently,
spatial smoothing based on weighted convolution is used
to estimate the global stratospheric column.

NO2 AMF calculations
The EMI NO2 AMFs of each atmospheric layer (i.e.,

Box-AMFs) are calculated at 445 nm by the linearized
pseudospherical vector model VLIDORT26 version 2.7. In
addition to the solar and satellite-viewing geometries
provided in the level 1 data, additional atmospheric and
surface information are needed in the AMF calculations.
Surface albedo at 442 nm is taken from the OMI mini-
mum earth’s surface Lambertian equivalent reflectance27

and interpolated to the EMI footprints. Considering the
same local overpass time between EMI and TROPOMI,
cloud top pressure and cloud fraction from TROPOMI28

are used for the calculations of EMI NO2 AMFs. A priori
NO2 profiles are taken from the high-resolution (~20 km)
WRF-Chem simulations for the China domain and from
GEOS-Chem simulations at the resolution of 2 × 2.5° for
the global domain (Supplementary Fig. 7). The spatial
resolution of the NO2 a priori profile is reportedly one of
the dominant uncertainty sources during the NO2 AMF
calculations29. To expedite the calculation, these box-
AMFs are precalculated and stored in the six-dimensional
lookup table. Then, the box-AMF for each EMI

observation can be derived by interpolating within the
lookup table.
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