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BACKGROUND: Decision-making deficits in obesity and alcohol use disorder (AUD) may contribute to the choice of immediate
rewards despite their long-term deleterious consequences.
METHODS: Gambling task functional MRI in Human connectome project (HCP) dataset was used to investigate neural activation
differences associated with reward or punishment (a key component of decision-making behavior) in 418 individuals with obesity
(high BMI) and without obesity (lean BMI) and either at high (HR) or low (LR) risk of AUD based on their alcohol drinking levels.
RESULTS: Interaction between BMI and alcohol drinking was seen in regions of the default mode network (DMN) and those
implicated in self-related processing, memory, and salience attribution. ObesityHR relative to obesityLR also recruited DMN along
with primary motor and regions implicated in inattention, negative perception, and uncertain choices, which might facilitate
impulsive choices in obesityHR. Furthermore, obesityHR compared to leanHR/leanLR also demonstrated heightened activation in
DMN and regions implicated in uncertain decisions.
CONCLUSIONS: These results suggest that BMI is an independent variable from that of alcohol drinking levels in neural processing
of gambling tasks. Moreover, leanLR relative to leanHR, showed increased activation in motor regions [precentral and superior
frontal gyrus] suggestive of worse executive function from excessive alcohol use. Delayed discounting measures failed to
distinguish between obesity and high alcohol drinking levels, which as for gambling task results suggests independent negative
effects of obesity and chronic alcohol drinking on decision-making. These findings highlight distinct associations of obesity and
high-risk alcohol drinking with two key constituents of decision-making behavior.
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BACKGROUND
Heavy drinking is associated with a greater waist-hip ratio in mid-
life even when taking other influences into account such as having
overweight parents, maternal smoking in pregnancy, and physical
inactivity [1, 2]. Further, regular and/or heavy episodic drinking in
young adults increases the risk of being overweight or obese [3].
On the other hand, some cross-sectional studies have shown an
inverse relationship between moderate alcohol consumption and
high waist circumference [4] and the prevalence of metabolic
syndrome [5]. A systematic review of large cross-sectional and
long-term prospective cohort studies found no conclusive
evidence for a positive association between alcohol consumption
and weight gain [6]. Moderate to hazardous levels of alcohol
consumption have been linked with lower BMI in females due to
decreased carbohydrate intake from other sources (for example
sucrose) [7]. Reduced energy intake from food or non-alcoholic
beverages in heavy alcohol drinkers (both males and females) has
been reported through the National Health and Nutrition
Examination Survey (NHANES) by various groups [8–10]. However,
there are inconsistent reports on the effect of alcohol as a major
energy source contributing to the BMI of drinkers. Colditz et al.

reported an inverse association between alcohol consumption
and BMI, particularly in women, which could be related to alcohol
calories being less efficiently utilized [7]. In contrast, higher total
energy was associated with higher BMI in male heavy drinkers as
compared to those consuming lower quantities of alcohol on days
when drinking occurred [10]. Furthermore, some epidemiological
studies have reported that energy intake from alcohol beverage
type and drinking pattern (i.e., high intensity/volume, high
frequency) contribute to total energy intake and are associated
with excess body weight amongst young adults [3, 11, 12]. Higher
consumption of energy-dense alcoholic beverages was associated
with lower diet quality scores in males and females [9]. One of the
major adverse effects of higher calorie intake among drinkers is
the lower nutrient densities of protein, fat, carbohydrate, and
some minerals and vitamins [13].
The metabolic imbalance due to obesity is associated with

chronic low-grade inflammation due to elevated circulating pro-
inflammatory cytokines. This chronic inflammation extends
beyond the adipose tissues to the central nervous system (CNS).
Ingestion of a high saturated fat diet increases the expression of
inflammatory cytokines in the hypothalamus, which presumably
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are regulated by microglia [14, 15]. The susceptibility of the CNS to
inflammation following high-fat diets was revealed by a rodent
study that observed gliosis and inflammation in the hypothalamus
within 3 days of high-fat diet exposure [16]. Cognitive impairment
and brain dysfunction have been reported with obesity-triggered
chronic neuroinflammation. Specifically, a preclinical study
revealed activation of the IKK/NF-kB pathway (with constitutive
activity in the hypothalamus) resulting in excessive release of
inflammatory cytokines such as TNF-α and IL-1β during obesity,
which reduced neurogenesis, led to cognitive deterioration and
degeneration of hypothalamic stem cells [17]. Accumulating
evidence therefore suggests that CNS and cognitive function are
deleteriously affected by obesity [18, 19].
Overlaps in the pathways that lead to excessive eating

(leading to obesity) and alcohol dependence have been studied.
Both obesity and alcohol use disorders (AUD) have been linked
to the brain’s reward system [20]. Overconsumption can trigger
a gradual increase in the reward threshold, requiring more and
more palatable high-fat food or alcohol to satisfy cravings [21].
Evidence suggests an imbalance in three neural systems during
the development of AUD and obesity (i) a system that promotes
habitual behaviors in response to salient rewards, (ii) an
interoceptive system that evaluates internal states and affects
responses to uncertain risks and rewards, and (iii) an inhibitory
control and decision-making system [22]. Decision-making is
often assessed using the Iowa Gambling Task (IGT), which
requires inhibition of impulsive responses by factoring in
uncertainty, reward, and punishment. Interpretation of IGT
performance is challenging since several cognitive constructs
are assessed simultaneously, including memory, reward sensi-
tivity, and inhibitory control. Nonetheless, decision-making
behaviors have been measured with high ecological validity
[23, 24] and impairments in decision-making have been
repeatedly demonstrated in addictions and eating disorders
[25–27].
Neuropsychological studies support the hypothesis of food/

alcohol addiction-related alterations in inhibitory control, emotion
regulation, and overall executive function for which a core
cognitive trait is decision-making [28]. Individuals with obesity
prefer immediate rewards despite negative long-term conse-
quences relative to lean BMI controls [29]. Furthermore, when
assessed by the IGT, individuals with obesity and AUD present
significant decision-making impairments in overall task perfor-
mance [26, 27, 30, 31]. Moreover, individuals with comorbid
gambling disorder and AUD showed an additive effect in choosing
greater immediate rewards reflecting worse decision-making
deficits, relative to those with only one condition [32]. Similarly,
there is overlap in neurocognitive disruption between obesity and
gambling disorder; in gamblers, obesity is associated with
decision-making and sustained attention impairments, along with
more significant monetary losses from gambling [33].
The published literature suggests that both individuals with

obesity and AUD suffer from decision-making deficits; here, we
expand this inquiry to investigate differences in neural activa-
tion associated with reward or punishment during the gambling
task (a key component of decision-making behavior) in
individuals with and without obesity (lean) who are either at
high or low-risk of AUD. We posited that groups with high BMI
and at high AUD risk (obesityHR) would show greater activation
to rewards in brain regions critical for inhibitory control,
uncertainty, and memory function, compared to the obesity
low-AUD risk (obesityLR) group, reflecting greater reward
sensitivity. It is also expected that individuals with lean BMI
and low AUD risk (leanLR) would exhibit lesser reliance on
immediate monetary rewards than high-risk AUD groups
(obesityHR and leanHR). Therefore, the results would help us
understand the effect of BMI and alcohol drinking on decision-
making for low and high reinforcing rewards.

METHODS
Design and participants
For the present study, we obtained permission from the human
connectome project (HCP) to use Open and Restricted Access data from
the S1200 (final) release of the Young Adult HCP (ages 22–35). Participants
reported no significant history of neurological disorder, cardiovascular
disease, or Mendelian genetic disease and did not present any MRI
contraindications. General HCP information can be found in Van Essen
et al. [34]. Participants were recruited in Missouri and Minnesota. All
participants gave informed consent, and all aspects of the protocol were
approved by the Washington University School of Medicine Institutional
Review Board.

Categorization of participants into groups
From the list of obesity and lean participants for whom the gambling task
fMRI data were available, we included 418 subjects [109 with obesity and
309 lean categorized based on SSAGA_BMICat in HCP dataset]. Subjects
were sub-categorized based on their risk status for AUD. Accordingly, high-
risk (HR) comprised of both binge (BD) and heavy drinkers (HD), while the
low-risk (LR) group included individuals who drink less than 4 drinks on a
single day and for less than one day per week in the past 12 months.
Furthermore, subjects who met DSM IV criteria for alcohol dependence or
abuse were excluded from the LR category. Obesity and leanHR group
[(ObesityHR, n= 24; 66% males); (LeanHR, n= 86; 63% males) and LR
group [(ObesityLR, n= 85; 35% males); (LeanLR, n= 223; 30% males)].
More details on subjects selection criteria are given in Supplementary Fig.
S1. Participant characteristics are presented in Table 1. Consistent with the
design’s intentions, the two groups differed substantially in BMIs (Table 1).
Pearson’s Chi-squared test with Yates’ continuity correction was conducted
to see if there is a difference in the number of HR and LR individuals in the
obesity and lean groups.

Gambling task for fMRI
To measure decision-making, we used the HCP’s fMRI gambling task (GT)
studies, developed by Delgado and colleagues [35], as it taps into the
relevant cognitive systems [36]. The reward-related BOLD signal was
measured during a card-guessing gambling task played for monetary
reward, as previously described [37, 38]. Briefly, participants were required
to guess the number (range 1–9) on the mystery card, which would
determine if they win or lose money. The instructions were to press one of
two buttons on the response box after guessing the number on the
mystery i.e. if it is more or less than five. The participants were given
feedback by revealing the card number they chose and a cue to inform
them if they received a monetary reward, loss, or neutral (no reward/loss;
for number 5) trial. The task was presented in blocks of eight trials that
were either mostly reward (six reward trials pseudo-randomly interleaved
with neutral and/or loss trials) or mostly loss (six loss trials interleaved with
reward and/or loss trials). There were two mostly reward and two mostly
loss blocks for each of the two runs, interleaved with four fixation blocks
(15 s each). Although the participants gambled for potential monetary
reward, all participants are rewarded with a standard amount of money
during the task [37, 38].

Delay discounting task
Immediate reward preference or devaluing of delayed rewards was
assessed in the HCP dataset using an adjusting-amount monetary choice
task. In this paradigm, each trial asks participants to indicate whether they
would rather receive a smaller immediate reward (e.g., $100 today) or a
larger delayed reward (e.g., $200 in 1 month). Briefly, participants were to
make 5 choices of amounts based on the delayed amounts ($200 and
$40,000) at each of six delay time points: 1 month, 6 months, 1 year, 3
years, 5 years, and 10 years. The delay choices based on both the delayed
amounts ($200 and $40,000) were made in a certain fixed order of time
combinations: (i) today vs. 6 months; (ii) today vs. 3 years; (iii) today vs.
1 month; (iv) today vs. 5 years; (v) today vs. 10 years; (vi) today vs. 1 year.
The reward amounts were titrated based on participants’ choices until
points of indifference (value for a “sixth” choice) were determined based
on an increment or decrement from the immediate value of their fifth
choice; that is, the point at which a person is equally likely to choose a
smaller reward (e.g., $100) sooner versus a larger reward later (e.g., $200 in
3 years) [39]. The variable used to measure how steeply participants
discounted delayed rewards was the area under the curve (AUC), a valid
and reliable index of immediate reward preference [40]. In this study, we
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considered the average of the AUC variables for the $200 and $40,000
delayed reward conditions.

fMRI data acquisition and preprocessing
Images for the HCP dataset were acquired using a customized Siemens
Skyra 3-T scanner with a 32-channel Siemens receiver head coil and a body
transmission coil. T1-weighted high-resolution structural images were
acquired using a 3D MPRAGE sequence with 0.7 mm isotropic resolution
(FOV= 224 × 224mm, matrix= 320 × 320, 256 sagittal slices, TR=
2400ms, TE= 2.14ms, TI= 1000ms, FA= 8°) and used to register
functional MRI data to a standard brain space. fMRI data were collected
using gradient-echo echo-planar imaging (EPI) with 2.0 mm isotropic
resolution (FOV= 208 × 180mm, matrix= 104 × 90, 72 slices, TR= 720ms,
TE= 33.1 ms, FA= 52°, multiband factor= 8253 frames, ~3 m, and 12 s/
run) [38, 41].
Imaging data were analyzed with Statistical Parametric Mapping (SPM12,

Welcome Department of Imaging Neuroscience, University College
London, UK). Standard image preprocessing was performed. Images of
each subject were first realigned (motion corrected). A mean functional
image volume was constructed for each subject per run from the realigned
image volumes. These mean images were co-registered with the high-
resolution structural MPRAGE image and then segmented for normal-
ization with affine registration followed by nonlinear transformation. The
normalization parameters determined for the structural volume were then
applied to the corresponding functional image volumes for each subject.
Finally, the images were smoothed with a Gaussian kernel of 6 × 6 × 6mm
at full width at half maximum.

Imaging data modeling
We modeled the BOLD signals to identify regional brain responses to win
block versus neutral, loss block versus neutral, and win block versus loss. A
statistical analytical block design was constructed for each subject, using a
general linear model (GLM) with a boxcar each for win or loss blocks
convolved with a canonical hemodynamic response function (HRF).
Realignment parameters in all 6 dimensions were entered in the model
as covariates. The GLM estimated the component of variance that each of
the regressors could explain. In the first-level analysis, we constructed for
individual subjects a statistical contrast of win block versus neutral, loss
block versus neutral, and win block versus loss block to evaluate brain
regions that responded to wins and losses and that responded differently

to wins and losses. The contrast images (difference in β) of the first-level
analysis were then used for the second-level group statistics.
As we observed that in our dataset the percentage of males was higher

in obesityHR groups while the percentage of females was higher in leanLR
groups, we assessed the effect of gender on brain activation during the
gambling task by comparing males and females from the entire sample
using a two-sample t-test. For group and sub-group analysis, we used a
full-factorial general linear model with the independent, between-group
factors of interest as BMI (groups: obesity and lean) and, alcohol drinking
(groups: HR and LR) and four levels (obesityHR, obesityLR, leanHR, and
leanLR), including age and sex as control covariates in SPM12. Multiple
sub-group comparisons were made where we first used a standard double
threshold method; first chose a cluster forming voxel threshold of p < 0.025
with k > 84 (minimum of 84 neighboring voxels), and then applied a
threshold of p < 0.05 to correct for family-wise error (FWE) across the p-
values of the surviving clusters [42]. Effectively, this combined voxel- and
cluster-level statistic reflects the probability that a cluster of a given size,
consisting only of voxels with p < 0.001, would occur by chance in data of
the given smoothness. The surviving clusters were then used to form ROIs
around the voxel with peak intensity in that cluster for further
comparisons. The Marsbar tool in SPM12 was used to extract peak
activation differences following significance thresholding and entered into
an SPSS data matrix to assess the differential sub-group activations.

Statistical analysis
We found < 1.0% missing data for all variables of interest. The participants
with complete data were retained for further analysis. Levene’s test was
applied to assess the equality of variances across the groups. Since we
observed unequal variance in weight and BMI between the groups, we
used Welch’s t-test to examine between-group differences in patient
characteristics. The mean ranks of the ddisc_AUC measures between the
groups were not equal. Mann–Whitney non-parametric tests were used to
determine the differences in ddisc_AUC measures between the groups
and sub-groups. Mann-Whitney was also used to determine the difference
in number of drinks of alcohol between the subgroups. We conducted a
two-way analysis of variance to investigate the effect of BMI and alcohol
drinking on ddisc_AUC measures. To address potential confounders, we
included age and sex as covariates (see Table 1). A threshold of p < 0.05
was considered for reporting data significance. All analyses were done
using SPSS software.

Table 1. Participant characteristics (n= 418).

Obesity (n=
109; mean± SD)

Lean (n= 309;
mean ± SD)

ObesityHR (n=
24; mean ± SD)

ObesityLR (n=
85; mean ± SD)

LeanHR (n=
86; mean ± SD)

LeanLR (n= 223;
mean± SD)

BMI (kg/m2) 34.99 ± 4.01* 22.99 ± 2.51* 33.35 ± 2.92 35.45 ± 4.17 23.46 ± 1.98 22.81 ± 2.66

Height (inches) 67.39 ± 4.19 67.17 ± 3.79 69.50 ± 4.48 66.79 ± 3.93 68.90 ± 3.58 66.50 ± 3.66

Weight (pounds) 226.12 ± 32.99* 148.17 ± 24.23* 229.92 ± 33.86 225.05 ± 32.86 159.09 ± 2.80 143.96 ± 23.49

M/F 46/63 120/189 16/8 30/55 54/32 66/157

Age (years) 29.50 ± 3.77 28.64 ± 3.90 29.54 ± 3.86 29.48 ± 3.77 28.23 ± 3.58 28.80 ± 4.01

Race

White 73 248 19 54 78 170

Black 28 25 4 24 5 20

More than one 4 6 1 3 1 5

Unknown 4 2 - 4 - 2

Asian/Nat. Hawaiin - 27 - - 2 25

American Indian/
Alaskan Nat.

- 1 - - - 1

Anxiety scores 4.29 ± 2.86 4.04 ± 2.80 4.75 ± 3.31 4.15 ± 2.71 4.34 ± 2.79 3.92 ± 2.80

Depression scores 4.64 ± 3.68 4.14 ± 3.65 5.08 ± 5.05 4.51 ± 3.18 4.57 ± 3.84 3.97 ± 3.56

Delay discounting;
ddisc_AUC

0.33 ± 0.22* 0.41 ± 0.23* 0.30 ± 0.16# 0.35 ± 0.23@ 0.38 ± 0.22 0.42 ± 0.23#@

Here, * denotes significant difference (p < 0.05) between the obesity and lean groups; # obesityHR and leanLR; @ obesityLR and leanLR.
BMI body mass index (kg/m2), SD standard deviation.
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RESULTS
In the obesity group, there were 24/109 (22%) individuals with
high AUD risk and 85/109 (78%) with low AUD risk and in the lean
group there were 86/309 (28%) individuals with high AUD risk and
223/309 (72%) with low AUD risk but differences in group
composition were not significant (χ2 value= 1.1205; df= 1; p=
0.29). The mean number of drinks consumed (intensity) was
significantly higher in obesityHR (4.75 ± 1.11) compared to leanHR
(4.02 ± 1.38; p= 0.03). However, the mean frequency of alcohol
drinking did not differ between obesityHR (2.42 ± 1.18) and
leanHR (2.23 ± 0.93; p= 0.06). Demographic details of subjects in
each group are provided in Table 1.

fMRI BOLD activations to win and loss
We examined regional responses to the win versus loss contrast in
a full factorial model for sub-group comparisons. We observed the
main effects of BMI during the win > loss contrast with significant
cluster activations in the right postcentral gyrus (PoG), superior
parietal lobule (SPL), and precentral gyrus (PrG) (Table 2). The main
effects of alcohol drinking included clusters located in the left
superior temporal gyrus (STG), middle temporal gyrus (MTG), and
parietal operculum (PO) (Table 2). A positive interaction between
BMI and alcohol drinking was observed for BOLD activations in
clusters involving right PCu and left PrG, angular gyrus (AnG),
supramarginal gyrus (SMG), and parietal operculum (PO) (Supple-
mentary Fig. S2, Table 2).
Analysis of activation differences between sub-groups for the

win-loss contrast showed for obesityHR relative to obesityLR,
greater activations in right PCC, PCu, middle cingulate gyrus
(MCgG), the supplementary motor cortex (SMC), left STG, posterior
insula (PIns), cuneus (Cu), bilateral cerebellum and cerebellar
vermal lobules VIII–X (Fig. 1A&B). The obesityHR relative to leanHR
comparison, revealed greater activation in clusters in right PoG,
PrG, and left SPL, PIns, STG, and lingual gyrus (LiG) (Fig. 2A&C). The
obesityHR relative to leanLR comparison revealed greater activa-
tion in right and left cerebellum, MCgG, Caudate (Cau), PoG, SPL,
SMG, STG, PIns, and MTG (Fig. 2B&D). There were no differences
between leanHR and obesityHR groups.
The leanHR relative to obesityLR comparison showed greater

activation in the left inferior occipital gyrus (IOG), LiG, and
calcarine cortex (CalC) (Fig. 3A&C). The leanLR relative to leanHR
showed greater activation in right PrG, medial PrG (mPrG), and left
superior frontal gyrus (SFG) (Fig. 3B&D). The locations of the
subgroup comparison are summarized in Supplementary Fig. S3
and details for the cluster in Table 2.
Gender comparison revealed significantly higher frontal activa-

tion (bilateral SFG, and left MFG, MPrG, MPoG) in males compared
to females in the whole dataset in the win>loss contrast (see
Supplementary Fig. S4). There were no regions where females
showed greater activation than males. We did not observe
significant associations between anxiety and depression scores
and brain activation signals for any of the sub-groups.

Delay discounting behavioral measures
We observed significantly lower ddisc_AUC values in the obesity
and HR group as compared to the lean and LR group (p= 0.001;
0.04), indicating greater discounting of delayed rewards (i.e.,
greater tendency to choose smaller rewards now, as opposed to
larger rewards later) (Supplementary Fig. S5; Table 1). Differences
in delay discounting were also observed between sub-groups,
where obesityHR showed significantly lower (p= 0.001) values
compared to leanLR similarly, obesityLR had lower values than
leanLR groups (p= 0.01) (Supplementary Fig. S5; Table 1). Further,
a two-way analysis of variance showed significant main effects
for both BMI [F(1,417)= 26.36; p= 0.04] and alcohol drinking
[F(1,417)= 10.05; p= 0.04] on ddisc_AUC measures. However,
we did not see an interaction effect of BMI*alcohol drinking
[F(1,417)= 0.04; p= 0.85].

DISCUSSION
In this study, 22% of obesity and 28% of lean subjects were at
high-risk of AUD and while drinking intensity was significantly
higher in obesityHR compared to leanHR their frequency of
consumption did not differ. High-intensity drinkers (regardless of
frequency) reportedly have higher BMI, which is most likely
associated with their increased intake of calories from foods and
drinks [43, 44]. The main dietary macronutrients that serve as
sources of energy are fat (38 kJ/g), carbohydrates and protein
(each 17 kJ/g), and to lesser extent alcohol (ethanol) (29 kJ/g).
Alcohol is more energy-dense than carbohydrates and proteins,
and calories from consumed alcohol are additive to that from
other dietary sources, which can result in a positive energy
balance and weight gain [45]. However, in the HCP data we
cannot determine if and how much calories from drinking
contributed to an individual’s weight since it does not provide
sufficient details on daily calorie food and alcohol consumption
and physical activity.
Our fMRI results showed an interaction between BMI and

alcohol drinking in PCu and PrG, which are part of the default
mode network (DMN) and implicated in self-related processing,
memory, and salience attribution [46–48]. The PrG is typically
deactivated during task-based activation and is anti-correlated
with brain networks associated with executive functioning
[49–51]. The angular gyrus was also associated with BMI and
alcohol drinking. The AG is a part of the inferior parietal lobule
that mediates automatic “bottom-up” attentional resources, and
its increased activation is strongly related to high memory
performance [52]. The activation of angular and parietal regions
in the left hemisphere observed most likely reflects the processing
of memory and uncertainty components encountered during the
gambling task [53].
We observed heightened activation of DMN (Cu/PCu, PCC), the

primary motor cortex (SMC, MCgG) and of regions that aid in
decision-making during uncertain choices (PIns), regions impli-
cated in attentional deficits (Cerebellar vermal lobules VIII–X), and
negative perception (STG) in participants with high BMI and high-
risk for AUD relative to their low-risk counter group. Recently,
greater BOLD activation in DMN regions, including the ventrome-
dial prefrontal cortex (vmPFC), PCC, and right PrG was reported in
subjects with obesity while performing the N-back task [54].
Similarly, DMN regions (PCC and precuneus) were shown to have
greater activation during drug‐cue exposure in cocaine [55],
alcohol [56], nicotine [57–60], and cannabis use disorders [61–63].
Thus in line with this reasoning, we interpret the activation pattern
in the high-risk groups to reflect their inability to maintain
attention and focus, which in turn may facilitate impulsive choices.
Furthermore, the greater activity observed in the parietal lobule
and cerebellum might pertain to higher uncertainty associated
with choices, which results in negative perception about the
outcome and hence loss during the task [64]. The increased STG
activity in obesityHR individuals is understandable as the loss
involved in the task elicits negative emotions [65]. Therefore, the
neural activation pattern in obesityHR group during the gambling
task corroborates findings from previous studies on decision-
making deficits in obesity [66–69] and AUD [67, 70, 71] who prefer
short-term disadvantageous rewards (despite negative long-term
consequences) over advantageous long-term ones.
Increased activation in DMN and in regions implicated in

uncertain decisions in obesityHR as compared to leanHR and
leanLR groups is consistent with prior findings of increased DMN
activation in obesity compared to lean individuals, which was
interpreted to reflect increased attention to internal states like
appetite or gut signals [72]. The common themes here relate to
deficits in attention, memory, and increased uncertainty attributed
to the mental processes that underlie decision-making. Since
subjects with both high BMI and chronic alcohol consumption
recruited brain regions associated with enhanced sensitivity to
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Table 2. Groups showing significant brain region activations in response to wins versus losses.

Groups Region Cluster size (k) Peak voxel (Z) Cluster FWE P-value MNI coordinate

X Y Z

The main effect of BMI

Postcentral gyrus_R 649 4.66 0.008 22 −40 72

Superior parietal lobule_R 3.59 14 −48 68

Precentral gyrus_R 3.32 40 −24 62

The main effect of Alcohol Drinking

Superior temporal gyrus_L 854 3.94 0.001 −44 −34 2

Parietal operculum_L 3.71 −52 −24 16

Middle temporal gyrus_L 3.50 −50 −42 6

BMI × Alcohol drinking

Postcentral gyrus_R 1224 3.91 0.000 32 −28 48

Precentral gyrus_L 3.66 −8 −34 68

Precuneus_R 3.74 6 −48 58

Angular gyrus_L 597 3.37 0.013 −50 −54 26

Supramarginal gyrus_L 3.04 −48 −44 42

Parietal Operculum_L 2.98 −60 −28 16

ObesityHR > ObesityLR

Posterior insula_L 2340 4.05 0.000 −44 −18 −2

Superior temporal gyrus_L 3.93 −44 −34 2

Cuneus_L 3.67 −22 −72 24

Cerebellum_L 717 3.88 0.042 −8 −42 −26

Cerebellum_R 3.84 14 −42 −28

Cerebellar vermal lobules (VIII–X) 3.80 −4 −54 −30

Postcentral gyrus_R 1651 3.80 0.000 32 −28 48

Precuneus_R 3.66 4 −48 58

Posterior cingulate gyrus_R 3.61 8 −42 40

Middle cingulate gyrus_R 615 3.73 0.027

Supplementary motor cortex_R 3.48

LeanHR < LeanLR

Medial segment precentral gyrus_R 741 3.27 0.035 6 −32 66

Superior frontal gyrus_L 3.14 −8 −22 70

Precentral gyrus_R 3.07 30 −18 64

ObesityHR > LeanHR

Postcentral gyrus_R 2615 4.51 0.000 22 −40 72

Superior parietal lobule_L 3.93 −12 −48 64

Precentral gyrus_R 3.63 22 −28 72

Posterior insula_L 1515 3.67 0.000 −44 −18 −2

Superior temporal gyrus_L 3.52 −54 −32 8

Lingual gyrus_L 3.45 −32 −44 0

ObesityHR > LeanLR

Cerebelllum_L 734 4.78 0.037 −4 −54 −30

Cerebellum_R 3.64 12 −42 −28

Superior temporal gyrus_L 1677 4.05 0.000 −48 −40 6

Posterior insula_L 3.78 −44 −18 −2

Middle temporal gyrus_L 3.72 −54 −32 8

Middle Cingulate gyrus_R 596 4.02 0.029 8 6 24

Caudate_R 3.85 6 −4 36

Thalamus_R 3.33 6 −6 24

Postcentral gyrus_R 1441 3.72 0.000 22 −40 72

Superior parietal lobule_R 3.41 24 −54 58

Supramarginal gyrus_R 3.13 54 −28 50
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reward in the gambling task compared to lean BMI groups both at
high and low-risk of AUD (HR and LR), we carried out further
between-group comparisons with an aim to explore and under-
stand if this is an effect of high BMI or excessive alcohol
consumption or a combined effect of these addictive drives. We
observed that the individuals who were lean and at a high-risk of
AUD in comparison to the obesityLR group recruited occipital

regions related to increased visual attention. There has been
growing debate on the nonlinear effect of alcohol drinking
frequency on BMI [73]. Moreover, alcohol and carbohydrates
might compete for the same neuronal receptors leading to the
suppressed intake of one nutrient for the intake of the other [74].
Alcohol drinking frequency was similar in obesityHR (4–7days/
week; 24%, 1–3 days/week; 76%) and leanHR (4–7days/week;

Table 2 continued

Groups Region Cluster size (k) Peak voxel (Z) Cluster FWE P-value MNI coordinate

X Y Z

ObesityLR < leanHR

Inferior occipital gyrus_L 1642 3.90 0.000 −24 −90 0

Lingual gyrus_L 3.82 −12 −90 −10

Calcarine cortex_L 3.74 −12 −90 0

Note: LR low-risk, HR high-risk, L left, R right. Coordinates refer to the cluster peak voxel in mm (MNI).

Fig. 1 Shows the sub-group differences in regional responses on full factorial analysis of the contrast (win > loss) between obesityHR/
obesityLR with age and sex as covariates. The corresponding BOLD image (A) shows the regional activation while, box plot (B) depicts the
difference in extracted beta estimates from the activated clusters between the groups. The initial clustering threshold was chosen as p=
0.025, with k > 84; final pFWE < 0.000. All clusters with cluster p < 0.05 familywise error (FWE) of multiple comparisons are shown in Table 2.
Here * signifies p < 0.05 between the groups.

Fig. 2 Shows the sub-group differences in regional responses on full factorial analysis of the contrast (win > loss) between obesityHR/leanHR
and obesityHR/leanLR with age and sex as covariates. The corresponding BOLD images (A) & (B) show the regional activation while, box plots
(C) & (D) depict the difference in extracted beta estimates from the activated clusters between the groups. The initial clustering threshold was
chosen as p= 0.025, with k > 84; final pFWE < 0.000. All clusters with cluster p < 0.05 familywise error (FWE) of multiple comparisons are shown
in Table 2. Here *p < 0.05 between the groups.
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21.3%, 1–3 days/week; 78.7%) groups. Thus the BOLD activation
differences in these groups, suggest that BMI is an independent
variable in the neural processing of the gambling task by these
groups of individuals.
Further, we also observed increased activation in the motor

[mPrG, PrG, and PFC (SFG)] regions of leanLR individuals
compared to leanHR. PFC is mainly concerned with executive
control, and metabolic activity in this region has been demon-
strated to negatively correlate with BMI and alcoholism [75, 76].
PFC also has a critical role in controlling/inhibiting negative
impulsive behavior [77]. Dopamine plays a significant role in cost-
benefit decision-making preferences [78]. Chronic alcohol intake is
associated with pronounced alterations in dopaminergic neuro-
transmission [79], consequently compromising the function of the
PFC, which receives these dopaminergic inputs. Similarly, obesity
has been associated with reduced dopaminergic signaling and
impaired PFC activity [80]. Thus for the leanHR participants alcohol
use might have resulted in worse executive and inhibition control
than in the leanLR individuals. Though a priori we would have
expected that impairments in PFC would have been even more
severe in obesityHR than in leanHR this was not the case. Instead,
obesityHR compared to leanHR had greater activation in sensory
regions whereas there were no regions for which leanHR had
greater activation than obesityHR.
We also compared the delayed discounting task measures

between these groups, which complements the gambling task by
assessing preference for small immediate rewards versus large
delayed rewards, another key component of decision-making. In
agreement with prior findings, we observed significant behavioral
differences between obesity and lean groups. The obesity group
showed stronger discounting of future monetary rewards than the
lean group. This may relate to the preference of obesity
individuals for highly rewarding unhealthy foods despite their

long-term detrimental effects as compared to lean individuals. We
also observed that the delayed discounting measure differed in
HR and LR both in obesity and lean individuals. Although these
differences were also apparent between the sub-groups with
obesityHR and obesityLR having lower measures compared to the
leanLR group, the interaction between BMI and alcohol drinking
was not significant. The delayed discounting measure did not
distinguish between obesity and high alcohol drinking levels,
which as for the gambling task fMRI results, suggests that obesity
and chronic alcohol drinking have independent negative effects
on decision-making.
There are certain limitations to the present study. Firstly, the

HCP data lacks a measure of reward anticipation, which is another
key dimension of decision-making behavior. Secondly, we used
only the gambling task-fMRI. Functional connectivity studies using
rs-fMRI might provide better information on how intrinsic network
function supports decision-making behavior. Thirdly, this explora-
tive study, which solely relies on BMI as a measure of obesity,
needs to be extended with precise adiposity measures, other
anthropometrics, or metabolic functioning. Moreover, a more
detailed analysis of the type of alcohol consumed would give
more insights into these findings considering the differential
impact of alcohol types on weight changes reported across
studies. The fourth limitation is that participants were predomi-
nantly of European ancestry and individuals from other ethnicities
may carry a higher risk of obesity and have a higher burden for its
deleterious consequences [81]. Thus the limited ethnic breakdown
of participants in the HCP dataset limits the generalizability of our
results. Finally, our subgroups differed in sex composition, with a
higher percentage of males in the high-risk AUD groups relative to
other groups. While we controlled for sex (as well as age) we can
not completely rule out potential sex differences in activation
responses and distinct interaction between sex, BMI, and alcohol

Fig. 3 Shows the sub-group differences in regional responses on full factorial analysis of the contrast (win > loss) between leanHR/obesityLR
and leanHR/leanLR with age and sex as covariates. The corresponding BOLD images (A) & (B) show the regional activation while, box plots (C)
& (D) depict the difference in extracted beta estimates from the groups’ activated clusters. The initial clustering threshold was chosen as p=
0.025, with k > 84; final pFWE < 0.000. All clusters with cluster p < 0.05 familywise error (FWE) of multiple comparisons are shown in Table 2.
Here *p < 0.05 between the groups.
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drinking, which should be investigated in future studies with
larger samples.

CONCLUSION
The current study documents differences in the neural activation
patterns during the gambling task in obesity and lean participants
at high and low-risk of AUD. The findings demonstrate a
significant impact of BMI and alcohol consumption, and interac-
tion of the two, on interoceptive regions including posterior DMN
and parietal operculum during the gambling task. However, we
found significant heterogeneity in the discounting measures
within and across groups. Moreover, delay discounting was seen
to independently predict BMI and alcohol drinking. Together,
these findings highlight distinct associations of obesity and high-
risk alcohol drinking with two key constituents of decision-making
behavior.
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