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Single-cell analysis reveals the chemotherapy-induced cellular
reprogramming and novel therapeutic targets in relapsed/
refractory acute myeloid leukemia
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Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we
dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the
transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a
subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing
longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during
chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric
analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with
chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-
SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that
LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the
chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better
understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/
refractory AML patients.

Leukemia (2023) 37:308–325; https://doi.org/10.1038/s41375-022-01789-6

INTRODUCTION
Acute myeloid leukemia (AML) is the most common and lethal adult
acute leukemia, characterized by aggressive proliferation, differ-
entiation blockage, and apoptosis disorder of immature blasts in the
bone marrow, peripheral blood, and other tissues [1]. Chemother-
apy is the primary treatment for AML [2]. However, approximately
10–40% of newly diagnosed AML patients do not achieve complete
remission (CR) with initial treatment and are categorized as primary
refractory [3]. Besides, more than half of the patients who initially
achieve CR will eventually relapse [4]. Chemoresistance and relapse
are the leading cause of AML-related deaths.
The high intratumoral heterogeneity (ITH) is one of the most

important reasons for drug resistance and relapse in AML [5, 6].
Although many previous studies suggested that leukemia stem

cells (LSCs) contributed to the chemoresistance and poor outcome
of AML [7–12], other studies have reported contrary observations
[13, 14]. These controversial conclusions in the field may result
from the fact that LSC is a highly heterogeneous cell group
consisting of subgroups with different drug sensitivity [15–18], but
previous studies based on bulk sequencing only obtain the
average expression level of various cellular states, thus failing to
capture the specific characteristics of cell subpopulations.
The emergence of single-cell sequencing technologies makes it

possible to quantify the whole genome or transcriptome of every
single cell in a tissue mixture and provides an unprecedented
opportunity to decipher the complexity of AML cellular hetero-
geneity [9, 19–21]. For example, some recent studies provide
important references for understanding the transcriptomic ITH in
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diagnostic AML by utilizing scRNA-seq [19, 21], but the
chemoresistant LSC subpopulations in refractory or short-term
relapsed AML patients remain unclear. Despite several single-cell
genomic analyses having deciphered the clonal evolutionary
process of therapeutic resistance at the cellular subpopulation
level [22–25], the chemotherapy-induced plasticity of cellular
states and transcriptomic reprogramming, as well as the molecular
interactions between chemoresistant LSCs and microenvironment

are yet understudied currently [15]. In addition, the strategies for
targeting chemoresistant LSC subpopulations are still needed to
be further identified. Identifying the intrinsic resistant LSC
subpopulation and deciphering the cellular reprogramming
induced by chemotherapy in relapsed/refractory AML (RR-AML),
will help to understand the underlying mechanism of chemore-
sistance and provide potential therapeutic strategies for targeting
the chemoresistant LSC subpopulation.
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Here, we performed an integrated single-cell transcriptomic
analysis of bone marrow samples from primary refractory and
short-term relapsed AML patients to identify the critical factors in
AML chemoresistance. Besides, longitudinal scRNA-seq analysis
was performed to trace the dynamic cellular and molecular
plasticity induced by chemotherapy in AML patients. By compre-
hensively dissecting the cellular states of leukemia-like cells in the
AML ecosystem, we defined the transcriptional ITH and identified
the LSC subpopulation that was involved in the chemoresistance
and relapse of AML. Furthermore, the reprogramming of cellular
states induced by chemotherapy was described and effective
therapeutic targets for chemotherapy sensitization were identified
for RR-AML patients.

RESULTS
Identifying the leukemia-like cells by integrating scRNA-seq
data from healthy and RR-AML bone marrow samples
To explore the ITH and identify potential therapeutic targets for
RR-AML, we designed a scRNA-seq-based workflow to compre-
hensively dissect the dynamic cellular and molecular reprogram-
ming during chemotherapy in RR-AML patients (Fig. 1A). Firstly,
we performed scRNA-seq on bone marrow specimens from seven
AML patients who were short-term relapsed or primary refractory
after cytarabine-based chemotherapy (Supplementary Table S1).
Four of these patients have received at least two courses of
induction treatment but still have more than 20% bone marrow
blasts, and the other three patients were short-term relapsed
(<6 months) after achieving CR (Supplementary Fig. S1A). After
quality control, we got transcriptomic data of 4426~11,767 single
cells for each patient.
Considering the similarities of differentiation hierarchies

between leukemia and normal cells in the AML ecosystem [19],
we integrated bone marrow scRNA-seq data from 20 healthy
controls (HCs; GSE120221) [26] and seven AML patients to
compare the differences between physiological and pathological
states and distinguish the leukemia-like cells from normal-like cells
in AML patients. Totally 118,565 cells were integrated after quality
control, including 44,151 cells from AML patients and 74,414 cells
from healthy donors. We performed unsupervised clustering of all
these cells at high resolution and identified 98 transcriptional cell
clusters (Supplementary Fig. S1B). Hierarchical clustering, SingleR
analysis [27], and the expression of known markers suggested that
these clusters could be classified into various cell types, including
hematopoietic stem cells (HSCs), common myeloid progenitor
(CMP), megakaryocyte-erythroid progenitor (MEP), granulocyte-
monocyte progenitor (GMP), dendritic cells (DCs), monocytes,
erythrocytes, T cells, B cells, and natural killer (NK; Fig. 1B, C and
Supplementary Fig. S1C). Compared with HCs, the cells from AML
patients were enriched in primitive and myeloid cells (Fig. 1D, E),
such as HSC, MEP, CMP, and monocytes. In contrast, the
lymphocytes were depleted in AML patients, such as B cells,
CD4+ T cells, and CD8+ T cells (Fig. 1F). Moreover, results showed

that cells from AML patients had significantly higher proliferation
and stemness scores than cells from HCs (Wilcoxon rank-sum test,
p < 2.2e–16; Supplementary Fig. S1D–G).
According to the proportion of cells from AML patients in each

transcriptional cluster, we distinguished the leukemia-like cells
from normal-like cells in the ecosystem of AML (Fig. 1G;
Supplementary Methods). Our predictive percentage of
leukemia-like cells was highly accordant with the results of the
classifier from Galen et al. [19] (Pearson r= 0.89, p= 0.008; Fig. 1H
and Supplementary Fig. S1H), which could identify the leukemia-
like cells by taking genetic mutation into consideration. In
addition, to further validate the identified leukemia-like cells, we
compared the proliferation and stemness scores between the
leukemia-like and normal-like cells in the AML bone marrow.
Results showed that these scores were significantly higher in
leukemia-like cells than in normal-like cells (Supplementary Fig.
S1I, J). Besides, the scores of LSC signatures reported by previous
studies were also remarkably higher in leukemia-like cells than in
normal-like cells, such as the LSC_up and LSC17 signatures by
Eppert et al. [28] and Ng et al. [29] (Supplementary Fig. S1K),
indicating the reliability of the identification of leukemia-like cells
based on the transcriptomic data at the single-cell level.

The transcriptional ITH is associated with AML outcomes
We next attempted to deconstruct the cellular diversity of these
leukemia-like cells. Pseudotime analysis revealed that leukemia-
like cells showed a differentiation trajectory similar to normal
hematopoietic development (Fig. 2A). According to the expression
of established lineage markers (Fig. 2B and Supplementary Fig.
S2A), stemness score (Fig. 2C) and proliferation status (Fig. 2D), we
identified six types of leukemia-like cellular states, including
quiescent stem-like cells (QSCs), proliferating stem/progenitor-like
cells (PSPs), GMP, proliferating granulocyte (PG), promonocytes
(hereinafter referred to as promono), and differentiated mono-
cytes (hereinafter referred to as mono). The specific genes highly
expressed in each cellular state were shown in Supplementary
Table S2. Based on the information in Cell Surface Protein Atlas
(CSPA) [30] and Gene Ontology (GO: 0009986), we identified the
specifically expressed cell surface markers in each state (Fig. 2E).
Results showed that CD52, LGALS1, and CD47 were upregulated in
QSCs, compared with other cellular states. Notably, both the QSCs
and PSPs have significantly higher LSC-related scores than other
leukemia cells (Supplementary Fig. S2B), indicating that the
heterogeneity of LSCs could be dissected by single-cell transcrip-
tomic analysis. Although QSCs and PSPs had comparable
stemness, these two primitive subpopulations exhibit different
proliferation features (Supplementary Fig. S2C). Gene Set Enrich-
ment Analysis (GSEA) further validated that QSCs highly expressed
the quiescence signature (NES= 1.95, p= 0.0015), while PSPs
enriched in the cell dividing signature (NES= –1.99, p= 0.0033;
Supplementary Fig. S2D).
Using our single-cell transcriptomic profile as a reference, we

dissected the cellular components of each TCGA sample by

Fig. 1 Integrated scRNA-seq analysis of healthy and RR-AML bone marrow samples. A Schematic overview and the number of samples and
cells in this study. The cellular heterogeneity of RR-AML patients was deconstructed by integrating scRNA-seq data of seven RR-AML patients
(in-house) and 20 healthy controls (GSE120221). Chemotherapy-induced reprogramming was investigated by analyzing longitudinal scRNA-
seq data of 15 samples from six patients (in-house dataset and the public GSE116256 data). Results derived from scRNA-seq data were further
validated by bulk transcriptomic data and in vitro and in vivo experiments. B UMAP visualization of cell type identification based on SingleR.
C Heatmap showing the correlation of 98 clusters. Four major cell types were identified by unsupervised clustering, including HSC/Progenitors
(brown), myeloid cells (green), erythrocytes (pink), and lymphocytes (blue). D UMAP visualization of 118,565 single cells that passed quality
controls, colored by seven RR_AML patients and twenty HCs. E Heatmap showing the density ratio of the UMAP projections of RR-AML and
healthy bone marrow cells. The UMAP visualization is split into 400 × 400 bins. F Boxplot showing the proportion of cell types in RR-AML
patients and HCs. Wilcoxon rank-sum test was used to measure the differences between the two groups. G UMAP visualization of the
identified leukemia-like cells. Cells from HCs were shown in gray, normal-like cells from AML patients were shown in sky blue, and leukemia-
like cells from AML patients were shown in red. H Scatterplot showing the correlation between the proportions of leukemia-like cells
predicted by this study (x-axis) and the classifier of Galen et al. (y-axis).
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utilizing CIBERSORTx [31]. Results showed that the composition of
cellular states in AML patients was extensively varied. Some
patients had one dominant cellular state, while other patients
contained two or more cellular states (Supplementary Fig. S2E).
The cellular components showed association with the FAB

subtypes of AML patients (Fig. 2F). The QSCs were mainly enriched
in the FAB-M0 and intermediately enriched in the FAB-M1 and
FAB-M2 AML. The PSPs were highly enriched in FAB-M1, FAB-M2
and acute promyelocytic leukemia (APL, FAB-M3). The GMPs were
mainly enriched in APL. The promono and mono had the highest
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level in FAB-M4 and FAB-M5, with an intermediate level in other
subtypes. This association was also validated in two independent
cohorts (Supplementary Fig. S2F, G). In addition, these observa-
tions were further proved at the single-cell level by showing the
cellular components in AML patients of different subtypes (Fig. 2G
and Supplementary Fig. S2H), indicating that the cellular
components were associated with the previously established
subtyping of AML.
Using Shannon entropy (see Supplementary Methods), we

measured the transcriptional ITH of each patient based on the
identified cellular states. Results showed that patients who
harbored more AML-related mutations had a higher transcrip-
tional ITH score (Fig. 2H), indicating the concordance between
genomic and transcriptomic ITH. Moreover, AML patients with low
cytogenetic or molecular risk had a low ITH, and the patients with
intermediate/high cytogenetic or molecular risk showed higher
ITH score (Fig. 2I). Notably, we found that the percentage of blasts
did not correlate with ITH, indicating that the number of leukemia
cells did not contribute to the intratumoral cellular diversity
(Supplementary Fig. S2I). We found that the percentage of blasts
in bone marrow was not related to the overall survival (OS) of AML
patients in the TCGA cohort (Fig. 2J), but the higher ITH could
predict the poor OS and higher relapse rate of AML patients
(Fig. 2K, L). This observation suggested that rather than the
amount, the diversity of leukemia cells was associated with the
outcomes of AML patients.
In order to further evaluate the additional prognostic power of

our ITH-index for AML wild-type patients, TCGA samples were
divided into four classes for each gene mutation, including
mutated/ITH-high, mutated/ITH-low, wild-type/ITH-high, and wild-
type/ITH-low. The results showed that a high level of ITH-index
could predict the poor OS of TP53, DNMT3A, RUNX1, ASXL1, KRAS,
and FLT3 wild-type AML patients (Supplementary Fig. S3A).
Furthermore, we also found ITH-index could subdivide the
outcomes of the intermediate-risk group categorized by cytoge-
netic or molecular alterations (Supplementary Fig. S3B). Therefore,
these results suggested our ITH-index derived from single-cell
transcriptomic data had an additional prognosis value, not simply
mirroring the known impacts of genetic abnormalities.

QSCs are involved in the chemoresistance and poor outcomes
of AML
We found that AML patients with high enrichment of QSCs tended
to have higher ITH, while the patients with high enrichment of
PSPs tended to have lower ITH (Fig. 2M). Therefore, we compared
the gene expression profile between QSCs and PSPs. Results
showed that the QSCs and PSPs commonly expressed primitive
markers CD99, MSI2, and SOX4. Besides, QSCs had significantly
high expression of EGFL7, IKZF2 and CD47 (Fig. 3A and
Supplementary Fig. S4A). Previous studies demonstrated that
the increased expression and secretion of proangiogenic factor
EGFL7 could support the growth of leukemic blasts, and a high
level of EGFL7 was associated with lower CR rates, shorter event-

free, and OS in AML patients [32]. Consistently, EGFL7 contains the
intronic miR-126, which could preserve LSC in a quiescent state via
inhibiting PI3K/AKT signaling, promoting AML chemoresistance
[33, 34]. Also, the chromatin remodeler IKZF2 was recently
reported to drive LSC self-renewal and inhibit myeloid differentia-
tion through disrupting the CEBPD/E-driven transcriptional
regulation program [35]. The “don’t eat me” signal CD47 was
proved to be an essential mechanism of immune evasion in
hematological malignancies [36]. These results suggested that the
QSCs highly expressed genes involved in LSC self-renewal,
differentiation blockage, immune evasion, and angiogenesis. On
the other hand, compared with QSCs, PSPs tended to express the
genes associated with the cell cycle, such as CDK6.
To determine the association between cellular state enrichment

and genomic events, we compared the chromosomal abnormality
and gene mutation occurrence in patients with high-QSCs and
low-QSCs percentages. RUNX1, TP53, and DNMT3A mutations
were found to be enriched in the patients with a high percentage
of QSCs, while all of the patients with t(15;17) had a low level of
QSCs (Supplementary Fig. S4B). In contrast, patients with a high
percentage of PSPs showed enrichment of t(15;17), t(18;21), and
CEBPA mutation, while almost no RUNX1 mutation (Supplemen-
tary Fig. S4C). AML patients harboring mutations in TP53, RUNX1,
and DNMT3A had a high risk of disease progression and poor
outcome, whereas the patients with t(15;17) and t(18;21) had a
relatively favorable outcome [37]. These results suggested that the
patients with high-risk genomic events tended to have a higher
level of QSCs, but those with low-risk genomic events tended to
have a higher level of PSPs.
We further identified the transcriptional regulons that were

distinctly activated in QSCs or PSPs. Results showed that more
regulons were activated in QSCs than in PSPs, indicating the
complicated regulation network in QSCs (Fig. 3B). The transcrip-
tional programs regulated by STAT3, IKZF2, PRDM16, and SMAD3
were found to be significantly activated in QSCs. Notably, both the
IKZF2 expression on mRNA level and the activity of its target
genes were upregulated in QSCs. Also, the high expression level of
PRDM16 was reported to involve pathological progression and
poor prognosis of AML, and the downregulation of PRDM16mRNA
had an anti-leukemia effect in mice [38]. Combined with these
previous studies, our results suggested that the transcriptional
regulators of QSCs might be the potential therapeutic targets of
RR-AML. Besides, a considerable number of metabolic pathways in
QSCs were activated compared with PSPs (Fig. 3C), including
pentose phosphate pathway (PPP) and arginine, fatty acid,
nicotinamide metabolism pathways. In addition, by performing
GSEA analysis using the differential expressed genes between
QSCs and PSPs, we found that QSCs exhibited significant
enrichment for some previously identified chemoresistance
signatures, such as fatty acid metabolism and senescence-like
signatures (Supplementary Fig. S4D).
To further demonstrate the relationship between cellular states

and drug response, we used CIBERSORTx [31] to analyze the

Fig. 2 Dissection of transcriptional ITH of RR-AML bone marrow. A Pseudotime trajectory of leukemia-like cells. Cellular states are defined
based on differentiation stages, proliferation, and stemness scores. B Expression of well-defined lineage-specific genes along with the
pseudotime trajectory. The curves were fitted by locally weighted regression (LOESS). C The stemness score calculated by CytoTRACE. D The
cell cycle phases of all leukemia-like cells. E Cell surface markers that are specifically expressed on each cellular state. F Boxplots showing the
percentage of each cellular state in TCGA AML patients with different FAB subtypes based on the estimate of CIBERSORTx. G The percentage
of each cellular state in leukemia-like cells of AML patients with different FAB subtypes at the single-cell level. H Left: t-SNE plots showing the
number of mutated leukemia-associated genes and ITH scores in the TCGA AML patients. Right: Boxplot showing the ITH of TCGA AML
patients with the different number of mutated genes. Wilcoxon rank-sum test was used to measure the differences between groups. I Boxplot
showing the ITH of AML patients with different cytogenetic and molecular risks. Wilcoxon rank-sum test was used to measure the differences
between groups. J Kaplan–Meier analysis of overall survival (OS) of TCGA AML patients. All patients were categorized into two groups based
on the median of blast percentage in the bone marrow. K, L Kaplan–Meier analysis of OS (K) and relapse (L) of TCGA AML patients. All patients
were categorized into two groups based on the median of the ITH score.M The ITH scores of TCGA AML patients with different levels of QSCs
(left) and PSPs (right). Patients were categorized into two groups based on the median of QSCs or PSPs abundance.
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remodeling induced by chemotherapy cytarabine (Ara-C) or
hypomethylating agents Decitabine (DAC) by inferring the cellular
components of patient-derived AML samples based on bulk
transcriptomic data (GSE40442) [39]. Compared with the control
groups, the Ara-C or DAC treated groups had significantly

increased QSCs and decreased PSPs proportions (Paired Wilcoxon
rank-sum test, p value < 0.01), suggesting the enrichment of QSCs
in the chemo-residual cells (Fig. 3D). Furthermore, we found that
the QSCs signature was enriched in the upregulated genes of AML
patients without CR after the “7+ 3” regimen, whereas the PSPs
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signature was enriched in the upregulated genes of patients who
eventually achieved CR (Fig. 3E, F), indicating that QSCs are related to
the chemoresistance of AML patients, and PSPs are more sensitive to
chemotherapy. By comparing the cellular components at diagnosis
and relapse in matched samples from four independent datasets, we
found that the percentage of QSCs significantly increased at relapse
(Supplementary Fig. S4E). As shown in Fig. 3G–J, patients with a high
level of QSCs showed poor OS (log-rank test, p= 0.009) and high
relapse rate (log-rank test, p= 0.0011). In contrast, patients with a
high level of PSPs had favorable OS (log-rank test, p < 0.0001) and
low relapse rate (log-rank test, p= 0.0033). These results were also
maintained when the APL cases were excluded (Supplementary Fig.
S4F, G). We validated this result in an independent cohort, and the
trend was consistent with the observations in the TCGA cohort
(Supplementary Fig. S4H–K). Finally, we demonstrated that the OS of
QSCHighPSPLow patients was significantly poorer than QSCLowPSPHigh

patients (log-rank test, p= 0.00012; Supplementary Fig. S4L).

PSPs obtain QSC-like transcriptional patterns after
chemotherapy in refractory patients
Next, we sought to validate the above observations by performing
longitudinal scRNA-seq analysis in matched samples from two
primary refractories, one partial remission (PR), and three CR AML
patients during the chemotherapy. Figure 4A showed the cellular
states at diagnosis and after chemotherapy in monocytic AML Pt#3,
who showed chemoresistance after two courses of treatment. We
found that the percentage of PSPs decreased after chemotherapy,
but the percentage of QSCs increased from 5.5% to 10.7%,
suggesting that the QSCs were resistant to chemotherapy, and
PSPs were relatively sensitive to chemotherapy. Besides, the
changes of cellular states in primary refractory patient Pt#9 also
showed an increase of QSCs after chemotherapy (Fig. 4B), whereas
both QSCs and PSPs decreased by half after chemotherapy in
patient Pt#10 who achieved PR (Fig. 4C). To further validate the
above observations, we defined the cellular states in longitudinal
scRNA-seq samples from Galen et al.’s study [19] by a label-
transform algorithm (Fig. 4D). Although having achieved clinical CR,
AML-556 showed a gradual increase of QSCs percentage along with
the chemotherapy procedure, from 0.8% at diagnosis to 2.6% at
D15 and 4.6% at D31, further indicating the potential role of QSCs in
chemoresistance. Besides, in spite that the QSCs in CR patient AML-
329 decreased from 9.5% (D0) to 2.2% (D37), they remained almost
unchanged at the D20 after 7+ 3 induction chemotherapy. In
contrast, the PSPs were significantly reduced by chemotherapy at
D20, suggesting that the QSCs had a late response compared to
PSPs. Collectively, our observations showed that QSCs were
obstinate or late-responsive to chemotherapy, suggesting the
involvement of QSCs in AML chemoresistance.
Some previous studies reported a decrease in LSC signatures in

chemo-residual AML cells [13, 14, 40]. Consistently, our longitudinal
single-cell analysis of AML-329 and AML-707B suggested that the
stemness of residual AML cells significantly decreased at the
cytoreduction period (about D20 after chemotherapy) compared to
the pre-treatment, and then recovered at about D40 (Supplemen-
tary Fig. S5A). But in AML-556, both QSCs and PSPs showed
significantly increased stemness at D15 and D31 compared to pre-

treatment, possibly due to the differential response timing among
individuals. In contrast, signatures of inflammatory response and
chemokine signaling pathway significantly increased at the initial
cytoreduction period and decreased afterward, suggesting that
these cellular inflammatory responses were transient (Supplemen-
tary Fig. S5B). Therefore, these results suggested that cellular states
were dynamically changed during chemotherapy. The residual AML
cells experienced an inflammatory response under chemical stress,
during which the stemness of these residual cells was decreased.
These inflammatory responses would attenuate and stemness
would recover, but the response timing may be differential among
AML individuals.
In order to further figure out the underlying cellular and

molecular mechanism of chemoresistance, we analyzed the
transcriptional reprogramming induced by chemotherapy in
refractory patients by identifying the differential expressed genes
of chemo-residual cells compared to cells before treatment (Fig. 4E
and Supplementary Fig. S6A). Notably, we found that the residual
PSPs obtained transcriptional features similar to QSCs after
treatment. For example, the upregulation of the QSC-signature
genes LGALS1, CD52, and PDLIM1 were observed in PSPs after
chemotherapy. The principal component analysis (PCA) also
showed that the gene expressions of PSPs were more similar to
QSCs after chemotherapy than the initial diagnosis status in
primary refractory patients (Fig. 4F). We next analyzed the
dynamic changes in transcriptional regulations during chemother-
apy treatment and identified the potential factors involved in the
reprogramming of PSPs. Results showed that PSPs had a relatively
low level of GATA2 activity and expression at diagnosis, while
these levels in QSCs were significantly higher (Fig. 4G and
Supplementary Fig. S6B), largely due to the crucial role of GATA2
in stemness maintenance of LSCs [41, 42]. Moreover, both the
activity and expression level of GATA2 increased significantly in
PSPs after chemotherapy. Besides, we also found that PSPs
obtained the activated regulon controlled by factor TAL1 (Fig. 4H
and Supplementary Fig. S6C), which was required to maintain the
quiescent state of LSCs [43]. Overall, these results showed the
acquisition of a QSC-like transcriptional program in
chemotherapy-induced PSPs, indicating that cellular state shifting
may be an important mechanism for AML chemoresistance.
Notably, we found that the currently targetable gene CD52 was

transcriptionally regulated by GATA2 and TAL1 in AML cells
(Fig. 4I), and the expression of CD52 was positively correlated with
the activity of these regulators in single cells (Supplementary Fig.
S6D, E). We further validated the enrichment of QSCs in
chemoresistant patients by flow cytometry based on the markers
identified by our single-cell data. Specifically, we identified the cell
surface markers CD99 and ITGA4 (CD49d) that were specifically
expressed on both QSCs and PSPs to recognize these two
subpopulations first, and then used CD52 and LGALS1 (Galectin-1)
to further distinguish QSCs from PSPs (Fig. 5A). We used flow
cytometry to test the bone marrow samples from 24 diagnostic
AML patients (including 14 patients that achieved CR and ten
patients resistant to chemotherapy) and eight samples from
refractory/early-relapsed (<6 months) AML patients. Results
showed that CD99+CD49d+CD52+Galectin-1+ (QSCs) cells had

Fig. 3 Comparing the characteristics between QSC and PSP cellular states. A Heatmap showing the genes expressed in the QSC and PSP
cells. Both common and specific genes were shown. B Volcano plot showing the regulons that are specifically activated in the QSCs and PSPs.
Regulons highlighted by red are significantly activated in QSCs cells, while regulons highlighted by green are significantly activated in PSPs
cells. C Heatmap of metabolic pathways that are specifically activated in QSC-enriched clusters. D The proportion of the QSCs and PSPs in the
control group, cytarabine (Ara-C) treated group, and decitabine (DAC) treated group in bulk transcriptomic data (GSE40442) of patient-derived
AML samples. Proportions of cellular components are inferred by the deconvolution method CIBERSORTx. Paired Wilcoxon rank-sum test was
used to measure the differences between groups. E, F GSEA of the differentially expressed genes between QSCs and PSPs in the gene
signatures from diagnostic AML patients with/without CR. Dataset from GSE103424. G, H Kaplan–Meier analysis of OS (G) and relapse (H) of
TCGA AML patients. All patients were categorized into two groups based on the median of QSCs percentage. I, J Kaplan–Meier analysis of OS
(I) and relapse (J) of TCGA AML patients. All patients were categorized into two groups based on the median of PSPs percentage.
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significantly higher levels in viable CD45dimSSClow blasts of
diagnosis resistant and refractory/early-relapsed patients than
diagnostic patients who eventually achieved CR after chemother-
apy (Fig. 5B). This observation validated that QSCs contributed to
the chemoresistance of primary refractory and early-relapsed AML

patients. We further performed flow cytometric analysis for
matched bone marrow samples from four primary refractory
patients during chemotherapy (Fig. 5C). Results showed that the
percentage of CD99+CD49d+CD52+Galectin-1+ (QSCs) cells
remarkably increased in chemo-residual resistant cells, compared
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with the diagnostic samples (paired t-test, p= 0.027; Fig. 5D).
These observations suggested that the preexisting
CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were
chemoresistant, and these cells were further enriched in the
persisting residual AML cells.

Interaction of CD52-SIGLEC10 between QSCs and monocytes
may contribute to the poor outcome of AML
Benefiting from the advantages of scRNA-seq technology, we
could perform a high-resolution dissection of the communications
among various cell types in the microenvironment of RR-AML
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bone marrow. The differentially activated interaction pathways of
QSCs and PSPs were identified based on the expression of ligands
and receptors on single cells. Notably, results showed that CD52
and its receptor SIGLEC10 interaction was significantly enriched in
the communications between QSCs and monocytes (Fig. 6A). By
tracing the expression distribution along the single-cell trajectory,
CD52 and SIGLEC10 showed specific co-expression in QSCs and
mono cells (Fig. 6B). However, PSPs had no such co-expression.
Multiplex immunofluorescence analysis further validated the
existence of CD52+SIGLEC10+ QSCs and monocytes in AML
patients Pt#11 and Pt#12 (Fig. 6C, D). Furthermore, multiplex
staining of CD34, CD14, CD52 and SIGLEC10 visualized the
interaction between CD34+CD52+ QSCs and CD14+SIGLEC10+

monocytes (Fig. 6E). CD52 was reported as a small glycoprotein
that could suppress T-cell activation [44] and inflammatory
cytokines produced by monocytes [45]. By analyzing the CD52
expression of the TCGA cohort (Fig. 6F), we found that AML
patients with del(7), inv(16), RUNX1 and DNMT3A mutations
showed significantly higher CD52 expression, implying that the
patients harbored these genetic alterations may be suitable for
the treatment of CD52 targeted antibody alemtuzumab. These
observations were further validated in the BeatAML cohort
(Supplementary Fig. S7A). Consistently, several previous studies
also reported the effect of targeting CD52 in a subset of AML
patients [46, 47].
We observed that QSCs showed a significantly increased CD52

expression after chemotherapy in the primary refractory patients
(Supplementary Fig. S7B). Moreover, AML patients with higher
CD52 expression had a significantly worse OS in the TCGA dataset
(log-rank p= 0.00048; Fig. 6G). Notably, SIGLEC10, the receptor of
CD52, was also associated with the adverse prognosis of AML (log-
rank p= 0.04; Fig. 6H), further suggesting the important role of
CD52-triggered signaling in AML progression.

LGALS1 inhibitor is an effective way to target QSCs and
enhance the chemotherapy for refractory AML patients
As one of the most upregulated genes in QSCs cells in RR-AML
(Fig. 2E and Supplementary Fig. S8), LGALS1 also showed a
significantly increased expression in chemo-residual QSCs in
refractory AML patients (Wilcoxon rank-sum test, p < 2.2e–16;
Fig. 7A). By performing network analysis based on physical
interactions and co-expression, we demonstrated that the
upregulated genes LGALS1, S100A10, EMP3, and S100A4 in the
residual leukemia-like cells were involved in a functional module
with LGALS1 as a hub gene (Fig. 7B). The protein expression level
of LGALS1 (Galectin-1), was higher in the peripheral blood
mononuclear cells (PBMC) of AML patients than in healthy donors
(Fig. 7C). AML cell lines MV-411 and THP-1 expressed a relatively
high level of Galectin-1 (Fig. 7D). In addition, using the RNA-seq
data from Williams et al. [48], we found that the LGALS1 expression
was remarkably higher in daunorubicin-resistant leukemia cell
lines than in the sensitive cells (Wilcoxon rank-sum test, p= 0.048;
Fig. 7E), indicating the potential role of LGALS1 in drug resistance.
We further performed IHC experiments in bone marrow samples
from AML patients with different chemo-sensitivity to validate the
involvement of Galectin-1 in AML chemoresistance. The clinical

and genetic characteristics of these patients were shown in
Supplementary Table S3. Results showed that the level of Galectin-
1 was higher in chemoresistant patients than in sensitive patients
at diagnosis. Moreover, the Galectin-1 expression was even higher
in the chemo-residual cells in resistant patients (Fig. 7F, G),
consistent with our transcriptional observations at the single-cell
level. Furthermore, we found that the co-expression module
involved by LGALS1 enriched in the reactive oxygen species
pathway and PI3K/AKT/mTOR signaling (Fig. 7H), implying that
LGALS1 may mediate the chemoresistance through the activation
of these biological pathways. Survival analysis suggested that the
higher expression of LGALS1 was associated with the poor OS
(log-rank p= 0.00044; Fig. 7I) and EFS (log-rank p= 0.015; Fig. 7J)
of AML patients in the TCGA cohort.
We next investigated the efficacy of Galectin-1 inhibitor

OTX008 on the primary patient-derived AML cells and cell lines.
The level of Galectin-1 decreased along with the time of OTX008
treatment in cell line MV-411 and Pt#14 (Fig. 8A, B). The colony
formation ability was evaluated before and after OTX008
treatment. As shown in Fig. 8C, the number of colonies
significantly decreased after OTX008 treatment in THP-1 and
MV-411 cell lines, demonstrating the efficacy of the Galectin-1
inhibitor in inhibiting the self-renewal of AML cells. We evaluated
the chemosensitizing efficacy of LGALS1 inhibitor in AML cells
with different clinical and genetic characteristics (Supplementary
Tables S4 and S5), including both cell lines and patient-derived
primary cells. Results showed that combined treatment of
LGALS1 inhibitor OTX008 and Ara-C significantly reduce the cell
viability of AML cell line THP-1, MV-411, Kasumi-1, ME-1, HL-60,
KG-1 and MOLM-13, compared with Ara-C alone (Fig. 8D and
Supplementary Fig. S9). Besides, flow cytometric analysis also
showed a significant increase of cell apoptosis in the combined
treatment group (Supplementary Fig. S10). Furthermore, we
treated the mononuclear cells from bone marrow samples of five
refractory AML patients to further validate the chemotherapy
enhancement effect. Results showed that the combination of
OTX008 with Ara-C/DAC had a significant effect on inhibiting the
cell viability of AML than the single agent of Ara-C or DAC
(Fig. 8E–G). In summary, our in vitro analysis indicated that the
Galectin-1 inhibitor could significantly sensitize both primary
AML cells and cell lines to chemotherapy.
We further validate the inhibiting of leukemia burden and QSCs by

combined treatment of Ara-C and OTX008 in xenograft models of
human AML. Human Primary AML cells were injected intravenously
into NCG mice to construct AML xenograft models followed by vehicle
(PBS), Ara-C, or combined treatment (see Methods, Fig. 8H). Results
showed that combined treatment of Ara-C and OTX008 significantly
decreased the leukemia burden in the spleen, compared to control
and Ara-C alone groups (Fig. 8I, J). Flow cytometric analysis of mice
bone marrow samples showed that human leukemia blasts (hCD45+)
reduced significantly in the combined treatment group (Fig. 8K, L). In
addition, compared to the other groups, human xenografts from the
combined treatment group had the lowest level of Galectin-1high cells
(Fig. 8M, N), as well as the lowest percentage of CD99+CD49d+

CD52+Galectin-1+ cells (Supplementary Fig. S11), indicating the
inhibitory effect on QSCs.

Fig. 6 Cell–cell communications between QSCs and monocytes by CD52-SIGLEC10 interaction. A Bubble chart showing the ligand-receptor
interactions between QSCs/PSPs and monocytes in RR-AML patients. B Expression of CD52 (gray to red) and SIGLEC10 (gray to blue) on the
pseudotime map of leukemia-like cells. C Bone marrow samples from AML patient Pt#11 and Pt#12 stained by anti-CD34 (green), anti-
SIGLEC10 (red), anti-CD52 (purple) antibodies. DAPI (blue) is used for staining the live cells. Arrows depict the CD34+CD52+SIGLEC10+ QSCs.
Scale bar, 20 μm. D Bone marrow samples from AML patient Pt#11 and Pt#12 stained by anti-CD14 (green), anti-SIGLEC10 (red), anti-CD52
(purple) antibodies. DAPI (blue) is used for staining the live cells. Arrows depict the CD14+CD52+SIGLEC10+ monocytes. Scale bar, 20 μm.
E Multiplex IHC shows the interactions between CD34+CD52+ QSCs and CD14+SIGLEC10+ monocytes. F Relationship between CD52
expression levels and genomic events in TCGA AML cohort. Fisher exact test was used to measure the differences between groups.
G, H Kaplan–Meier analysis of OS of TCGA AML patients. All patients were categorized into two groups based on the median level of CD52 (G)
or SIGLEC10 (H) expression.
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DISCUSSION
This study aims to reveal the biological features of AML
chemoresistance and identify the potential strategies for che-
motherapy enhancement. Our work is distinctive from the
previous studies in several crucial ways. Firstly, we dissected the

heterogeneity of LSCs in primary refractory and short-term
relapsed AML patients at the single-cell level and identified
subpopulations with different chemotherapy sensitivity. Secondly,
our study showed that chemotherapy-induced cellular plasticity
contributed to the resistance of refractory AML patients by
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performing longitudinal scRNA-seq analyses. Thirdly, we observed
the intercellular interactions between QSCs and monocytes at
high resolution and validated by multiplex IF staining of bone
marrow samples from AML patients. Finally, we demonstrated the
unappreciated role of LGALS1 in AML chemoresistance by single-
cell analysis, flow cytometry and IHC experiments in human bone
marrow samples, as well as indicated that QSCs could be chemo-
sensitized by LGALS1 inhibitor in vitro and in vivo. Collectively, the
single-cell transcriptional characterization in this study suggests
that the chemotherapy is selective for AML subpopulations, and
the analysis of transcriptional plasticity could provide potential
molecules that could be targeted for RR-AML. To the best of our
knowledge, previous scRNA-seq studies of AML mainly focused on
diagnostic or relatively late-relapsed AML patients
[9, 10, 19, 21, 49], the present study is the largest single-cell
dataset for primary refractory and short-term relapsed AML
patients thus far, facilitating to identify the critical factors in
AML chemoresistance.
With different genetic characteristics or FAB subtypes, AML is a

kind of disease with highly inter-tumoral heterogeneity based on
the WHO classification [50]. However, cytarabine-based che-
motherapy is the most commonly used treatment strategy in a
majority of AML subtypes until now [51, 52]. Revealing the
common biological features of chemoresistance for AML patients
with different subtypes is important to develop potential
strategies for chemotherapy enhancement, especially for patients
without known driver mutations and available targeted therapies.
Based on this consideration and consistent with the previous
studies which focused on AML chemoresistance [13, 14, 40], we
included RR-AML patients with different genetic/FAB subtypes but
received the same treatment regimens in this study. To confirm
the generalization and reliability of conclusions, the findings
derived from the single-cell analysis were further validated in
multiple independent public datasets and experiments performed
on AML samples with different subtypes, including ten indepen-
dent datasets, flow cytometry for 40 samples, IHC for 12 paired
samples, combined treatment for 7 cell lines and 5 primary
samples of RR-AML. These pieces of evidence consistently proved
that the QSCs identified at the single-cell resolutions played a
critical role in AML chemoresistance and targeting QSCs could
sensitize chemotherapy in AML cells with different subtypes.
In line with some previous studies [7–9], we observed that the

stem-like leukemia cells in the absence of proliferation were
resistant to chemotherapy and related to a high risk of relapse and
poor survival. However, studies from Farge et al. [13] and Duy et al.
[14] characterized the AML cellular changes during chemotherapy,
demonstrating that AML chemoresistance is driven by fatty acid
metabolism and senescence-like status, respectively, rather than
by quiescent LSCs. These controversial conclusions may partially
arise from the high heterogeneity of the LSC group which could
not be fully deconstructed by previously used bulk sequencing.
Notably, the QSCs in our single-cell data also exhibit significant
enrichment for fatty acid metabolism and senescence-like
signatures compared with PSPs, consistent with the characteriza-
tion of chemoresistant cells in these two studies. Thus, the
quiescent LSC status and fatty acid metabolism/senescence are
not mutually exclusive. Besides, the chemotherapy-induced

dynamic cellular plasticity may also lead to controversial conclu-
sions regarding the characteristics of residual AML cells. The
cellular and molecular features dynamically change during
chemotherapy and experience a procedure of “pre-treatment →
initial cytoreduction → regeneration → relapse” [40]. AML cells
respond under biochemical stress conditions and have increased
pro-inflammatory [7, 13, 14] and decreased LSC signatures [14, 40]
during the initial cytoreduction and regeneration period. Studies
based on the AML in vivo model also demonstrate that these
immediate cellular responses are transient and would attenuate
within about 1 week after chemotherapy, and then the expression
of LSC-related genes would recover [14]. Collectively, the nature of
the high heterogeneity of the LSC group, as well as the
chemotherapy-induced dynamic plasticity leads to controversial
conclusions in the field. The longitudinal single-cell analysis of
AML patients would provide insight into the dynamic cellular and
molecular reprogramming of various LSC subpopulations during
chemotherapy.
Notably, by tracing the dynamic transcriptional changes

induced by chemotherapy in AML patients, we showed that PSPs
were reprogrammed to get a similar expression pattern to QSCs.
This result coincided with a recent study that elucidated
chemotherapy could induce a cell-cycle arrest and growth pause
in leukemia [14]. These results suggest that AML cells may
experience cellular state transition to avoid cell death induced by
chemotherapy and stand by to reconstitute leukemia. Combined
with the results from the previous study [14], we speculated that
this cellular reprogramming induced by chemotherapy might be
dose-dependent. Under the treatment dose that cannot kill them,
PSPs would obtain the QSC-like transcriptional program and get
more resistant. Although high-dose chemotherapy could increase
early remission and survival in several clinical trials [53, 54], the
adverse effects are non-negligible, especially in older patients.
Therefore, the addition of treatment that targets chemotherapy-
induced QSCs might improve the efficacy of low-dose or standard-
dose chemotherapy.
Our study indicated that the currently targetable genes CD52

and LGALS1 were specifically expressed in QSCs, and showed
increased expression in chemo-residual QSCs and PSPs of RR-AML
patients. The interaction of CD52-SIGLEC10 between QSCs and
monocytes may contribute to the immune evading and poor
outcome of AML. The roles of LGALS1 are well studied in some
hematologic malignancies, such as chronic lymphocytic leukemia
(CLL) and lymphoma [55, 56], but the understanding of LGALS1 in
AML pathology and progression is currently limited. Ruvolo et al.
reported that mice bearing the OCI-AML3 cells with
LGALS1 shRNA survived longer than mice with control OCI-
AML3 cells, suggesting that LGALS1 suppression could prolong
the survival of in vivo treatment-naïve models [57]. However, the
evaluation of LGALS1 expression in primary cells or bone marrow
samples from AML patients has yet to be performed. Besides, the
association between LGALS1 expression and chemotherapy
resistance of AML was unknown. Our study revealed the
unappreciated role of LGALS1 in chemoresistant AML patients
and demonstrated the chemosensitizing efficacy of inhibiting
LGALS1 in patient-derived primary AML cells, cell lines, and AML
xenograft models. Therefore, our study suggested that therapeutic

Fig. 7 The role of LGALS1 in AML chemoresistance. A The expression level of LGALS1 in the QSCs of Pt#3 before and after chemotherapy.
Wilcoxon rank-sum test was used to measure the differences between groups. B The functional module involved by LGALS1 based on
GENEMANIA. Upregulated genes in the refractory sample were highlighted by the blue node. C Western blotting showing the protein level of
Galectin-1 in HC individuals and AML patients. D Western blotting showing the protein level of Galectin-1 in various AML cell lines. E Boxplot
showing the difference of LGALS1 expression in resistant and sensitive AML cell lines. Wilcoxon rank-sum test was used to measure the
differences between groups. F, G IHC staining for Galectin-1 in chemo-sensitive (F) and chemoresistant AML patients (G). Both diagnosis and
remission/refractory samples were shown, with scale bars indicated for all sections. H Barplot showing the functional hallmarks that were
enriched by the genes co-expressed with LGALS1. I, J Kaplan–Meier analysis of OS (I) and EFS (J) of TCGA AML patients. All patients were
categorized into two groups based on the median of the LGALS1 expression.
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strategies targeting CD52 and LGALS1 could help eliminate the
chemoresistant QSCs.
In summary, by performing scRNA-seq analysis, this study sheds

new light on the cellular and molecular reprogramming induced
by chemotherapy in primary refractory and short-term relapsed

AML patients and identified the cell subpopulation and molecules
involved in the drug resistance and poor outcome of AML. Our
results will facilitate a better understanding of the AML
chemoresistance mechanism and the development of novel
therapeutic strategies for RR-AML patients.
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METHODS
Human patient samples
Bone marrow aspirates from AML patients were obtained from the First
Affiliated Hospital of Nanjing Medical University (Supplementary Table S1).
This study was reviewed and approved by the Institutional Review Boards
of Nanjing Medical University. Informed consent was obtained from each
individual.

Human cell lines and culture conditions
NB4, Kasumi-1, ME-1, MV-411, THP-1, KG-1, HL-60, and MOLM-13 leukemia
cell lines were obtained from the American Type Culture Collection (ATCC).
All cell lines were cultured in RPMI-1640 medium supplemented with 10%
FBS, 4 mM L-glutamine, 100 units/ml penicillin, and 100 µg/ml streptomy-
cin in a humidified atmosphere of 95% air and 5% CO2 at 37 °C.

Human bone marrow single-cell suspensions preparation
Fresh human bone marrow samples of AML patients were processed using
density gradient centrifugation at 500 g for 10min at 4 °C to isolate
mononuclear cells. Cell pellets were resuspended in 5 ml RPMI-1640 with
5% FBS and 2-Mercaptoethanol, and filtered using a 40mm nylon mesh
(Thermo Fisher Scientific) with residual cell clumps discarded. We used
DAPI (Sigma-Aldrich) for staining to identify live cells, and cell number was
determined using a Countess II Automated Cell Counter whenever
possible.

Library construction for scRNA-seq
In total, the cell viability of all samples is above 90%, 10,000 cells per
sample were loaded into a Chromium Single-Cell 3′ Chip Kit v2 and
processed using a Chromium single cell 3′ Reagent Kits (v2 and v3) (10×
Genomics) according to the manufacturer’s instructions. Libraries were
constructed using the Single 3′ Library and Gel Bead Kit v2 (PN-120237)
and Chromium i7 Multiplex Kit v2 (PN-120236).

Cell viability assay
Cell viability assays were performed with CCK-8 reagent (1:10, Dojindo,
Kumamoto, Japan). According to the manufacturer’s protocol, cells
(2 × 106/ml) were seeded in 96-well plates and incubated with the
indicated concentration of drugs. The absorbance was measured at
450 nm by spectrophotometry.

Immunoblotting
Cells were lysed in RIPA Lysis and Extraction Buffer (25 mM Tris-HCl pH
7.6, 150 mM NaCl, 1% P-40, 1% sodium deoxycholate, 0.1% SDS) with
PMSF Protease Inhibitor (Thermo Fisher Scientific) added. Ten micro-
grams of purified proteins were separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) on a 15% gradient gel (BioRad) and
transferred onto NC membranes (EMD Millipore). Membranes were
incubated overnight at 4 °C with the following primary antibodies:
rabbit anti-Galectin-1 (Abcam, ab138513, 1:1000), mouse anti-GAPDH
(Abcam, ab9484, 1:5000). Anti-mouse or anti-rabbit horseradish
peroxidase-conjugated antibodies (Cell Signaling Technology) were
used as secondary antibodies.

Colony formation assay
Cells were mixed with an equal volume of methylcellulose colony assay
medium (MethoCult™ GF M3434, Stem Cell Technologies) and then plated

in 12-well plates and incubated for 2 weeks. Colonies were calculated with
a diameter of more than 0.1 mm of incubation at 37 °C in 5% CO2.

Immunohistochemistry (IHC) and immunofluorescence (IF)
Formalin-fixed bone marrow tissues from AML patients were processed
through the routine IHC pipeline and stained for a rabbit anti-Galectin-1
(Abcam, ab138513). Multiplex IHC staining was performed with Akoya
OpalTM seven-color fluorescent platform. Formalin-fixed, paraffin-
embedded tissues were cut in 4-μm thick section and stained by Opal
Polaris 7 Color Automation IHC Detection Kit (Akoya Biosciences, Menlo
Park, CA) for simultaneous detection and quantitation of CD34 (GenTex,
GTX28158), CD14 (Novusbio, NB100-2807), CD52 (Santa Cruz Biotechnol-
ogy, sc-51560), SIGLEC10 (Sigma-Aldrich, HPA027093) and DAPI (Sigma-
Aldrich). The slides were observed and imaged by Vectra Polaris
automated quantitative pathology imaging system. The images were
spectrally unmixed by Akoya phenoptics inForm software (inform 2.4.8).

Flow cytometric analysis
Suspended single cell was prepared from BM samples of AML patients. Red
cells were lysed with 1× RBC Lysis Buffer (eBioscience, San Diego, CA, USA)
before staining. Cells were incubated with antibodies in Facs buffer (2%
FBS in PBS) on ice for 20min at dark. The following human-specific
monoclonal antibodies were used: CD45-Pacific Blue (BioLegend, cat. no.
304029), CD99-FITC (BioLegend, cat. no. 371303), CD49d-PE (BioLegend,
cat. no. 304303), CD52-Percp-Cy5.5 (BioLegend, cat. no. 316009). For
intracellular staining, surface-marked cells were fixed for 20min and then
permeabilized using an IntraStain Kit (Dako, DK) according to the
manufacturer’s instructions after washing with 1× PBS (HyClone, USA)
and centrifugation at 400×g for 5 min. Subsequently, the cells were stained
with anti-Galectin-1 (Abcam, cat. no. ab138513) for 20min and then
washed once. Stained cells were analyzed on FACSAria (BD Biosciences,
San Jose, CA, USA).

In vivo xenograft study
Animal experiments were conducted according to protocols approved by
the Institutional Animal Care and Use Committee of Nanjing Medical
University. NCG (NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt) mice
were purchased from the Nanjing Biomedical Research Institute of Nanjing
University (NBRI). Briefly, NCG mice (6–8-week-old) were injected
intravenously via tail vein with 2 × 106 primary AML cells resuspended in
100 μL phosphate-buffered saline after being sublethally treated with
busulfan (30mg/kg/day) for 24 h. The mice were tail bled weekly to
monitor the tumor burden of human cell engraftment by flow cytometry.
For drug treatment, all mice were randomly divided into three groups of
five mice each after 4 weeks of AML cell transplantation. Mice in the
control group were treated with PBS daily for 6 days; mice in the
chemotherapy group were intraperitoneally treated with Ara-C using a
physiologically relevant dose and schedule (60mg/kg/day × 6 days); mice
in the co-treatment group were injected intraperitoneally with Ara-C
(60mg/kg/day) at the 1, 3, 5 days and with OTX008 (5 mg/kg/day) at the 2,
4, 6 days. Mice were sacrificed on the 9th day, bone marrow from femurs
was harvested, crushed with mortar and pestle, and red blood cells lysed
using ammonium chloride buffer after filtering. Cells retrieved from bone
marrows were stained with mCD45-PeCy7 and hCD45-BV421 and analyzed
by flow cytometry to detect the human graft (hCD45+mCD45− popula-
tion). In addition, percentages of CD99+CD49d+CD52+Galectin-1+ (QSCs)
cells in human AML cells (hCD45+) were measured by flow cytometry to
evaluate the impact of different treatment groups.

Fig. 8 The chemosensitizing efficacy of LGALS1 inhibitor OTX008 in AML cells and xenograft model. A, BWestern blot analysis of Galectin-1
expression in AML cell line MV-411 (A) and patient Pt#14 (B) after treatment with 30 µM OTX008 for different time points (0, 12, 24, 36, and 48 h).
C Colony formation assays of AML cell line THP-1 and MV-411 with or without OTX008 treatment. Quantification of the number of colonies was
shown on the right, ***P < 0.001.D CCK-8 assay showing the cell viability of THP-1 andMV-411 cells incubated with DMSO, Cytarabine (200 nm), or
Cytarabine (200 nm)+ OTX008 (30 µM) for different time points (0, 12, 24, 36, and 48 h). E–G CCK-8 assay showing the cell viability of PBMC from
five refractory AML patients during treatment of different strategies for different time points (0, 12, 24, 36, and 48 h). H Scheme showing the
process of engrafting human primary AML cells in NCG mice and drug treatment workflow. I The spleen images frommice of different treatment
groups. J Spleen weights of NCGs of different treatment groups. P values were calculated by two-tailed t-test. K Representative flow cytometric
analysis of the human leukemic burden in bone marrows from NCG mice of different treatment groups. L Quantification of human leukemic
burden (hCD45+ cells relative to the total cells) in the bone marrow of NCG mice post-treatment of different groups. M Representative flow
cytometric analysis of cells with high Galectin-1 expression in hCD45+ cells from bone marrows of different treatment groups. N Percentage of
cells with high Galectin-1 expression in hCD45+ cells from bone marrows of different treatment groups.
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Computational and statistical analyses
CellRanger was used to perform barcode processing and generate gene
count profiles. Data integration, unsupervised clustering, visualization, and
differential expression analysis were performed using Seurat [27]. Cell-type
annotation was based on the expression of marker genes and singleR [58].
We used Monocle2 [59, 60] to characterize the differentiation trajectory
and identify the cellular states of the leukemia-like cells. Transcriptional
regulon analysis was performed utilizing pySCENIC [61, 62]. Single-cell
metabolic pathway analysis was conducted by the method from Xiao et al.
[63]. We evaluated the proliferation score for every single cell by using the
method described by the previous study [19]. The stemness score was
calculated using CytoTRACE [64]. LSC signature scores were calculated by
utilizing single-sample gene sets enrichment analysis (ssGSEA). The bulk
RNA-seq data and clinical information of AML patients were downloaded
from TCGA, GEO, and BeatAML databases (Supplementary Table S6). We
estimated the cell type abundances of bulk transcriptomic data using
CIBERSORTx [31] with single-cell data in this study as a reference. Shannon
entropy was used to calculate the ITH of each patient. Kaplan–Meier
survival analysis was performed by the R package survminer. The log-rank
test was used to evaluate the survival differences between groups. The
detailed computational parameters were described in Supplementary
Methods.

DATA AVAILABILITY
The raw sequencing data supporting this study have been deposited in the Genome
Sequence Archive at National Genomics Data Center, China National Center for
Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (https://
ngdc.cncb.ac.cn/gsa-human, accession no. HRA001240). The processed count
matrices have been deposited in the OMIX (https://ngdc.cncb.ac.cn/omix, accession
no. OMIX002180). Custom codes and cell annotation files are accessible at GitHub:
https://github.com/woolingxiang/cellular_states_of_RR-AML.
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