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Absract

Considerable attention has been paid recently to coherent control of plasmon resonances in metadevices for potential
applications in all-optical light-with-light signal modulation and image processing. Previous reports based on out-of-
plane coherent control of plasmon resonances were established by modulating the position of a metadevice in
standing waves. Here we show that destructive and constructive absorption can be realized in metallic nano-antennas
through in-plane coherent control of plasmon resonances, which is determined by the distribution rule of electrical-
field components of nano-antennas. We provide proof-of-principle demonstrations of plasmonic switching effects in a
gold nanodisk monomer and dimer, and propose a plasmonic encoding strategy in a gold nanodisk chain. In-plane
coherent control of plasmon resonances may open a new avenue toward promising applications in optical spectral
enhancement, imaging, nanolasing, and optical communication in nanocircuits.

Introduction

Over the past few years, significant efforts have been
devoted to studying the strong light—matter interactions
in plasmonic systems at nanoscale'. Based on the control
of localized surface plasmon resonance (LSPR), many
practical applications have been reported, including
surface-enhanced Raman scattering™®, plasmon wave-
guides®, molecular rulers®, biosensing and bioimaging®’,
surface-enhanced fluorescence®®, nanolasers'®™'%, plas-
monic color printerslg’m, plasmonic tunnel junctionsl5,
and plasmonic holography and metalens'®™*®, In these
pioneering works, the control of plasmon resonances
focused on designing the configurations of plasmonic
nanostructures. People already understood the size- and
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shape-dependent'®?° LSPR of single plasmonic nano-
particles and coupled plasmonic systems>"** based on the
classical Mie theory®® and well-established plasmonic
hybridization models®*2°. The resonant wavelength of
the fundamental LSPR is proportional to the single
nanoparticle’s size, which is below the quasi-static
approximation limitation. The bright and dark plasmon
resonances, as well as the Fano-like” and electro-
magnetically induced transparency®® phenomena in
complex plasmonic systems, are determined by the LSPR
coupling and energy transfer.

Moreover, in conventional optical studies of single and
coupled nano-antennas, the light beam usually illuminates
normally to the sample surface from one direction. As a
result, the control of plasmon resonances can also be
realized under asymmetric out-of-plane illumination
conditions by changing incident light parameters,
including polarization, amplitude, and phase, or by using a
pulsed-beam and single-photon source for ultrafast®,
nonlinear®’, and quantum optical study®’. Recently,
coherent control of plasmon resonances under
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symmetrical out-of-plane illumination has opened a new
way of signal modulation. By changing the position of a
metadevice in standing waves, interaction between light
and the metadevice can reach the maximum and mini-
mum at the antinode and node, respectively. Based on an
out-of-plane interferometric setup, coherent perfect
absorption®*® and transparency in plasmonic meta-
surfaces have been demonstrated to show novel applica-
tions in optical communication, such as all-optical light-
with-light coherent modulators®, optical amplifiers®,
and arithmetic units®®. However, the out-of-plane coher-
ent control of plasmon resonances has shown obvious
limitations in mode and spatial selection. For example,
optical response is generally uniform for nano-antennas
on the metadevice due to isotropy-coherent absorption in
the sample plane normal to the incidence.

Here we first report a study on in-plane coherent
control of plasmon resonances in typical metallic nano-
antennas. It has been widely reported that for nano-
antennas, the plasmon resonances at oblique
incidence®~*° are quite different from those under nor-
mal incidence due to the retardation effect*’, which
indicates anisotropy optical response in the sample plane
under a symmetric in-plane illumination condition. We
show selectively multimode coherent absorption in a gold
nanodisk monomer and dimer, as well as spatial selection
of coherent absorption in a gold nanodisk chain. We
provide proof-of-principle demonstrations of plasmonic
switching and encoding applications based on the mode
and spatial selection of coherent absorption in single and
coupled gold nanodisks.

Results
Setups for in-plane coherent control of plasmon
resonances

Two possible setups are proposed here for in-plane
coherent control of plasmon resonances through chan-
ging the symmetry of in-plane illumination. One is based
on a fiber-waveguide interferometer (Fig. la), where
completely symmetrical in-plane illumination is con-
structed by coupling two polarized coherent beams from
the single-mode fiber-connected objective lens into the
input waveguides without phase delay, whereas asymme-
trical in-plane illumination can be realized by blocking
one input beam (half-illumination) or introducing a phase
delay between two beams. This setup can be widely used
to study the in-plane coherent control of plasmon reso-
nances in all kinds of plasmonic nanostructures with axial
symmetry. The out-of-plane far-field signal carrying the
LSPR information will be collected by an objective lens.
However, this kind of setup still faces challenges in
experiments, including accurate phase control required
between two input fibers and high coupling efficiency
required between fibers and waveguides. As a comparison,
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the widely used dark-field (DF) confocal microscopy is
more convenient (Fig. 1b), where the polarized light is
focused onto the sample through a condenser lens with an
annular aperture and the backward scattering light is
collected by an objective lens in a confocal setup. In this
setup, completely symmetrical in-plane illumination can
be easily satisfied once the input light is focused onto the
center of the sample, whereas asymmetrical in-plane
illumination (e.g., quarter illumination) can be con-
structed by blocking three-fourth of the area of the
annular aperture. It is clear that such a DF illumination
setup still contains out-of-plane wave vector components;
thus, a relatively large numerical aperture (NA) of the
condenser lens is required to reach the grazing incident
condition. This setup is suitable for studying plasmonic
nanostructures with sizes comparable to the focused spot
size of the incident light beam.

In-plane coherent control of plasmon resonances with
destructive and constructive interference

Based on the fiber-waveguide interferometer, we theo-
retically studied the in-plane coherent control of plasmon
resonances in gold nanodisks. Figure 2a, b shows the
calculated absorption spectra of gold nanodisk monomers
on SiO,/Si substrate with diameter ranging from 140 to
200 nm. For each gold nanodisk, the s-polarized plan wave
was introduced from the right side (dashed line), gen-
erating one fundamental LSPR (“F”) peak and one
retardation-induced high-order plasmon resonance (“H”)
peak, both of which continuously red-shift with increasing
diameters of gold nanodisks*'. When symmetrical in-
plane illumination (solid line) was applied without phase
delay, the “F” mode was weakened and the “H” mode was
apparently enhanced*>. As a comparison, when a phase
delay of m was applied in the symmetrical in-plane illu-
mination, an opposite weakened/enhanced interference
was observed for the two modes.

The weakened and enhanced phenomena are caused by
the destructive and constructive plasmon resonances,
which can be clearly demonstrated by the spatial dis-
tributions of electric-field amplitude for the gold nanodisk
with a diameter of 160 nm (Fig. 2c and Supplementary
Movie 1). The destructive and constructive interference
can be further explained by the distributions of real and
imaginary parts of electric-field component E, for the “F”
and “H” modes (Fig. 2d, e). More specifically, when s-
polarized light comes only from the right side, the cor-
responding Re(E,) and Im(E,) distributions are identical
(“ID”) and opposite (“OP”) for the “F” and “H” modes,
respectively. Considering that the nanodisk is axisym-
metric, when s-polarized light comes from the left side
without phase delay, the corresponding E, distribution
will be mirrored with a negative sign along the central axis
of the nanodisk (x =0), i.e., E,(— x) = — E,(x). As a result,
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Fig. 1 Schematic diagrams of two setups for in-plane coherent control of plasmon resonances. a Fiber-waveguide interferometer. b Dark-field
(DF) confocal microscope, where quarter illumination can be satisfied by blocking 3/4 area of the annular aperture

Quarter illumination

the “F” mode with “ID” Re(E,) and Im(E,) distribution
caused by right-side illumination will cancel with its
negative mirror caused by left-side illumination and result
in destructive interference, whereas the “H” mode with
“OP” Re(E,) and Im(E,) distribution will superpose with
its negative mirror and lead to constructive interference.
As a comparison, when s-polarized light comes from the
left side with a phase delay of m, the result of using a
mirror operator is E,(—x) =E,(x). As a result, under
symmetrical illumination with a phase delay of 7, the “F”
and “H” modes will experience constructive and
destructive interference, respectively. For the case of p-
polarized light, the phase delay-dependent mirror opera-
tors are consistent with the s-polarized light under sym-
metrical illumination. However, when p-polarized light
comes only from the right side, the corresponding Re(E,)
and Im(E,) distributions are opposite (“OP”) and identical
(“ID”) for the “F” and “H” modes, respectively. Therefore,
the total phase delay-dependent destructive/constructive
interference for the “F” and “H” modes are opposite to the
case of s-polarization (Fig. S1 in Supplementary Infor-
mation). The destructive/constructive interference of
plasmon resonances was rechecked by the electro-
magnetic multipole theory, based on which the calculated
absorption spectra of a 200nm gold nanodisk monomer
under symmetrical illumination matched well with the
simulation results (Fig. S2 and Supplementary Note 1 in
Supplementary Information). We have also studied the in-

plane coherent control of plasmon resonances in gold
nanodisk dimers, which show opposite phase delay-
dependent destructive/constructive interference for the
“F” and “H” modes as compared with the monomers (Fig.
S3 in Supplementary Information).

Demonstration of electric-field distribution rule by s-SNOM

Table 1 summarizes the distribution rule for all three
electrical-field components under in-plane symmetric
illumination, where the rule of destructive/constructive
interference is always identical for E, and E,, but opposite
for E,. We used the polarization-sensitive scattering-type
scanning near-field optical microscopy (s-SNOM) to
verify the electric-field distribution rule. The s-SNOM
measurement was conducted by a focused laser (A=
633 nm) coming from one side with an incidence angle of
30° with respect to the plane of the substrate, corre-
sponding to an s—s/s—p geometry scheme (Fig. 3a). For s—s
measurement, we recorded E,_; which is equal to E,. In s—
p measurement, we detected the total electric field E,_,,
written by (EZ+ E*)%, where the calculated amplitude
of E, is much larger than E, and thus the total electric
field E;_, is roughly equal to E,. As an example, s—s and s—
p excitation—collection measurements were carried out
on a 200 nm gold nanodisk monomer and dimer with a
gap size of 30 nm. From Fig. 3b, we can find that the “H”
mode at incidence angle 30° is located near the excitation
wavelength, and both the monomer and dimer show
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Fig. 2 In-plane coherent control of plasmon resonances in gold nanodisk monomers. a, b Calculated normalized absorption spectra of gold
nanodisk monomers with a diameter ranging from 140 to 200 nm for s-polarized in-plane plan wave coming from the right side (dashed line) or both
sides (solid line) without phase delay, or with a phase delay of 7. “F" and “"H" represent fundamental and high-order plasmon resonances. c-e The

corresponding spatial distributions of electric-field amplitude |]

, real part Re(£,), and imaginary part Im(£,) for the “F" and “"H" modes (square and
circle signs) of the representative gold nanodisk monomer (D = 160 nm) under asymmetrical and symmetrical in-plane illumination. Under
symmetrical in-plane illumination, we can observe phase delay-dependent destructive/constructive interference for the “F” and “H" modes

.

Table 1 Electric-field distribution rule for destructive and
constructive plasmon resonances under symmetrical in-
plane illumination

Phase delay s-/p-polarization Re/Im(E,) Re/Im(E,) Re/Im(E,)
0 Destructive OP D D
0 Constructive D OP OP
m Destructive ID OP OP
m Constructive OP D D

constructive interference of “H” mode under symmetrical
illumination without phase delay, which implies that both
Re(Ey) and Re(E,) should satisfy an “OP” distribution,
according to Table 1. Figure 3d shows the measured and
simulated amplitude, phase, and real part of E, for the s—s
excitation—collection measurement, whereas the corre-
sponding results of the E, component for s—p
measurement are shown in Fig. 3e. Both measured and
simulated results give strong evidence to demonstrate
the “OP” distribution for both Re(E,) and Re(E,),
where single and coupled quadrupole-like plasmon

resonance can be observed for the monomer and dimer,
respectively.

Plasmonic switching in gold nanodisk monomer and dimer

One promising application based on the in-plane
coherent control of plasmon resonances is plasmonic
switching. Here we employed the DF confocal microscopy
(Fig. 1b) to experimentally demonstrate the plasmonic
switching effect in a gold nanodisk monomer and dimer.
During the measurement, a condenser lens with a high
NA (0.9) was used to provide sufficient in-plane illumi-
nation and an opaque tape was used to construct the
quarter illumination. Both s- and p-polarization compo-
nents of excitation were considered, and the collection
was unpolarized. We experimentally observed the plas-
monic switching effect in a 200nm gold nanodisk
monomer (Fig. 4a), i.e., constructive interference (area I)
for the “H” plasmon resonance and destructive inter-
ference (area II) for the “F” plasmon resonance. Such a
plasmonic switching phenomenon is clear and consistent
for both y- and x-polarization under full and quarter
illumination, and is in good agreement with the simulated
scattering and absorption spectra (Fig. 4b). The
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Fig. 3 Demonstration of electrical-field distribution rule for the 200 nm gold nanodisk monomer and dimer by s-SNOM. a Schematic of the
s-SNOM measurement for s—s and s—p excitation—collection configurations. The wavelength of the excitation laser is 633 nm and the incidence angle
with respect to the plane of the substrate is 30°. b Calculated normalized absorption spectra of 200 nm gold nanodisk monomer and dimer at
incidence angle 30° under asymmetrical (dashed line) or symmetrical (solid line) illumination without phase delay. The gap size in the dimer is 30 nm.
¢ Atomic-force microscopic (AFM) images of gold nanodisk monomer and dimer for s—s and s-p measurements. The red arrow represents the
incidence direction of the laser and the blue dashed line represents the central axis of the nanodisk. d, @ Experimental and simulated spatial
distributions of the amplitude |A|, phase ¢, and real part of electric-field component £, in s—s measurement and £, in s—p measurement for 200 nm
gold nanodisk monomer and dimer. The scale bar is 200 nm

polarization diagrams for full and quarter illumination
(Fig. 4e) indicate that the y- and x-polarization of exci-
tation are identical for the gold nanodisk monomer,
resulting in an isotropic plasmonic switching effect. As a
comparison, the plasmonic switching effect only
occurs for the x-polarization of excitation in the gold
nanodisk dimer, as shown in Fig. 4c, d. The anisotropic
plasmonic switching effect in the gold nanodisk dimer is
due to the superposition of anisotropic destructive and
constructive plasmon resonances contributed by the in-

plane wave vectors along the long and short axis, as
shown in Fig. 4f.

Plasmonic encoding in gold nanodisk chains

Another possible application based on the in-plane
coherent control of plasmon resonances is plasmonic
encoding. Here we propose a plasmonic encoding strategy
in a series of gold nanodisk chains consisting of different
numbers of 140 nm nanodisks with a separation distance
of 30 nm. Figure 5a shows the absorption spectra of gold
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Fig. 4 Demonstration of plasmonic switching by DF scattering measurement of gold nanodisk monomer and dimer. a Normalized DF
scattering spectra of gold nanodisk monomer with a diameter of 200 nm (SEM image) under full and quarter illumination. b The corresponding
normalized simulated scattering and absorption spectra. ¢, d Normalized measured and simulated DF scattering spectra of gold nanodisk dimer with
a diameter of 200 nm and a gap size of 30 nm (SEM image) under full and quarter illumination. The red solid curves in Fig. 4c are the smoothing
results. The scale bar in SEM images is 200 nm. e, f Polarization diagrams of full and quarter illumination in the DF scattering measurement and
simulation for gold nanodisk monomer and dimer. In both experiment and simulation, the excitation is s- or p-polarized and the collection is
unpolarized. The black and red double-headed arrows represent the initial polarization and the polarization after focusing, respectively

nanodisk chains under in-plane asymmetric (dashed line)  destructive interference from nanodisk monomer to

or symmetrical (solid line) s-polarized illumination with-
out phase delay. The “F” mode for gold nanodisk chains
with number N from 2 to 6 always shows constructive
interference under the symmetrical illumination, whereas
the “H” mode shows alternate constructive and

dimer, trimer, tetramer, and pentamer. Figure 5b shows
the spatial distributions of electric-field amplitude for the
“F” mode under symmetrical illumination, where the gold
nanodisk chains show quite different propagating cou-
pling behavior compared with that under asymmetric
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Fig. 5 Plasmonic encoding in gold nanodisk chains. a Calculated absorption spectra of gold nanodisk chains consisting of different numbers of
nanodisks illuminated by the s-polarized in-plane plan wave coming from right side (dashed line) or both sides (solid line). The diameter of the
nanodisk is 140 nm and the separation distance is 30 nm. The destructive and constructive plasmon resonances are represented by green and red
colors, respectively. b Spatial distributions of electric-field amplitude |E| for the “F” plasmon resonances (peak position) under symmetrical
illumination. ¢ Sliced electric-field amplitude distributions along the chain’s edge (the white dashed line in Fig. 5b). d-g Corresponding spatial
distributions of real and imaginary part of £, when the s-polarized in-plane plan wave comes from the left side (d, f) and right side (e, g) respectively

illumination. More specifically, under asymmetric illu-
mination, the plasmonic coupling and propagation are
along the long axis of the gold nanodisk chain and
decrease in intensity (Fig. S4 and Supplementary Note 2 in
Supplementary Information)*”. Under symmetrical illu-
mination, the plasmonic coupling and propagation are no
longer continuous. The nanodisk in the center of chains
with odd numbers of N always shows completely
destructive interference, whereas the two nanodisks in the
center of chains with even numbers of N always show

constructive interference (see Supplementary Movie 2).
The spatially related destructive and constructive inter-
ference inside the gold nanodisk chains can be used for
plasmonic encoding, as shown in the sliced electric-field
amplitude distributions in Fig. 5c, where signals 0, 17, and
17 can be generated based on the relative intensity along
the nanodisk chain’s edge. The plasmonic encoding can
be well explained by the superposition of Re(E,) and Im
(E,) distributions under left- and right-side illumination,
as shown in Fig. 5d-g, where the destructive and
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constructive  interference  always occurs  when
the nanodisk satisfies “OP” and “ID” distributions,
respectively. Besides the number of gold nanodisk chains,
the input phase delay can also affect the plasmonic
encoding. The signals 0 and 17 inside the gold nanodisk
pentamer can be step-by-step shifted to the adjacent
nanodisks by introducing an increasing phase delay from
0 to 3m/2, with an interval of n/2 (Fig. S5 and Supple-
mentary Movie 3).

Discussion

In summary, we have demonstrated the idea of coherent
control of plasmon resonances under symmetrical in-plane
illumination. The coherent absorption for a single gold
nanodisk shows a distinct mode-selection character due to
destructive/constructive fundamental and higher-order
plasmon resonances. We established and experimentally
verified the distribution rule of electrical-field components
for realizing destructive and constructive plasmon reso-
nances in an axisymmetric plasmonic nanostructure. The
constructive fundamental plasmon resonance for a gold
nanodisk chain shows a distinct spatial-selection character
due to phase-dependent coherent absorption along the
chain. Compared with out-of-plane coherent control, in-
plane coherent control of plasmon resonances strongly
relies on the configuration and symmetry of plasmonic
nanostructures rather than the spatial position of metade-
vices placed in standing waves. This allows us more free-
dom in tailoring and engineering the multiple plasmon
resonances in other axisymmetric plasmonic nanos-
tructures, including nanosphere, nanorod, nano bowtie, and
nanostructure polymer.

Besides the proof-of-principle demonstrations of plas-
monic switching and encoding, more potential applica-
tions based on in-plane coherent control of plasmon
resonances can be expected. Specifically, the plasmonic
switching effect is ready to be extended to the study of
selective surface-enhanced spectra, such as surface-
enhanced fluorescence™ and surface-enhanced Raman
scattering*®, during which the photoluminescence or
Raman signal of multiple molecules can be selectively
enhanced by controlling the on/off state of multiple
plasmon resonances in one common nano-antenna®’, A
plasmonic encoding scheme can be extended to plas-
monic imaging, nanolasing, and optical communication in
nanocircuits. For instance, plasmonic nanostructure
arrays doped with different fluorophore or gain materials
can be used to realize selective plasmonic imaging*® or
nanolasers'” through spatially selective coherent absorp-
tion in the array. By using combined plasmonic nanos-
tructure chains with different encoding characteristics,
logic units (such as XOR, NOT, and AND) and multi-
channel waveguides can be designed for all-optical
information storage and processes®>>°.
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Materials and methods
Fabrication of gold nanodisks

We employed the electron-beam lithography (EBL) and
a lift-off process to fabricate the gold nanodisk samples on
Si0,/Si substrates®’, where a 100 nm-thick SiO, layer was
used for reducing plasmon damping. The gold film
(30 nm thick) and the underlying Cr adhesion layer (1 nm
thick) were deposited on the SiO,/Si substrate through
the electron-beam evaporation. During the EBL process
(Elionix ELS-7000), the accelerating voltage and beam
current were set to 100 keV and 100 pA, respectively. N-
methylpyrrolidone solvent was used in the lift-off process
and the solvent was heated up to 65°C .

s-SNOM imaging

A polarization-sensitive s-SNOM was used to image
the plasmon resonance modes in gold nanodisks based
on a Neaspec commercial instrument, where a balanced
technique was implemented for the optical-signal detec-
tion®®, We used an s—s/s—p geometry scheme and
engaged a dielectric (Si) tip for measurements, during
which s-polarized CW laser radiation (A =633 nm) was
used to illuminate the sample with an incidence angle of
30° with respect to the plane of the substrate. The plas-
monic mode images were recorded simultaneously with
the disk’s topography upon raster scanning of the sample.
Here, the tip-scattered optical signal and tip-height
position were recorded at each point of the scan. The
amplitude and phase of the scattered signal were mea-
sured based on the pseudoheterodyne interferometric
detection at the fourth harmonic of the tip-tapping fre-
quency. An analyzer placed in front of the detector was
used to select the p- or s-polarized component of the
scattered light.

DF scattering measurement

A confocal Raman microscopy system (WITec
CRM200) was used to measure the DF scattering spectra
of gold nanodisk samples. A high-power halogen lamp
(Philips, 100 W) was used as the light source. The scat-
tering light was collected by a x 100 DF objective lens
(Zeiss Epiplan, NA =0.9) and the final spectra was gen-
erated by a TE-cooled charge-coupled device (Andor DV
401-BV-351) with a 150 line/mm grating in front of it. In
the quarter-illumination measurement, the input of a
condensed DF lens was blocked in three-fourth area by an
opaque tape. In all measurements of scattering spectra,
the integration time was 20s.

Numerical simulations

We employed a commercial software package (Lume-
rical FDTD Solutions) to simulate the electrical-field
distributions, absorption, and scattering spectra of the
gold nanodisks. For «, y, and z directions, the boundary
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conditions were set to perfectly matched layer and the
finest mesh size in the structure was set to 1 nm. In Figs. 2
and 5, the simulation was done with a pure SiO,/Si sub-
strate, whereas the simulation also contained the Cr
adhesion in Figs. 3 and 4. The complex electromagnetic
parameters were from Johnson and Christy for Au and Cr,
and from Palik for SiO, and Si*’.
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