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Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing
hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant
disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual
carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors
from the bone marrow (BM) niche, which complicates the prediction of a mutant cell’s fate in a shifting pre-malignant
microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and
immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes.
Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively
alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the
osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued
development and progression of CH. We also provide an overview of the latest technology developments to study the
spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we
discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
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INTRODUCTION
During aging, dividing cells and tissues, including hematopoietic
stem cells (HSCs) that give rise to mature blood and immune cells,
can acquire somatic mutations in cancer-associated genes. If such
a mutation confers a selective growth advantage, this particular
mutant HSC clone can progressively expand over time within
specific BM niches and lead to CH. Recent studies uncovered
cigarette smoking, male sex, and longer leukocyte telomere
length as risk factors to acquire mutations in HSCs [1–3]. Genetic
variants in several germline loci have also been identified as
inheritable determinants predisposing to CH [3, 4]. In 2015, the
term “clonal hematopoiesis of indeterminate potential” (CHIP) was
introduced to distinguish nonmalignant CH that is linked to the

presence of candidate driver mutations associated with hemato-
logic malignancies from other forms of CH [5]. Such clonal
expansion becomes increasingly detectable with age with
divergent health implications [6, 7]. CHIP is associated with an
increased risk of developing hematologic malignancies (estimated
hazard ratio (HR) > 10), most commonly myelodysplastic neo-
plasms (MDS) or acute myeloid leukemia (AML), although the
absolute risk for progression to hematologic malignancies is low
(annual incidence: approximately 0.5–1% of CHIP carriers) and
shows large inter-individual variability [6, 8–10]. Recent studies
have shown that individuals with CH exposed to chemo- or
radiotherapy for a primary cancer are at an increased risk of
developing secondary therapy-related myeloid malignancies
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[11, 12]. In addition, CHIP is associated with adverse outcomes and
age-related diseases beyond hematologic malignancies, including
cardiovascular disease (CVD) [6, 13], type 2 diabetes mellitus [6],
osteoporosis [14], gout [15], chronic liver disease [16], and
autoimmune disease [17]. Conceptually, it is conceivable that
increased inflammation is both a cause and a consequence of
premalignant CH [18]. In this regard, CH may pose as a common
denominator behind several inflammatory diseases of the elderly
and may be seen as a biomarker of unhealthy human aging.
Certain age-related diseases seem to be exempt from this, as
recent data unexpectedly demonstrated that CHIP carriers had a
reduced risk of Alzheimer’s disease [19].
While the advent of more sensitive next-generation sequencing

(NGS) assays combined with large-scale mutational profiling of
population-based cohorts has helped to define the mutational
landscape of CH, the spatiotemporal dependencies in the aging BM
tissue itself are only beginning to emerge. BM cells function as a
unit to regulate and sustain hematopoiesis and bone remodeling
throughout life. Mutant hematopoietic stem and progenitor cells
(HSPCs) and their progeny bear the potential to alter BM cell
function via both cell-autonomous and non-autonomous mechan-
isms. Vice versa, changes in the aging BM microenvironment might
instigate CH. This review aims to increase the consideration of the
osteo-hematopoietic niche as an intricate and affected partner
involved in the progression to hematologic malignancy and
development of CH-associated non-malignant disease.

DEFINING AND DETECTING THE SPECTRUM OF CH
In a broad sense, the term “clonal hematopoiesis” describes a
clonal alteration of the hematopoietic system, and therefore
would encompass all types of hematologic neoplasms. More
specifically, the term CH is now used to describe the detectable
outgrowth of a clonal population of circulating blood cells in
individuals without known hematopoietic neoplasm or unex-
plained cytopenia. Initial studies in large cohorts identified CH in
approximately 10–15% of elderly individuals (≥70 years), with a
strong age dependency [6, 7]. These studies also showed that the
known driver variants used to identify CH clones mostly affected
genes also mutated in myeloid neoplasms, such as MDS and AML.
In particular, gene mutations in DNMT3A, TET2, and ASXL1 (the
“DTA” genes) were identified as the most common known driver
variants in CH. Based on these and other early studies, a working
definition of CHIP was formulated [5], which forms the basis of
current diagnostic criteria for CHIP now defined in the 5th edition
of the WHO classification of hematopoietic neoplasms [20].
Accordingly, a diagnosis of CHIP requires detection of ≥1 somatic
mutation with a VAF ≥ 2% in blood or BM cells (≥4% for X-linked
gene mutations in men) based on a specific list of mostly myeloid
neoplasm-associated driver genes, as well as the absence of
unexplained cytopenias or any defined myeloid neoplasm.
Patients who have a clonal alteration and unexplained cytopenia,
but otherwise do not meet the criteria for another hematologic
cancer, would be classified as having clonal cytopenia of uncertain
significance (CCUS).
While having clear diagnostic criteria delineating CHIP as an

entity will be helpful in future clinical and correlative studies, it
became apparent that detection of CH depends on both the scope
and sensitivity of the assay used to detect clonal alterations.
Therefore, it is important to realize that our understanding of CH
has broadened beyond these initial narrow definitions. First, by
using sensitive methods to detect variants in myeloid driver genes
at VAFs below the 2% threshold, CH can be detected in over half of
persons ≥70 years [17, 21]. Second, whole-exome sequencing
approaches in large cohorts revealed that CH can also affect driver
genes implicated in lymphoid neoplasia, thereby identifying
lymphoid CH (L-CH) as a more rare cousin of myeloid (M)-CH [22].
These analyses also showed that mosaic chromosomal alterations

(mCAs), and not only small-scale gene mutations, can define M-/L-
CH clones. Finally, even more comprehensive genome-wide
analyses of single HSCs have now shown that CH indeed becomes
near-universal in humans beyond the age of approximately 70
years [23]. While hematopoiesis in young adults is highly polyclonal,
these studies have revealed that in older persons, 10–20 co-existing
clones that originated/expanded early in life typically account for
30–60% of total hematopoiesis. Notably, while these clones can be
identified through shared somatic gene mutations, most of them
do not carry any of the known myeloid or lymphoid driver variants
that would be detected by targeted sequencing assays currently
used in the clinic [24]. This can be seen as a further indication that
even neutral clonal dynamics have an intrinsic tendency for oligo-
and monoclonal conversion [25]. Overall, when discussing clinical
implications of CH, it is imperative to keep in mind that
hematopoiesis becomes clonal in most, or maybe all, elderly
persons. In this setting, our ability to detect CH in a certain
population is determined by the characteristics of the assay and the
diagnostic criteria used to define clonality as much as by the
underlying incidence, mutation spectrum and size of hematopoietic
clones in that population. Along these lines, cross-study compar-
isons of CH prevalence and its clinical relevance must be viewed
with great caution as differences in laboratory methods and
definitions may lead to a widely different recognition of the true
underlying clonal structure of hematopoiesis in study participants.
Moreover, testing for CH is typically done in bulk populations

containing a mixture of different cell types with mutated and wild-
type cells, limiting our ability to link genotype to phenotype.
Therefore, an important goal in the field is to delineate repartition
patterns and clonal dynamics of different driver variants within the
hematopoietic differentiation tree. Ultimately, this will help to
resolve the phenotypic and clinical consequences of CH. CH may
directly or indirectly influence the differentiation capacity and/or
function of various hematopoietic cell types, including neutrophils,
monocytes, monocyte-derived macrophages, NK cells, B and T cells,
as well as other immune-modulatory cells contributing to the osteo-
hematopoietic niche, such as megakaryocytes and osteoclasts
[14, 26–28]. Recent studies have shed light on the lineage
involvement of the most frequently mutated “DTA” genes
[21, 29, 30]. Across these studies, sorted T cells showed a
significantly lower allelic burden of mutated “DTA” genes (i.e.
DNMT3A, TET2, ASXL1) compared to other cell types. NK cells,
considering the overall allelic burden, reached VAFs comparable to
myeloid cell fractions and significantly higher than T and B cells,
despite their common lymphoid progenitors [29]. Within the T cell
compartment, VAFs for DNMT3A mutations were significantly
higher compared to other mutations, indicating a multipotent
stem cell origin for mutated DNMT3A [29, 30]. In this context, a
recent study provided novel insights into the influence of M-CH,
specifically DNMT3A-mutant CH, on the biology of lymphoid cells
[31]. Using an improved single-cell sequencing pipeline, the authors
showed that monocytes, CD4+ T cells, and NK cells carrying
DNMT3A driver mutations present activated gene signatures, which
in conjunction with indirect activation of wild-type cells by
DNMT3A-mutant macrophages may promote progression of
inflammatory reactions in patients [31]. With regard to ASXL1-
mutant CH, our recent investigation suggests that specific ASXL1
variants may show higher lymphoid compartment (T and B cell)
involvement compared to other ASXL1 variants [21]. These data,
while based on a limited number of patients, also demonstrate that
different variants for the same gene may show different lineage
distribution patterns, adding to the complexity of CH.

TEMPORAL CLONAL TRAJECTORIES
While CH is a condition defined at a single time point, the
pathological potential emerges as a result of a dynamic process in
which specific premalignant clones progressively marginalize
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unaffected hematopoiesis, giving rise to recirculating CH progeny.
Retrospective analyses of large-scale longitudinal data of CH that
allow for the direct assessment of clonal dynamics and its
correlation with specific gene mutations suggest that clonal
dynamics may emerge on much longer time scales in the order
of decades rather than years [23, 24]. Although there is a great level
of inter-individual variability, there are also clear and reproducible
gene-specific differences [24, 32, 33]. Combining sequential clonal
tracking with a phylogenetic reconstruction approach based on the
accumulation of somatic mutations further allows to extrapolate
clonal growth dynamics backward in time [24]. It is possible that
some CH clones detectable in aged individuals were initiated and
expanded early in life. For example, some DNMT3A-mutant clones
are estimated to emerge during childhood or even in utero but
display slower growth in old age [24, 34]. In contrast, other more
proliferative clones (such as those driven by SRSF2P95H or mutant
U2AF1) emerge only later in life, are detected less often during mid-
life, but become increasingly apparent at very old age. Interestingly,
such clones do not seem to decelerate and are associated with a
higher risk for AML [24]. In this context, our recent work provides an
alternative in vitro culturing approach combined with computa-
tional modeling to study differentiation and proliferation kinetics of
HSCs in CH [35], supplementing previous snapshot [29] and
longitudinal analyses [33]. Our results suggest that hematopoietic
differentiation hierarchy alterations are already detectable in the
premalignant CHIP state and may contribute to emerging impaired
blood production. In accordance, both DNMT3A- and TET2-mutant
clones were shown to expand within the HSC compartment, while
TET2-mutant clones had a more pronounced expansion in
progenitors, particularly in the myeloid lineage [30, 36]. Unexpect-
edly, both mutant and non-mutant HSCs from CH samples were
enriched for inflammatory and aging transcriptomic signatures,
implying non-cell-autonomous changes stemming from an inflam-
matory microenvironment [36, 37].
In addition, very little is currently known about the dynamics and

mechanisms of clonal migration and distribution. These processes
may also depend on specific BM niches fostering clonal expansion.
Using bilateral BM samples obtained from patients undergoing
simultaneous double hip replacement surgery, we have recently
demonstrated that in some patients with CH, the size of individual
clones varies >10-fold between different anatomical locations, with
CH variants detectable in BM from one side but not the other as
well as discordance between BM and peripheral blood [21]. Thus,
CH clones show spatially heterogeneous involvement in BM from
different anatomical locations, suggesting that initiation and
expansion of CH clones or subclones may initially be a localized
process, and raising the possibility of specific BM niches conducive
to clonal expansion. Work from another group has recently
corroborated our findings [38].

CLINICAL RELEVANCE
CH as risk factor for cancer and inflammation
The association of CH with CVD, hematologic malignancies,
therapy-related myeloid neoplasms, and death are well-known
clinical implications and findings across different studies have
been discussed in detail elsewhere [39, 40]. Nonetheless, we
would like to point out a few important aspects. It is interesting
that “DTA” genes appear to confer a similar risk of coronary heart
disease despite their different biology [13]. This, according to a
new study, may be explained by reverse causality, i.e. athero-
sclerosis driving increased HSC proliferation that leads to CH
expansion in these patients [41]. While these findings require
further investigation, it has become clear that variants with a
higher VAF or a VAF above a certain threshold are likely to be
more clinically relevant and may help guide screening and
prevention strategies in CH carriers [39, 42]. In the largest study to
date using exome sequence data on >40,000 CHIP carriers, high-

VAF carriers were found to have an elevated risk of developing
blood cancer and solid tumors, including lung, prostate, and non-
melanoma skin cancer [42]. Recent data also suggest that the
parallel characterization of M-/L-mCAs in conjunction with somatic
mutations helps in the surveillance of cancer patients at risk of
developing hematologic neoplasms [43].
CH is considered to induce dysregulated or excessive immune

reactions in myeloid cells, which could contribute to chronic
inflammatory diseases and lead to ineffective host immune
responses to infection [44]. This spurred recent investigations to
address the association of CH with severe COVID-19 outcomes and
other diverse types of infection. For COVID-19, contradictory
results have been published, perhaps in part due to different
study design, size of the patient cohort, and variant calling and
definition [42, 45, 46]. The largest of these datasets analyzed
>5000 health traits from the UK Biobank and found relationships
between high-VAF CHIP (VAF > 10%) and severe COVID-19
outcomes [42]. Regarding other infections, solid cancer patients
with CH might be at higher risk of certain infections, such as
Clostridium difficile and Streptococcus/Enterococcus infections [45].
Moreover, expanded mCAs appear to confer an increased risk of
diverse incident infections, including sepsis, pneumonia, digestive
tract infections, and genitourinary infections [47].

CH as risk factor for bone and joint disorders
It is surprising that relatively little is known about the relationship
between CH and bone health, given that bone and marrow are
two facets of the same organ and are intertwined via several
endocrine, inflammatory, and ultrastructural circuits. A recent
study analyzing whole-exome sequencing data of 113,641
unrelated individuals from the UK Biobank now shows that CHIP
is linked to an increased risk of incident osteoporosis in humans
(HR= 1.44, 95% CI: 1.22–1.72) [14]. Larger CHIP clones, in
particular in DNMT3A, with VAFs ≥10% correlated significantly
with reduced bone mineral density. Moreover, the intimate
relationship between blood and bone cells seems progressively
disturbed upon malignant transformation of the osteo-
hematopoietic niche. This is evident in patients with MDS who
have an increased risk of incident osteoporosis (HR= 1.87, 95% CI:
1.51–2.23) [48]. In line with this, structural deterioration of the
bone architecture is also seen in a murine model of MDS [49].
Conversely, prevalent osteoporosis increased the risk of incident
MDS in humans (HR= 1.42, 95% CI: 1.19–1.65) [48]. Our recent
finding of a high prevalence of CH (50%) among patients with
osteoarthritis undergoing total hip replacement further strength-
ens the link of CH to inflammatory processes and altered bone
remodeling [17], both of which contribute to the pathogenesis of
osteoarthritis. CH may worsen joint destruction by amplifying the
production of IL-1β [50], a proinflammatory cytokine that has been
implicated in the pathogenesis of osteoarthritis based on indirect
evidence from the CANTOS trial [51, 52].

THE AGING OSTEO-HEMATOPOIETIC NICHE
The BM microenvironment provides specialized niches, which
regulate the balance between HSC quiescence, activation, and
subsequent cell fates through soluble factors and cell contact-
dependent signals [53]. At least two anatomically different HSC
niches exist in the BM: the central/perivascular niche located in
the inner BM and the endosteal niche located in close proximity to
the bone surface. Moreover, immune cells found in perivascular
regions provide an important regulatory niche [54]. These BM
niches progressively change with age, which may contribute to set
the stage for CH and influence different outcomes (Fig. 1).

Inflammaging
A central hallmark of aging is inflammaging, which is defined by
elevated levels of proinflammatory markers in blood and tissues in
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Fig. 1 The changes in the osteo-hematopoietic niche with aging and in CHIP. A Various cell types and secreted niche factors directly or
indirectly regulate HSC activity in the adult BM microenvironment. Periarteriolar niches localized near endosteal spaces constitute a more
“dormant or quiescent” niche, specialized in promoting HSC quiescence and self-renewal. Quiescent HSCs found in these spaces associate
with periarteriolar nestinbright MSCs, which express the pericyte marker neural–glial antigen 2 (NG2) or the smooth muscle marker α-smooth
muscle actin (α-SMA), and Schwann cells, connected to the sympathetic nervous system. Osteolineage cells, including periarteriolar LEPR+

osteolectin+ osteogenic progenitors, support the maintenance of more committed hematopoietic progenitors, in particular the lymphoid
lineage. Perisinusoidal niches, comprising nestindim cells that overlap with LEPR+ MSCs, CAR cells, and megakaryocytes, constitute a more
“proliferative” niche where HSCs proliferate and migrate. CXCL12 and SCF, two key factors involved in HSC maintenance, are widely expressed
in the periarteriolar/endosteal and perisinusoidal niches. HSC-derived progeny, such as macrophages, neutrophils, Tregs, and megakaryocytes
can provide feedback and contribute to HSC maintenance and mobilization. B Age-related alterations of the BM niche that affect HSCs include
changes in the vasculature, MSCs, and osteolineage cells, with concomitant altered secretion of niche factors (e.g. reduced CXCL12, SCF,
Jagged 1, and OPN), increased adipogenic and decreased osteogenic differentiation of MSCs, and increased proinflammatory cytokine
expression (e.g. IL-1β, IL-6), promoting myeloid and megakaryocytic differentiation skewing. Arteries, arterioles and type H vessels, which
support osteogenesis, decline with age. Concomitantly, the endosteal niche is compromised with a reduction in the number of osteoblasts
and OPN. Sympathetic neuropathy (through disrupted β-adrenergic signaling) has been identified as an important determinant of niche
remodeling in the aging BM. C In individuals with CHIP, the presence of mutant myeloid progeny (i.e. monocytes, macrophages, neutrophils)
in the BM microenvironment contributes to proinflammatory cytokine expression, further increasing inflammaging in the BM and activating
inflammatory transcriptional programs in aged endothelial and stromal niche cells. DNMT3Amut macrophages may promote osteoclastogen-
esis by secreting proinflammatory cytokines, including IL-20, leading to accelerated bone loss and frailty. The resulting bone resorption bias
sustains the inflammatory milieu and releases growth/niche factors that may support clonal growth and aggravate CH over time. The well-
described upregulation of inflammatory mediators in TET2mut monocytes/macrophages may contribute to further remodeling of vascular
niches. TET2 mutations have also been shown to contribute to repressing NK cell function. Overall, CHIP-driven remodeling of supportive BM
niches can facilitate immune evasion and activate survival pathways favoring malignant clonal expansion. DARC duffy antigen receptor for
chemokines (also known as ACKR1), NES nestin, OLN osteolectin, OPN osteopontin, PCs plasma cells. This image was created with
BioRender.com.
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the absence of overt infection (“sterile inflammation”). Extensive or
unbalanced inflammaging increases the risk for both morbidity
and mortality in elderly people and may contribute to cytopenias,
inadequate immune responses, and myeloid malignancy. In fact,
various proinflammatory cytokines and chemokines including TNF,
IL-1, IL-6, and CCL5/RANTES show increased expression in the BM
of aged individuals, many of them known to promote myeloid and
megakaryocytic skewing [44]. In addition, cytokines can affect HSC
function indirectly via modulating the BM microenvironment,
leading to secondary inflammatory signal production by niche
cells [55, 56]. Thus, inflammaging may constitute an important
target for overarching interventions to “rejuvenate” HSCs.

The aging endosteal niche
The endosteal niche accounts for up to 10% of total BM, has low
oxygen tension, and mainly consists of osteogenic lineage cells of
various stages intermingled with adipocytes, all of which are
differentiation progeny of multipotent mesenchymal stromal cells
(MSCs). However, also other stromal cells, fibroblasts, osteoclasts,
and macrophages are part of the endosteal niche. On top,
availability of ions, such as calcium, and the extracellular matrix,
which is enriched with various growth factors, cytokines, adhesion
molecules, and other signals, direct the properties and function of
HSCs. Several studies have linked osteogenic cells, in particular
osteoblasts, to HSCs, showing that HSCs home to endosteal
niches, osteoblast numbers correlate with HSC numbers, and
osteogenic cells produce factors, such as CXC chemokine ligand
12 (CXCL12), stem cell factor (SCF), granulocyte colony-stimulating
factor (G-CSF), N-cadherin, angiopoietin-1, connexins, and Wnt
and Notch signaling pathway components, which regulate HSC
quiescence, proliferation, migration, and function [57, 58]. Many of
the original findings were meanwhile largely confirmed with latest
technologies [59–64]. These latter studies refined our under-
standing of the endosteal niche, suggesting that a) only few of the
BM stromal cell subpopulations have potent HSC-supporting
potential, b) the regulation of HSCs by osteogenic cells depends
on their differentiation state with immature osteoblasts being
more potent HSC supporters, c) HSC expansion depends on the
bone turnover state and only takes place at bone remodeling-
active sites, and d) homing of HSCs to endosteal niches is
dynamically regulated and much different between steady-state
and under stress conditions. These studies also collectively
highlight that the endosteal niche is under constant reconstruc-
tion. In addition, as bone undergoes several changes during aging,
all of these are also likely to affect the endosteal niche and HSCs.
Similar to HSCs, which undergo skewed differentiation into

myeloid cells, MSCs favor adipogenic over osteogenic differentia-
tion in aged humans and mice, leading to a shift from “red” to
“yellow marrow” [65–67]. The resulting BM hypocellularity is
characteristic for aged individuals. Adipocytes have been shown
to impair B cell differentiation of HSCs and adipocyte numbers in
aged individuals correlate with an increased density of maturing
myeloid cells adjacent to adipocytes, suggesting that the age-
related skewing of MSCs into the adipogenic lineage may
contribute to myeloid skewing of HSCs [68, 69]. Adipocytes
produce proinflammatory cytokines, which may facilitate the
inflammatory microenvironment in aged BM and thereby exacer-
bate CH [70, 71]. Conversely, the reduced osteogenic differentia-
tion of MSCs, which is associated with lower production of
osteopontin (OPN), may negatively regulate HSC proliferation, and
thus lead to accelerated HSC divisions and stem cell exhaustion
during aging [72].
Besides the differentiation bias, other factors of MSCs may

contribute to dysfunctional HSCs during aging, such as changes in
the number and expression profiles of various MSC subsets and
the reduced stemness properties that have been reported for
aged MSCs [73–75]. A recent study more specifically addressed the
role of stromal niche inflammation in age-related changes of the

BM niche and HSCs [55]. The results identified endosteal MSCs as a
relevant source of IL-1β in the inflamed and degraded aged BM
niche, which may contribute to further inflammatory remodeling,
chronic activation of emergency myelopoiesis pathways in HSCs,
and impaired hematopoietic regeneration. Evidently, short-term
IL-1 signaling blockade improved hematopoietic regeneration in
old mice, while life-long IL-1R inhibition delayed niche aging and
improved specific blood parameters [55]. Aging of MSCs also
impacts on their capacity to adopt an immunosuppressive
phenotype [76]. Moreover, the inflammatory environment in the
BM is also key to increase receptor activator of NF-κB ligand
(RANKL) expression by osteogenic cells, leading to enhanced bone
degradation and thus, remodeling of the bone and BM niches [77].
An increased prevalence of senescent cells within the endosteal

niche, including MSCs, has been documented in humans and mice
and may also feed into the detrimental effects of chronic
inflammation on the BM niche as described above [78, 79]. Besides
the irreversible cell cycle arrest that senescent cells undergo, they
also produce factors involved in matrix remodeling, pro-angiogenic
factors, growth factors, and a wide variety of proinflammatory
factors collectively termed senescence-associated secretory pheno-
type (SASP) [76]. A recent study in mice showed that by selectively
depleting senescent MSCs or by systemic treatment with a senolytic
drug, the metabolic fitness of HSCs, in particular in response to
bacterial stimuli, could be improved [80]. Furthermore, increased
senescence of MSCs has been observed in mice lacking Wnt
signaling within the BM microenvironment, along with impaired
endosteal niche and bone mass accrual, and age-dependent
attenuated HSC repopulation activity and myeloid skewing [81].
Collectively, these data suggest that senescence of the endosteal
niche may be amenable to therapeutic targeting and restoration of
HSC functions during aging.

The aging perivascular niche
The BM vasculature is composed of an intricate network of blood
vessels, which supports bone homeostasis through the supply of
oxygen, nutrients, and the secretion of angiocrine factors [82].
These blood vessels are formed by endothelial cells (ECs)
exhibiting organ-specific transcriptional profiles, reflecting not
only their ontogeny but also organ-specific function. ECs are a
major source of pro-hematopoietic factors, such as Notch ligands
(Jagged 1, Jagged 2, Delta-like ligands 1 and 4 (DLL1, DLL4)), E-
selectin, angiogenin, as well as CXCL12 and SCF [63, 82]. Within
the complex and multi-cellular skeletal system, ECs form vascular
niches that have been reported to support both hematopoiesis
and osteogenesis.
Vascular niches can be subdivided based on their location,

vessel diameter, and expression of distinct marker sets. The
arteriolar vasculature, characterized by high levels of cadherin 5
(CDH5) and stem cell antigen 1 (SCA1) expression, is directly
connected to transitional type H vessels (CD31high, endomucin
(EMCN)high), which then merge with sinusoidal type L vessels
(CDH5+, CD31low, EMCNlow). Type H vessels are located in the
metaphysis in regions proximal to cortical bone in close
association with osteoprogenitors and have been reported to
support osteogenesis [83]. Type L vessels display a close network
with leptin receptor (LEPR)-expressing perivascular stromal cells,
which serve as progenitors to cells of the adipocyte lineage, and
CXCL12-abundant reticular (CAR) cells, which support HSC
function [84]. In this context, recent genetic lineage tracing and
single-cell RNA sequencing identified specific LEPR+ subsets
based on the co-expression of the osteogenic growth factor
osteolectin: periarteriolar LEPR+ osteolectin+ cells primed for
osteogenesis and perisinusoidal LEPR+ osteolectin− cells primed
for adipogenesis [61, 85]. Interestingly, LEPR+ stromal cells
promote BM innervation by synthesizing nerve growth factor
(NGF) and, in turn, nerve fibres promote hematopoietic and
vascular regeneration by activating β-adrenergic receptor
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signaling in LEPR+ cells [86]. Thus, different vascular niches are
associated with distinct perivascular cell types, forming coopera-
tive niches that as an entity modulate HSC behavior.
Aging is associated with marked alterations in the BM

vasculature as well as vascular niches [82]. Several studies have
demonstrated an age-related reduction in arteries, arterioles, and
type H vessels, which is in correlation with reduced osteogenesis,
bone density, and endosteal niches [73, 83]. The sinusoidal
vasculature contrarily seems to be less impacted and type L
capillaries do not decline with age in mice [83]. Disrupted β-
adrenergic sympathetic nerve signaling has been identified as an
important determinant of niche remodeling during aging and may
indirectly promote megakaryocyte differentiation through induc-
tion of stromal IL-6 [73]. These findings support the concept of an
altered adrenergic-mesenchymal-hematopoietic axis directing
lineage fate decisions in hematopoiesis during aging, specifically
lymphopoiesis and megakaryopoiesis [87].
Concomitant with alterations in cellular composition, the aged

vasculature displays a reduction in the expression of pro-
hematopoietic factors, such as DLL4, netrin-1, SCF, and CXCL12,
which are critical for HSC function [88–90]. In line, reconstitution of
Notch ligands in ECs has been demonstrated to not only restore
type H vessels but also perivascular niche function and HSC
abundance [88, 91]. Loss of Dll4 in ECs was further associated with
increased myeloid skewing in mice [63]. Vascular aging has also
been associated with elevated vessel leakiness, hypoxia, and
elevated levels of reactive oxygen species (ROS) [90]. Additionally,
chronic vascular inflammation has been shown to promote pre-
mature HSC aging with reduced self-renewal and increased
myeloid skewing [92, 93]. Together, these data support a critical
role of the vasculature in the aging BM niche and a potential
contribution to inflammaging and dysregulation of HSC function.

Age-related immune cell changes
The BM functions also as a backbone of immunological memory,
maintaining long-lived memory plasma cells and memory T cells,
and hosts various other mature innate and adaptive immune cell
types including B cells, regulatory T cells (Tregs), natural killer T
(NKT) cells, monocytes, macrophages, dendritic cells, neutrophils,
and myeloid-derived suppressor cells (MDSCs). Among these,
lymphocytes represent a major fraction of total BM mononuclear
cells, are distributed throughout stroma and parenchyma, and are
condensed in lymphoid aggregates [54]. Altogether, immune cells
provide a dynamic “immune niche” that influences HSCs during
steady-state and emergency hematopoiesis directly by secretion
of cytokines and/or indirectly by modulating MSCs [54]. With age,
changes in the cellular composition and clonal involvement of
immune niche cells may further contribute to CH.
Age-related changes of immune cells in humans have been

mostly studied in peripheral blood [94–97], whereas much less is
known about BM [98–101]. Reported changes in human BM
include a more pronounced decline of naïve T cells compared to
peripheral blood, a relative increase of effector/memory CD4+

T cells, and accumulation of highly activated CD8+ CD28- T cells,
while still maintaining a high number of polyfunctional memory
CD4+ and CD8+ T cells [99]. Moreover, the BM is a significant
reservoir for Tregs, which have both an immunosuppressive and
tissue maintenance role and whose proportion has been shown to
increase with age in mice [102]. This age-related accumulation of
Tregs may contribute to reduced responsiveness of effector T cells.
The proportions of human BM plasma and memory B cells within
the CD19+ population were found to decrease [101]. This could
impair protection against certain antigens in old age and may be a
consequence of decreased CXCL12 expression in the aged,
inflammatory BM microenvironment, leading to impaired homing
of plasmablasts and diminished survival of plasma cells [101]. In
contrast, inflammatory cytokine-producing plasma cells have been
found to increase in numbers in the BM of old mice, where they

stimulated myelopoiesis and regulated inflammatory gene expres-
sion by stromal cells, further contributing to inflammaging [56]. In
terms of myeloid cells, BM macrophages in aged humans and
mice were shown to exhibit an activated and inflammatory
signature, which could contribute to induce a platelet bias in HSCs
[103]. Senescent neutrophils, typically cleared by BM macro-
phages, increased in aged mice, consistent with functional
macrophage defects [103]. Moreover, age-related secretion of
grancalcin by macrophages has been demonstrated to induce
skeletal stem/progenitor cell senescence in mice, thus impairing
bone regeneration [104]. These studies exemplarily illustrate the
instructive role of immune cell subsets in lineage skewing of HSCs
and inflammatory niche alterations that occur with aging.

THE BI-DIRECTIONAL IMPACT OF CH ON THE AGING BM NICHE
The pre-malignant BM niche in CH carriers represents an
opportunity to identify early changes before myeloid disease
manifestation. Although direct experimental evidence linking CH
to alterations of the BM microenvironment, and vice versa, is still
limited, recent advances have been made. A central concept is
that genetic subtypes of CHIP accelerate inflammaging of the BM
niche, which progressively contributes to niche remodeling
beyond normal aging (Fig. 1). Multiple studies have described
enhanced inflammatory responses in DNMT3A-, TET2-, and JAK2-
mutant myeloid cells [44]. In line with this, CHIP-carriers exhibited
higher serum levels of IL-6, IL-8, TNF, IL-1β, and IL-18 compared to
non-CHIP individuals [4, 13, 105]. In particular, driver gene-specific
analyses showed an association of TET2 with increased IL-1β,
whereas JAK2 and SF3B1 were associated with increased circulat-
ing IL-18, highlighting the need for gene-specific analyses [4].
Importantly, mutant HSPCs have developed molecular mechan-
isms to adapt to these sustained inflammatory cues [44].
CHIP-related inflammatory signals appear to contribute to

remodeling of the bone structure, in particular DNMT3A-mutant
CHIP that has been linked to osteoporosis in humans [14].
Mechanistically, proinflammatory cytokines produced by Dnmt3a-
deficient macrophages, including IL-20, enhanced osteoclastogen-
esis in mice, which demonstrated that CHIP progeny directly
contributes to osteoporosis-inducing inflammation, osteoclast-
mediated reduction in bone mass, and consequently endosteal
niche deterioration [14]. Hematopoietic-specific inactivation of
Tet2 in mice also resulted in reduced bone mass but the effects on
bone phenotype were milder [14]. It is important to note that
several growth factors/proteins released during and/or regulating
bone resorption, such as TGF-β and bone morphogenetic proteins
(BMPs), have been implicated in the progression of MDS
[106, 107].
With regard to MSCs, more conclusive data are awaited from

ongoing studies investigating the differentiation capacity and HSC
supportive function of MSCs obtained from CHIP carriers. An
influence of sympathetic neuropathy, driven by mutant cells, on
MSCs is conceivable, which could compromise their HSC-
supportive function and contribute to clonal expansion
[108, 109]. Further, Dnmt3a-mutant HSPCs were shown to induce
senescence of MSCs through the production of IL-6 [110], which in
turn may contribute to CH and myeloid skewing as discussed
earlier.
CHIP progeny may also drive remodeling of BM vascular niches

to form a favorable niche that supports clonal expansion. Recent
findings in a lung cancer model suggested that Tet2-deficient
immune cells, specifically myeloid cells, promote angiogenesis,
possibly through enhanced S100A8/A9 secretion [111]. Therefore,
the inflammatory signatures that are attributable to defined CHIP
progeny could increase vascularization and perivascular perme-
ability, as well as further promote the activation of inflammatory
transcriptional programs in aged BM stromal and endothelial cells
[112–114].
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Paracrine inflammatory signals from the aging and adipocyte-
enriched BM microenvironment may, in turn, confer a selective
advantage to DNMT3A- or TET2-mutant CHIP clones [70, 71].
Aging-related prolonged TNF signaling in an inflammatory
environment has been shown to favor Dnmt3aR878H-mutant
(human: DNMT3AR882H) and Tet2-knockout CH [115–117]. Further,
IL-1R signaling has been recently implicated as a driver of Tet2+/−

CHIP progression during aging [118]. In addition, driver mutations
in TET2 may contribute to repress NK cell-mediated immune
surveillance of malignant clones in the BM [119]. Together, these
studies point out a continuous bi-directional inflammatory
program in the aging BM niche that supports and is further
driven by mutant HSPCs and their progeny, leading to remodeling
of the endosteal niche while transforming the vascular niche to a
selective microenvironment that favors mutated clones. This
combined intrinsic and extrinsic fitness advantage and subse-
quent clonal expansion are the defining features of CH, which,
when exacerbated, increases the likelihood of transformation to
MDS and associated hematologic malignancies.

EMBRACING COMPLEXITY: NEW TOOLS TO STUDY THE CH
BM NICHE
In recent years, single-cell-sequencing approaches have revolu-
tionized our understanding of normal and malignant hematopoi-
esis by enabling the precise characterization of the transitional cell
states between hematopoietic hierarchy stages and their HSPC
onset clonal origins that are dysregulated during hematologic
malignancies [120, 121]. Knowing the characteristics of normal
cells should facilitate understanding their malignant counterparts
and thus provide clues on how CH shifts the HSPC transcriptional
landscape toward clonal expansion and lineage skewing. A recent
breakthrough was achieved using a single-cell multi-omics
approach (combining scRNA-seq, chromatin accessibility, methy-
lome), showing that Tet2 and Dnmt3a loss differentially affect
DNA-binding motifs of key cell fate transcription factors, causing
opposite shifts in the frequencies of erythroid versus myelomo-
nocytic progenitors [122]. Single-cell RNA-seq approaches allow to
directly compare mutated and wild-type cell transcriptomics
within the same individual, and have also been applied to resolve
the BM niche cellular heterogeneity, pinpoint the major pro-
hematopoietic factors, and characterize their secreting supportive
cells [27, 31, 63, 64, 123–125]. This has refined our current
knowledge of the BM niche architecture and its influence on
inducing HSPCs toward distinct lineage commitment paths.
Interestingly, monocytic production appears to be spatially
separated from other lineages and instructed by a small
subpopulation of endothelial cells producing macrophage
colony-stimulating factor (M-CSF/CSF-1), although whether such
functional output is regulated directly by M-CSF/CSF-1 remains to
be elucidated [126]. Such spatial organization has also been
identified for other stromal cells using spatial transcriptomics.
Specifically, two CAR cell subsets differentially localized to
sinusoidal or arteriolar surfaces, acting as “professional”
cytokine-secreting stromal cells to establish distinct perivascular
micro-niches to support HSPCs in mice [61]. Recent efforts using
the same spatial approach showed early hints toward stromal cell
subsets with specific cytokine secretion in human fetal hemato-
poiesis [127, 128].
Comprehensive single-cell data sets for BM across healthy donors

and over donor lifespan are being generated already and can serve
as valuable ref [129, 130]. In future studies, a better characterization
of the BM niche in human adult and aging hematopoiesis will be
essential to close the gap between the anatomical and cellular
difference of stromal cell identities and their supportive roles
compared to those identified in mouse models. More importantly, it
would be of great interest to explore if CH cells utilize a different
spatial BM niche organization that dysbalances hematopoietic

differentiation, and investigate their interaction with different cell
populations of the hematopoietic and immune system, as well as
vessels, fat, bone, and connective tissue structures. From a practical
point of view, BM tissues can develop a high degree of
autofluorescence and fragility due to fixation and decalcification
procedures, which often vary across different laboratories [131].
Therefore, BM tissue poses a challenge for multi-parameter
fluorescence immunohistochemistry protocols. Nevertheless, sev-
eral technologies are available to overcome these challenges, such
as spatial profiling of proteins or RNA via GeoMx® Digital Spatial
Profiler (NanoString) [132], epitope-targeted mass spectrometry in
the Hyperion™ Imaging System (Standard BioTools) [133], tyramide
signal amplification (TSA) visualized by PhenoImagers (formerly
Vectra® Polaris™, Akoya Biosciences) [134], and cyclic immuno-
fluorescence staining (ICS) with the PhenoCycler™ (formerly
CODEX®, Akoya Biosciences) [135] or the MACSima™ imaging
platform (Miltenyi Biotec) [136]. Based on our experience with the
TSA method using the Vectra 3.0 spectral imaging system and the
ICS method using the MACSima imaging platform, both methods
are suitable to obtain robust results on formalin-fixed, paraffin-
embedded BM sections. The TSA method allows for whole-tissue
scanning, high sensitivity to detect weakly expressed markers, and
the acquisition of multispectral images resolving up to seven
marker molecules, including the DNA stain DAPI, on a single tissue
section (Fig. 2). The obtained high-resolution data are useful for
functional characterization and distance measurements between
cells of interest. However, detailed analysis of several cell
populations is not possible in one run and requires the use of
multiple staining protocols on separate tissues. Other develop-
ments like the fully automated system of the MACSima imaging
platform offer the possibility of analyzing >100 markers in order to
determine phenotypic and functional properties of different cell
populations. This ICS-based procedure relies on iterative staining
with up to three different commercially available fluorophore-
conjugated antibodies and DAPI per cycle. The resulting stack of
marker images could provide unprecedented insight into the
spatial distribution and interactions of different cell populations in
the BM niche.

CLINICAL MANAGEMENT OF INDIVIDUALS WITH CH
Increasing accessibility of NGS assays has led to a growing
population of individuals who are aware that they are CH carriers.
Since CH is ubiquitous in individuals >70 years and the overall risk
for transformation into a hematopoietic neoplasm is small, it will
be crucial to establish a comprehensive prognostic model for
transformation risk in the future. A group from Dana-Farber
Cancer Institute recently presented a CH risk score (CHRS)
established retrospectively from a cohort of 193743 healthy UK
Biobank participants and validated in two independent CHIP/
CCUS cohorts [137]. Prognostically unfavorable determinants of
progression to hematologic neoplasm included genetic features
(high-risk mutations, >1 mutation, and VAF ≥ 0.2), patient age (≥65
years), the presence of cytopenia (CCUS versus CHIP), and high red
blood cell indices [137]. Another recent study presented a
different approach that calculates the likelihood of developing
different types of myeloid neoplasms over 15 years and is
accessible via a web-based application [138]. In the future, it will
be necessary to validate these retrospective data from the UK
Biobank in prospective studies conducted in dedicated CHIP
clinics, as have been established at many academic centers,
including ours. Further, CH associates with several other non-
hematological disease states and inflammation-associated comor-
bidities. Hence, CH carriers should be evaluated for the presence
of CVD, osteoporosis, osteoarthritis, and autoimmune disorders,
etc., especially in the presence of additional risk factors. Taken
together, these observations underscore the importance of
adequately monitoring individuals with CH and high-risk features
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as well as the need for evidence-based clinical guidelines. The
latter should also involve safe and effective interventions currently
explored in early phase studies. Importantly, close collaboration
with specialists in non-hematologic sequelae of CH will be crucial
in this emerging topic in personalized medicine.

FUTURE DIRECTIONS
Clearly, a progressively disturbed microenvironment with
impaired function of supportive niche and immune cells plays a
major role in the dysregulation of normal hematopoiesis and
progression to hematologic malignancy. A better understanding
of the niche alterations in the premalignant state of CH could
expose levers for preventive treatments in higher-risk CH, apart
from mutation-specific targeted therapies [139]. Studies of serial
samples may also provide insights into niche contributions to
varying trajectories of a clone between individuals.
Moving on from the current detection of CH in bulk

populations, an important goal in the field is to resolve the

cellular distribution of clonal mutations and their dynamics. CH
progeny may have an intrinsically different biology and broadly
impact the BM microenvironment as well as other tissues and host
immune function. Growing evidence supports a role for CHIP in
inflammaging, thereby potentiating age-related inflammatory
changes in the BM and other tissues. The identification of
common and mutation-specific alterations in the BM niche of
CH carriers, perhaps focusing on those with high-risk features or
larger clone size, may help to find features that could be targeted
to suppress the self-reinforcing pre-leukemic BM microenviron-
ment, dislodge mutant clones from their protective niche, and
restore healthy/balanced hematopoiesis. To address this will
require ambitious translational studies that assess single-cell
transcriptomics of mutant and wild-type cells and resolve the
spatial BM niche organization in human specimens. Biopsies may
be obtained from leftover material from routine surgical
intervention (e.g. hip replacements) or during diagnostic work-
up of individuals with suspected hematologic disorder. Impor-
tantly, results from such studies will contribute to build a
comprehensive atlas of the intact and pre-malignant aging human
BM niche, and advance our knowledge of the aging process and
the contribution of CH.
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