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Mutation signature analysis has been used to infer the contributions of various DNA mutagenic-repair events in individual cancer
genomes. Here, we build a statistical framework using a multinomial distribution to assign individual mutations to their cognate
mutation signatures. We applied it to 47 million somatic mutations in 1925 publicly available cancer genomes to obtain a mutation
signature map at the resolution of individual somatic mutations. Based on mutation signature-level genetic-epigenetic correlative
analyses, mutations with transcriptional and replicative strand asymmetries show different enrichment patterns across genomes,
and “transcribed” chromatin states and gene boundaries are particularly vulnerable to transcription-coupled repair activities. While
causative processes of cancer-driving mutations can be diverse, as shown for converging effects of multiple mutational processes
on TP53 mutations, the substantial fraction of recurrently mutated amino acids points to specific mutational processes, e.g., age-
related C-to-T transition for KRAS p.G12 mutations. Our investigation of evolutionary trajectories with respect to mutation signatures
further revealed that candidate pairs of early- vs. late-operative mutation processes in cancer genomes represent evolutionary

dynamics of multiple mutational processes in the shaping of cancer genomes. We also observed that the local mutation clusters of
kataegis often include mutations arising from multiple mutational processes, suggestive of a locally synchronous impact of multiple
mutational processes on cancer genomes. Taken together, our examination of the genome-wide landscape of mutation signatures

at the resolution of individual somatic mutations shows the spatially and temporally distinct mutagenesis-repair-replication
histories of various mutational processes and their effects on shaping cancer genomes.

Experimental & Molecular Medicine (2022) 54:1049-1060; https://doi.org/10.1038/s12276-022-00808-x

INTRODUCTION

It has been proposed that a collective set of mutations in cancer
genomes may be informative in evaluating the effects of variable
mutagenic events and their associated DNA repair-replication
processes' . Because exogenous and endogenous mutagenic
events often leave characteristic sequence footprints, it is possible
to infer which mutational processes have been operative in cancer
genomes and to what extent using cancer genome sequencing
data®. The pioneering work of the PanCancer-scaled mutation
database has yielded ~30 mutation signatures of unique trinucleo-
tide sequences that correspond to distinct mutational processes and
tumor lineages®. The discovery of mutation signatures and their
causal associations has enabled measuring the relative contributions
of multiple mutational processes in cancer genomes by assuming
that the relative abundance of mutation signatures corresponds
with the contribution of their cognate mutation events.

Although mutation signature analyses have used genome-wide
aggregates of mutations to quantify the type and level of
exposure to mutational processes in individual cancer genomes,
investigations of mutational causalities for individual somatic
mutations have been largely hampered for several reasons. First,
mutation signatures as probability distributions over trinucleotide
contexts are difficult to present as single-nucleotide changes.

Moreover, mutation signatures are not exclusive and often share
trinucleotide sequences. For example, the C-to-T transition of CpG
dinucleotides (presented as C>T substitutions at NpCpG trinu-
cleotides) is a nucleotide change representative of age-related
mutation signature 1 (hereafter, single base substitution 1 or SBST,
COSMIC mutation signatures, Ver. 2), but it accounts for only
44.7% of the trinucleotide contexts in SBS1; it also accounts for
10.6 to 35.4% of the nucleotide changes in other mutation
signatures (SBS6, -7, -10, -14, -15, and -20, COSMIC mutation
signatures, Ver. 2). Thus, the nonexclusivity of mutation signatures
(in terms of their nucleotide changes) limits the general usefulness
of single-nucleotide change-based inferences about mutational
processes. Second, maximum likelihood has been used to assign
individual somatic mutations to mutation signatures®. However,
this method depends on sample-level mutation signatures and
ignores regional variations in somatic mutations across cancer
genomes. Previous genomic bin-based correlative analyses have
revealed that euchromatic regions that replicate early harbor
smaller numbers of somatic or germline mutations than hetero-
chromatic regions that replicate late’™'°. These mutational
features might be related to the accessibility of DNA repair
machinery, which could further explain the relative depletion of
mutations in transcribed strands®, as well as the relatively uniform

"Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea. *Cancer Research Institute, College of Medicine, The Catholic University
of Korea, Seoul, Korea. 3School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China. “These authors contributed equally: Soo-Youn Lee,

Han Wang. ®email: ruibinxi@math.pku.edu.cn; tmkim@catholic.ac.kr

Received: 3 February 2022 Revised: 3 April 2022 Accepted: 28 April 2022

Published online: 28 July 2022

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-022-00808-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-022-00808-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-022-00808-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-022-00808-x&domain=pdf
http://orcid.org/0000-0002-7993-9701
http://orcid.org/0000-0002-7993-9701
http://orcid.org/0000-0002-7993-9701
http://orcid.org/0000-0002-7993-9701
http://orcid.org/0000-0002-7993-9701
https://doi.org/10.1038/s12276-022-00808-x
mailto:ruibinxi@math.pku.edu.cn
mailto:tmkim@catholic.ac.kr
www.nature.com/emm

S.-Y. Lee et al.

1050

distribution of mutations in microsatellite instability-high gen-
omes with DNA mismatch repair deficiency''. Hence, the regional
activity of DNA damage, repair, and replicative processes is not
uniform across cancer genomes, which should be taken into
account when making regional inferences about the causality of
somatic mutations, such as a mutation signature analysis of
individual somatic mutations.

In this study, we used whole-genome mutation profiles for 1925
cancer genomes available from International Cancer Genome
Consortium (ICGC) to systematically analyze the mutation
signatures of individual somatic mutations in cancer genomes'?.
Somatic mutations in individual cancer genomes were trans-
formed into coordinate-sorted, binary matrices of trinucleotide-
context mutation calls. The matrices were segmented by
minimizing the Bayesian information criterion (BIC) of a multi-
nomial model, and the resulting mutation segments were further
clustered by BIC to obtain “mutation clusters” as sets of
nonadjacent mutation segments with highly similar trinucleotide
mutation contexts. Individual somatic mutations were assigned to
the cognate mutation signatures of their mutation clusters by
maximizing the posterior probability. The mutation signature
profiles of individual somatic mutations were further investigated
to determine their relationships to various genomic and
epigenetic features and reveal insight into how mutational
processes have shaped cancer genomes.

MATERIALS AND METHODS

Study cohort

The PCAWG/ICGC cohort was used as a public resource for studying whole-
genome sequencing-based somatic mutations. We used SNVs downloaded
from the ICGC data portal (dcc.icgc.org) as somatic mutations. To minimize
bias in the distribution of somatic mutations, we selected among those
available 1925 cancer genomes with no fewer than 3000 mutations''.
Lineage-specific analyses were performed for 24 tumor types with more
than ten tumors.

Genome segmentation and clustering

For a given cancer genome, mutations along a chromosome were first
converted into a binary matrix in the context of 96 trinucleotides (i.e., the
substituted base and its immediate 5’ and 3’ vicinity). The matrix was
sorted by the genome coordinates of the mutations. To obtain clustered
genomic segments with highly similar trinucleotide contexts, we applied a
BIC-based local- and distant-merging strategy. First, to identify local
regions with homogeneous mutation contexts, we binned the chromo-
somes into equal-sized bins, with each bin containing at least 30
mutations. Then, we iteratively merge neighboring bins with similar
mutation signatures based on the BIC. More specifically, if we suppose that
a cancer sample has N mutations in a chromosome and let m; be the jth
mutation (j=1,..,N), there are 96 possible mutation types, MT;,.., MTge,
according to the trinucleotide context. If we let p;; = P(m;=MT) be the
probability that mutation m; is of type MT; (i=1, ...,96), then m; can be
viewed as a random variable from a multinomial distribution Mult(1;p),
where p; = (p;1),pj 2 - Pjoe)- If the two mutations m; and my are from the
same mutation signature, then p;=p,. Now suppose that at a certain
merging step, there are T remaining segments $=1{5;,5,...,57, and
assume_that there are n, mutations in segment S, (t=1,.,T); thus,
N = ZL n.. If we denote my; (j = 1, ..., n;) as the mutations in segment S,
and their corresponding probabilities as p; in the merging process, the
mutation signatures of the same segments will be homogeneous, and the
probabilities p,; in segment S, should all be equal to each other (p,; = p;
for all j,k=1,...,n;). If we denote the common probability vector as
a; = (Gt1, -+, qros) = Py given the segment S;, the maximum likelihood
estimation (MLE) of ~ qy; isGe; = ny ' D% I(mej = MT))(i = 1,...96),
where [(-) is an indicator function. If we define a modified BIC for
segmentation S as:

BIC(S) = —2log(Ls) + A1 Tlog(N)

Ls is the likelihood of segmentation S and A; is a tuning parameter,
which we take as 5. Concretely, given the segmentation S, the overall BIC
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of this segmentation is:

T ne 96 ~
BIC(S) = -2, o > l(me; = MT)log (@) + M Tlog(N)

The overall merging process minimizes the BIC. Given the current
segmentation S=1{S;, S,..., 51}, we calculated the BIC change from
merging each neighboring pair and merged the pair that produced
the largest BIC reduction. More specifically, suppose that S, and S; , ; are to
be merged, so the merged segment is S, , 1. If S;and S, , ; are merged, we
would have a new segmentation, S; = {S1,- -+, St-1,Ste+1,Se2, -+, ST}
and its BIC would be BIC(S,). We defined the similarity score between S; and
S¢—1 as Sim(S, Se1) = BIC(S;) — BIC(S). If Sim(S¢, S¢11)<0, merging S; and
Ser1 will make the overall BIC smaller. We chose t, such that
SiM(Sty, Sto+1) = Min{SIM(S¢, Se1), t =1, T =1} If Sim(St,, Stp+1)>0,
we stopped the merging process because merging all of the neighboring
pairs would increase the BIC. If Sim(S;,St,+1) <0, we merged the
neighboring pair Sy and S;01 and repeated the merging process until
no neighboring segments could be merged. We denoted the resulting
segments with homogeneous mutation contexts as “mutation segments”.

After the local merging of neighboring segments is complete, the
mutation signatures of the remaining neighboring segment pairs will be
heterogeneous. However, distant, non-neighboring segments might still
share similar mutation signatures due to the nonuniform activity of
mutational processes in cancer genomes. We therefore further performed
clustering analysis of the segments such that segments in the same
cluster have similar mutation signatures. If we assume T segments
$1,52, ..., St after segmentation, we again denoted m;; (j = 1, ..., n) as the
mutations in segment S; and their corresponding common probabilities
as q;. At the initial step of the clustering procedure, each segment is itself
a cluster. We iteratively merged the clusters again based on the BIC. The
merging process was similar to the neighboring segment merging
process except that the merged segments need not be neighbors. Next,
suppose that at a certain step, we have a clustering C with K clusters,
Cy,--+,Cx, and cluster Cy contains s, segments. The segments S, in Cy
have a common probability vector, g = (g5, - -, g5 ¢)- The MLE of gf ; is
a5 = N Yogeq Yoy I(mej = MT;), where Ny is the number of mutations
in cluster C,. The overall BIC of this clustering is:

K ne. 96

> i(me; = MTy)log (4, ) +AeKlog(N),
k=1 Scecy j=1 i=1

BIC(C) = —2

where A; is also a tuning parameter, and we also take A, as 5. Similar to the
neighboring segment merging process, we calculated the BIC changes by
merging all pairs of clusters. If merging pairs of clusters did not decrease
the BIC, we stopped the merging process and returned to clustering.
Otherwise, we merged the cluster pair that produced the largest BIC
reduction and repeated the merging process until no cluster pairs could be
merged. We denoted the sets of non-neighboring mutation segments as
“mutation clusters” and used them as units for mutation signature analysis.

Mutation signatures and assignment to individual mutations
We assigned an individual somatic mutation to its cognate mutation
signature based on its posterior probability. Given a mutation i, we let MT;
be its trinucleotide context. Given that mutation i belongs to the genomic
region gf,, we calculated its posterior probability of being generated from
the vth mutation signature MS,. We denoted this posterior probability as
P(MT; € MS,|MT; € gf,), where MT; € MS, is understood to indicate that
mutation i is generated by the vth mutation signature MS, and MT; € gf,
indicates that mutation i derives from genomic region gf,, We denoted
MS, € gf, if the mutation signature MS, is in the genomic region gf, and
MS, ¢ gf, if not. In this paper, gf, refers to the genomic cluster obtained
above. We calculated P(MT; € MS, |MT; € gf,) for each v=1,..,30:

P(MT; € MS,|MT, < gf,) = "M eMs T, cot)

P(MT; € MS, .MT; € gf, MS, € gf,)+P(MT; € MS, .MT; € gf, MS, ¢ gf;)
P(MT; € gfr)

__ P(MT, € MS, MT; € gf, MS, €gf,) __ __ P(MT, € MS, .MS, € gf,)
- 30 30
Do P(MT eMs, Ms, egfr) > " P(MT; € MS, MS, € gf;)
P(MT; € MS, [MS, € gf.)P(MS, € gf;) hyidyy
30 - 30 y
>y P(MT, €M, |MS, € gf,)P(MS, €gfr) > " hudy

v=1

where d,, = P(MS, € gf,) and h,; = P(MT; € MS,|MS, € gf;). d,, is the
proportion of mutation signature MS, in region gf, and can be calculated
by the R package “deconstructSigs”. h,; (i=1,---30) is the probability
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pattern for mutation signature MS,, which can be downloaded from
COSMIC. Here, the numerator h,d,, is proportional to the expected
number of mutations i contributed by mutation signature MS, in
genomic region gf,, and the denominator is proportional to the expected
number of mutations i contributed by all 30 mutation signatures in gf,,
which can be regarded as a normalization term such that summation of
the posterior probabilities across all 30 mutation signatures is equal to 1.
If v = argmax P(MT; € MS,|MT; € gf,), then we assigned MT; to mutation
signature*Ms;.

Concordance of mutation segments in a cluster

To evaluate whether the mutation segments grouped as mutation clusters
are more concordant than random at epigenetic and evolutionary scales,
we used the two features of replication timing and cancer cell fraction
(CCF), and we evaluated the association of mutation clusters with
replication timing and CCF by permutation. For replication time, we
downloaded the replication timing profile (GM12878 Repli-Seq data of
ENCODE) from UCSC Genome Browser (https://genome.ucsc.edu) and
calculated the Shannon entropy with respect to the Repli-seq signals in
each mutation cluster of an individual genome. To calculate the Shannon
entropy of Repli-seq signals in a genomic region, we classified the signals
into three levels (low, middle, and high) based on signal intensity. Given a
genomic region gf, we denoted m,; (j=1,...,n;) as the number of
mutations in gf,, where n, is the number of mutations in gf,. We further
denoted L,; as the level of the Repli-seq signal for mutation m,; and let
P(L.j =) = Oy be the probability that mutation m,; is of Repli-seq signal
level I. Here, we assumed that /=1, 2, and 3 represent low, middle, and
high signal levels, respectively. Then, L,; is a random variable from
multinomial distribution Mult(1; O,), where O, = (01, O2, O3). The MLE of
Oy is Op=n;" 3 I(L; =1)(I =1,2,3), and the Shannon entropy of
Repli-seq signals in genomic region gf, can be calculated as follows:

E=- 04log(0y) M

For mutation cluster Cy in a cancer genome, suppose that the Shannon
entropy of the Repli-seq signals calculated by (1) is denoted as E. To
evaluate the significance of the concordance of Repli-seq signals in this
cluster, we randomly chose the same number of mutations along the
genome as those in that cluster and calculated the Shannon entropy of the
Repli-seq signals in that new set. We then repeated that process 10,000
times to construct the distribution under the null hypothesis that there is
no concordance among the Repli-seq signals in that cluster. If we suppose
that the Shannon entropy returned by this procedure is Ey 1, ..., Ex 10.000
and define Hy = {i|lE; < E,i=1,...,10,000}, then the p value is
calculated as px = |Hk|/10,000, where |Hi| is the cardinality of the set
Hy. Evolutionary concordance was similarly calculated using the CCF of the
PCAWG study from the ICGC data portal (dcc.icgc.org).

Bin-based genomic and epigenomic correlation analyses

For genetic correlative analyses, we obtained the GC content, recombina-
tion rate, conservation level, and repeat elements of major categories (Alu,
MIR, L1, L2, LTR, and DNA transposons) from the UCSC Genome Browser
with table functions (hg19, http://genome.ucsc.edu). For the genomic bins,
we averaged the genetic features into bin-level densities and subjected
them to correlative analyses with the mutation density of individual
mutation signatures. Single-nucleotide polymorphism (SNPs) were
obtained from dnSNP129 and classified as common or rare according to
population frequency (>1% and <1% in 1000 Genomes Project,
respectively). For bin-based epigenetic correlation, we obtained ChIP-seq
data representing various histone methylation and acetylation marks from
public resources'*'* and calculated the bin-based sequencing read depth
for correlative analysis. ChromHMM annotations for lymphoblastoid cell
lines (GM12878) mapped to the hg19 genome were also obtained from
UCSC Genome Browser. The mutation number was counted with respect
to mutation signatures and twelve chromHMM chromatin states. For
nucleosome positioning, we obtained MNase-seq signals representing the
nucleosome positioning of the lymphoblastoid and K562 cell lines from the
ENCODE project, as available in Gene Expression Omnibus (GSM920557
and GSM920558, respectively; https://www.ncbi.nlm.nih.gov/geo/). MNase-
seq signals in the indexed binary (bigwig) format were downloaded, and
nucleosome density signals were aggregated into bp-resolution mutation-
centric 2kb windows (1kb up- and 1kb-downstream of individual
mutations), as previously described®. To estimate the mutation-centric
local density of histone marks, we obtained high-resolution ChIP-seq data
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for 11 histone marks from the Roadmap Epigenomics dataset (http:/
www.roadmapepigenomics.org/data/). The datasets consolidated as con-
tinuous ChlIP-seq/DNase counts in bigwig format were used to measure
the local density of histone marks around the mutations in 2-kb windows.

Mutational transcriptional and replicative strand asymmetry
We used AsymTools (Ver. 1.0.3; www.broadinstitute.org/cancer/cga/
AsymTools) to estimate the level of mutational strand asymmetry'>.
Mutations were classified into different mutation signatures. As the tool
first determines the direction of RNA transcription according to the RefSeq
definitions, the mutations in RefSeq were further classified into tx (+) and
tx (—) with respect to the direction of transcription. For the DNA replication
direction, replication-timing profiles were used, and genomic regions were
discriminated into “left replicating” and “right replicating”. According to
the direction of DNA replication, mutations were also categorized and
measured for strand asymmetry levels. Maximal transcriptional and
replicative strand asymmetries were estimated according to the mutation
signature and used to classify mutation signatures.

Coding genes

For coding genes, we obtained RefSeq annotation with transcription start
and end sites from UCSC Genome Browser and obtained 426,720 exonic
mutations in coding regions (0.89% of total mutations). The mutation
density with respect to mutation signatures was compared across exonic
and nonexonic regions (intronic and intergenic regions, respectively) and
for the functional categories of mutations annotated by ANNOVAR'®. Exonic
mutation densities in transcribed gene bodies were also calculated for 14
bins of individual genes, where 10 equally divided “gene-body” bins were
defined between the transcription start and end sites of a given gene. Two
upstream (5’ of the transcription start sites) and two downstream (3’ of the
transcription end sites) bins were further identified as gene boundaries and
combined with the 10 gene-body bins to estimate the mutation density
with respect to genes. Frequently mutated genes among known cancer-
related genes (COSMIC Cancer Census Genes)'” were identified. Mutation
hotspots, namely, frequently mutated amino acid residues, were also
obtained from the literature'®. Protein domain information was obtained
from UniProt and InterPro using biomaRt (Ver. 2.46.3), and we used the
trackViewer R package (Ver. 1.26.2) for lollipop visualization. We used
Fisher's exact test to estimate the level of significance for mutation
signatures per hotspot. The numbers of mutations in each hotpot and
mutation signature were evaluated for enrichment against the number of
corresponding mutations in genes harboring the hotspot. To identify
functionally relevant genes per mutation signature, we used two methods:
MutSigCV'® and dNdSCV?°. MutSigCV (https:/software.broadinstitute.org/
cancer/cga/mutsig) identifies genes with significantly recurrent mutations,
taking into account several covariates for epigenetic features (HiC and
replication time) and gene expression levels. dNdSCV (https://github.com/
im3sanger/dndscv) calculates the ratio of dNdS, which represents the level
of evolutionary selection of mutations while taking into account trinucleo-
tide contexts and other covariates. For both methods, we deconvoluted the
mutations with respect to mutation signatures and used tools to identify
potential cancer-driving mutations per mutation signature.

Evolutionary trajectories of mutational processes

We used CCF to measure the evolutionary concordance of mutation
segments belonging to the same mutation clusters. The CCF values of
individual mutations were obtained from the ICGC data portal, as were
mutation data. We also performed CCF-based evolutionary concordance
analysis between mutation signatures. The Kolmogorov-Smirnov test was
employed to estimate significance levels under the null hypothesis that the
CCF values of mutations belonging to two mutation signatures would have
the same distribution.

Kataegis

For Kataegis, we used the R package maftools in R (Ver. 3.12) to identify
kataegis, as defined as no fewer than six consecutive mutations separated
by fewer than 1000 bp?'. Overall, 7482 kataegic events were observed for
nonhypermutated cancer genomes (those with <30,000 mutations). For
individual kataegic events, member mutations were examined for six
mutation spectra and mutation signatures. Significant enrichment of a
mutation signature in a kataegic event was examined by Fisher's exact test,
given the number of mutations for each specific mutation signature
against the total number of mutations in a kataegic event and the case.

SPRINGER NATURE
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Schematics of mutation signature analysis for individual somatic mutations. a Schematic for mutation segmentation and clustering,

mutation signature analysis, and assignment of mutation signatures to individual somatic mutations. b The abundance of mutation signatures
for the whole set of somatic mutations is shown. ¢ The mutation signature abundance is shown with respect to tumor lineage (24 tumor types

with >10 cases).

RESULTS

Mutation signature profiles at the resolution of individual
somatic mutations

A total of 47,838,326 single-nucleotide variants (SNVs) were
obtained from 1925 ICGC/PanCancer Analysis of Whole Genomes
(PCAWG) cancer genomes harboring no fewer than 3000 SNVs.
The tumor types of the cohort are summarized in Supplementary
Table 1. For each genome, a binary matrix of SNVs (sorted in order
of their genomic coordinates) was constructed with respect to
96 ftrinucleotide contexts (i.e., the substituted base and two
additional bases in the immediate 5 and 3’ vicinities). These
mutation matrices were then segmented and further clustered
using BIC-based local and distant-merging algorithms, resulting in
“mutation segments” and “mutation clusters”, respectively. The
mutation clusters, as sets of non-neighboring mutation segments
with similar trinucleotide contexts for somatic mutations, were
then subjected to mutation signature analysis, and their somatic
mutations were assigned to their cognate mutation signatures
using a maximum posterior approach. Figure 1a presents
schematics of the overall processes used to assign mutation
signatures to individual somatic mutations.

The genome-wide frequencies of the 30 mutation signatures
(SBS1 to SBS30 in COSMIC Ver. 2) for the entire cohort are shown
in Fig. 1b. SBS7 and SBS10 were the most frequent signatures,
mostly found for skin melanomas and POLE-mutated hypermu-
tated genomes, respectively. The frequencies of mutation
signatures in our database, as well as their frequently associated
tumor types and known etiologies, are listed in Supplementary
Table 2. We mainly used 17 mutation signatures (SBS1 to SBS17,
90.6% of initial mutation sets) for downstream analyses because of
their abundance and relatively well-established etiologies. To
further delineate the tumor-type-specific preponderance of
mutation signatures, the abundance of mutation signatures
against the tumor lineages was evaluated (24 tumor types with
>10 cases, Fig. 1c and Supplementary Fig. 1). Known associations
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between mutation signatures and tumor lineages were identified.
For example, DNA mismatch repair deficiency is represented by
SBS6 and SBS15 (in colorectal and uterine cancers), POLE-
deficiency-associated SBS10 (in colorectal cancers), ultraviolet
(UV)-related SBS7 (in skin melanomas), tobacco-related SBS4 (in
lung cancers), BRCA-deficient SBS3 (in breast and ovary cancers),
SBS17 (in esophageal cancers), and SBS9 (in hematologic cancers).

We also found that clustering-based mutation signature
assignments were more sensitive in identifying lineage-specific
mutation signatures than were those based on individual cancer
genomes or mutation segments (Supplementary Fig. 2). For
example, lineage-specific mutations belonging to SBS4, SBS7, and
SBS16 were more frequently recovered in their respective
associated cancer types of lung cancers, skin melanomas, and
hepatocellular carcinomas by using mutation signature assign-
ments based on mutation clusters (“cluster-based” in Supplemen-
tary Fig. 2) than they were by using mutation segments or sample-
level mutation signatures (“segment-” and “sample-based”,
respectively; Supplementary Fig. 2). We observed that mutation
segments belonging to the same mutation clusters were more
concordant than randomly assigned mutation segments in terms
of the genetic and epigenetic features represented by Repli-seq
and CCF, respectively (Supplementary Fig. 3). The level of
concordance was estimated as of nominal significance to reflect
the Repli-seq and CCF scores of segments belonging to clusters
biased due to the distribution of randomly clustered mutation
segments. If there is no concordance, the —log,, p values should
follow an exponential distribution; however, we observed that for
all cancer types, the distributions of —log,o p values deviated
vastly from the exponential distribution (Supplementary Fig. 3),
suggesting that mutation clusters represent sets of (epi)geneti-
cally concordant, nonadjacent mutation segments. These results
indicate that mutation clusters may serve as a better proxy than
genome or mutation segments when assigning mutation signa-
tures to somatic mutations.
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Genomic and epigenetic correlation of mutation signatures
The regional distribution of mutation signatures was examined to
determine how the signatures correlate with various genomic and
epigenetic features. First, we investigated the correlation of
regional mutation density in megabase (Mb) bins (i.e.,, mutations
per Mb) with various genomic features, including GC content,
recombination rate, conservation level, and the density of repeat
elements and germline variants (e.g., common and rare SNPs) (Fig.
2a). We also explored the Mb-scaled correlation of mutation
signatures against the various levels of histone methylation and
acetylation' (Supplementary Fig. 4). We observed that the
mutations in most mutation signatures consistently showed
enrichment in GC-poor/late-replicating heterochromatic regions
and depletion in GC-rich/early-replicating euchromatic regions
(e.g., mutation numbers correlated inversely with GC content and
Alu repeats and positively with the repressive histone markers
H3K9me2/me3 and H3K27me3). This pattern was largely consis-
tent on different scales (Supplementary Fig. 4), suggesting that the
global, Mb-based distribution of mutation signatures largely
accommodates the known features of mutations. However, the
observed correlation patterns were relatively weak for SBS6
mutations related to DNA mismatch repair (MMR) deficiency®%.
This is consistent with the previous finding that Mb-scaled
regional variations in somatic mutations are driven largely by
regionally differential MMR activity; thus, genomes with MMR
deficiencies do not exhibit characteristic regional variations in
their mutation rates'".

It has been proposed that transcriptional and replicative
mutation strand asymmetries are widespread in cancer genomes
and are associated with the underlying mechanisms of DNA
mutagenesis and repair'>. We measured two-strand asymmetries
across mutation signatures (Fig. 2b) and observed the SBS2/13, 6,
10, 14, and 15 mutations to be substantially biased toward a high
level of replicative asymmetry but the SBS4, 5, 7, 12, and 16
mutations to be biased toward a high level of transcriptional
asymmetry. We further evaluated the correlation between
mutation signatures and local-scale epigenetic features by
examining the enrichment level of mutation signatures in 12
distinct chromatin states (i.e, chromHMM states inferred from
multiple epigenetic marks)? (Fig. 2c). The mutation signatures
largely segregated into those showing relative depletion or
enrichment of mutations at chromatin states of “weak enhancer/
transcription” and “transcription elongation,” representing “tran-
scribed” chromatin states with H3K36me3 enrichment®3. Notably,
we observed that the relationship between mutation signatures
and chromHMM states was largely concordant with each
signature’s mutation strand asymmetries. For example, mutation
signatures with transcriptional strand asymmetries (SBS4, 5, 7, 12,
and 16) were depleted in transcribed chromatin states compared
with those with an “active promoter” or “heterochromatin.” In
contrast, mutation signatures with replicative strand asymmetries
(SBS2/13, 6, 14, and 15) were relatively enriched in transcribed
chromatin states. The distinction in mutation signatures with
respect to mutational strand asymmetries and epigenetic config-
urations might be caused by the distinct susceptibility of
chromatin states to DNA mutagenesis and repair. For example,
the epigenetic states of “transcribed” chromatin could be more
amenable to the activity of transcription-coupled repair (TCR)-
mediated nucleotide-excision repair (NER) than to the activity of
active promoter/enhancers and heterochromatins?®. We further
examined 11 ChIP-seq (chromatin immunoprecipitation sequen-
cing) datasets representing various histone marks, as available in
the ENCODE project. The read density of the ChiIP-seq data at
somatic mutations was measured across mutation signatures
(Supplementary Fig. 5). We observed that mutations with
replicative asymmetries and hypermutation-related SBS4 and
SBS7 mutations showed overall enrichment in ChlIP-seq signals
compared to those with transcriptional asymmetries. We also
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observed that mutations arising in MMR deficiency (SBS6 and
SBS15) were distinguishable from other mutation signatures in
that they were enriched for H3K36me3/H3K20me1l signals,
suggesting that these epigenetic modifications might be repair
targets for MMR activity.

Nucleosome-bound and linker DNAs show differential mutation
rates, possibly because nucleosome occupancy can influence
access of DNA to DNA mutagenesis and repair machinery?>. We
examined the average level of MNase-seq (micrococcal nuclease
sequencing) signals in 2-kb wide windows centered at each
mutation with respect to mutation signatures (Fig. 2d) and
observed that mutation signatures can be clearly classified into
two distinct classes: one with enriched nucleosome positioning
signals and one with depleted nucleosome positioning signals.
Most mutation signatures with replicative strand asymmetries
showed enriched nucleosome positioning signals. In addition,
mutations SBS7 and SBS17 showed highly periodic patterns of
nucleosome positioning signals representing alternation of
nucleosome-covered and linker DNA, consistent with a previous
report®® (Supplementary Fig. 6). Such enrichment of nucleosome
positioning at mutations with signatures SBS7 and SBS17, along
with a periodic pattern of nucleosome positioning signals, might
result from decreased NER activity, as previously reported?®.
Mutation signatures with depleted nucleosome positioning
signatures include SBS5, 8, 9, 10, 12, and 16. Except for
hypermutation-related SBS4 and SBS7, mutation signatures with
transcriptional asymmetries were depleted at nucleosome cores,
probably due to decreased de novo mutation rates with relatively
constant NER activity.

Effects of mutation processes on coding genes

We examined the abundance of mutation signature calls for
426,720 coding exonic mutations and found that the signature-
level coding mutation frequencies were largely concordant with
those of all mutations (r=0.93) (Fig. 3a). These results support
that exome-scaled mutation signature profiles can be used as a
proxy for genome-wide estimates of mutation processes
because mutation signatures associated with high GC content,
such as SBS1 and SBS6, were relatively enriched in coding
mutations compared with intergenic or intronic mutations
(Supplementary Fig. 7).

The mutation abundance in transcribed gene bodies was
examined across mutation signatures (Fig. 3b), revealing that
mutation signatures enriched toward the 5’ and 3’ gene ends but
depleted within gene bodies can be distinguished from those
enriched in the middle of gene bodies. This distinction is also
largely concordant with the distinction between mutation
signatures with replicative and transcriptional strand asymmetries.
For example, mutation signatures with replicative strand asym-
metries showed depletion of mutations within gene bodies,
whereas those with transcriptional strand asymmetries showed
enriched mutations within gene bodies, except for the
hypermutation-associated SBS4 and SBS7 mutations.

Gene-level mutation signatures for 20 frequently mutated
cancer genes are depicted in Fig. 3c. We observed the SBS1 and
SBS7 signatures to contribute to a substantial number of
mutations across cancer-driving genes; however, TP53 and KRAS
mutations were relatively enriched for SBS1 mutations. An
association between CTNNB1 and PIK3CA and enrichment of
SBS16 and SBS2 was also noted. Four genes (TP53, KRAS, PIK3CA,
and CTNNBT) were further investigated using previously reported
hotspot amino acids'® to determine the composition of the
mutation signatures, and we detected heterogeneous etiologies
for mutation processes at those residues (Supplementary Fig. 8).
Known TP53 hotspot mutations at five residues (R175, G245, R248,
R273, and R282) were mainly attributed to SBS1, which was also
true for KRAS-G12 mutations; conversely, KRAS-G13 and KRAS-A146
mutations were largely associated with SBS15 and SBS10,
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Fig. 2 Genetic and epigenetic correlation of mutation signatures with respect to mutational strand asymmetries. a Mb-bin-scaled
correlations of 12 genetic features with the densities of mutation signatures are shown in a heatmap. b Levels of transcriptional and
replicative strand asymmetries (x- and y-axes, respectively) are plotted for the mutation signatures. ¢ The mutation density with respect to 12
chromHMM states and mutation signatures is shown in a heatmap. Levels of mutational strand asymmetries (transcriptional and replicative
asymmetries) are also shown in a heatmap. d Nucleosome positioning signals measured across mutation-centric 2-kb windows (1 kb up- and
downstream) are shown in a heatmap aligned with mutational strand asymmetries.
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Fig. 3 Mutation signatures in coding sequences. a The abundances of exonic and genomic (normalized) mutations are shown. b Mutation
densities in individual mutation signatures are shown in 10 equal-sized bins from the transcription start and end sites (TSS and TSE,
respectively), along with additional bins up- and downstream of the TSS and TSE, respectively. ¢ For 20 cancer-related genes with recurrent
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fewer than 5 occurrences, with their number of mutation signatures and significant enrichment (x- and y-axes, respectively). e Genes with
recurrent mutations are shown (Q < 0.1 MutSigCV) across mutation signatures.

respectively. Although CTNNBT mutations were mainly attributed
to SBS16, the associations between mutation signatures and
PIK3CA hotspot mutations were more complicated. For example,
hotspot mutation E542 of PIK3CA was largely attributed to
APOBEC-associated SBS2, whereas H1047 displayed heteroge-
neous etiologies. In addition, the PIK3CA E726 and Y1021 amino
acid substitutions were exclusively associated with SBS15. The
associations between mutation signatures and hotspot mutations
for 107 frequently mutated (=5 occurrences) amino acid residues
in the cohort were further assessed, showing that even at the
amino acid level, varying numbers of mutation signatures can be
associated with individual hotspots (Supplementary Fig. 9, arrows
for the PIK3CA-E542 and PIK3CA-H1047 mutations). Among the
mutation signatures observed at given hotspots, we selected
those with a significant enrichment of mutations per hotspot
(p < 0.05, Fisher's exact test; Fig. 3d). Overall, 42.9% and 14.9% of
hotspots showed one and two mutation signatures, respectively,
with significant enrichment suggesting the presence of a few
dominant mutational processes for recurrent mutations at the
amino acid level. For instance, 11 mutation signatures were called
at least once for KRAS-G12 and BRAF-V600, though only one and
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two mutation signatures were significantly dominant (SBS1 and
SBS7/SBS11 for KRAS-G12 and BRAF-V600, respectively; arrows in
Fig. 3d). In addition, we used MutSigCV'?® to identify significantly
recurrent mutations (Supplementary Table 3) across mutation
signatures (Fig. 3e). We observed that TP53 mutations were
commonly observed as recurrent mutation targets across muta-
tion signatures, i.e., TP53 mutations were observed in 12 mutation
signatures, except for SBS9 with B2M mutations. This suggests that
evolutionary selection of diverse mutational processes might be
converging toward TP53 mutations. Potential cancer drivers
among the mutation signatures were also identified using
dNdSCV, an evolutionary measure reflecting the level of selection
for mutations®®, to obtain genes with high dNdSCV levels in
individual mutation signatures as candidate cancer drivers
(Supplementary Table 4). These results highlighted TP53, PIK3CA,
and KRAS as cancer-driving mutations under positive selection
across different mutation signatures.

Clonality and selection of mutation signatures

Mutations belonging to different mutation signatures were
separately analyzed for levels of clonality and evolutionary
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SBS13, which indicate early-late mutations, respectively.

selection (Fig. 4a). We used the CCF as a surrogate measure of the
level of clonality in mutations (x-axis, Fig. 4a) and dNdSCV?’ (y-axis,
ratio of nonsynonymous to synonymous substitutions, Fig. 4a) to
measure the selective pressure to which mutations have been
subjected. Mutation signature-level CCF and dNdSCV are shown
separately in Supplementary Fig. 10. In general, the combined
picture of mutation selection and clonality provides information
about the evolutionary history of mutations. For example, SBS10
and SBS7 mutations, which are associated with the hypermutated
genomes of POLE-mutated colorectal cancers and melanoma,
respectively, might have undergone distinct evolutionary trajec-
tories. SBS10 mutations display the highest level of selection (i.e.,
dNdSCV = 1.20), suggesting that mutations generated via loss of
proofreading activity by DNA polymerase € (Pol €) are abundant
but also subject to a substantial level of positive selection. In
contrast, SBS7 mutations might have been fixed early in cancer
genomes, as inferred from their high CCF values but relatively low
evolutionary selection pressures (i.e,, dNdSCV = 0.98). Additionally,
the SBS2 and SBS13 mutations generated by APOBEC cytidine
deaminase are subclonal, with low CCF values, indicative of their
younger evolutionary age.

We next identified pairs of mutation processes that have been
operative in an evolutionarily exclusive or discordant manner by
using pairwise comparison of the distribution of mutation signature-
specific CCF values for individual cancer genomes. A total of 1412
mutation signature pairs with CCF values that were significantly
discordant in given cancer genomes (Kolmogorov-Smirnov test,
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false discovery rate <0.05) were taken as candidate mutation
signatures that have been operative on different time scales within a
given cancer genome (Supplementary Table 5). The frequencies of
the signature pairs are provided in Fig. 4b. The top six most frequent
mutation signature pairs are (in order of frequency) SBS1 with SBS3
(i.e., SBS1-SBS3), SBS8, SBS17, SBS5, SBS2, and SBS13, suggesting
that SBS1 mutations occurred early in cancer genome evolution and
were followed by other mutation signatures. This is consistent with
the previous notion that SBS1 is an age-related mutation signature
attributable to lifelong accumulation of C-to-T transition errors at
CpG dinucleotides®®. Case-specific examples of evolutionarily
discordant mutation signature pairs are illustrated in Fig. 4c—e. We
observed that SBS1, as a founder clone mutation, was followed by
relatively younger APOBEC-related mutations, such as SBS13 and
SBS2, in two pancreatic adenocarcinoma genomes (Fig. 4c, d). An
esophageal cancer genome showed that reactive oxygen-related
mutagenesis of SBS17 might have occurred early, followed by
APOBEC-related mutagenesis producing SBS13 mutations. These
results show how different mutational processes have been
operative over different time scales in individual cancer genomes.

Kataegic events associated with multiple mutagenic processes
Kataegis represents a single, catastrophic event in which a DNA
segment becomes vulnerable to a single mutational process such
as APOBEC activity. It has mainly been assumed that single-
stranded DNA is the target of APOBEC activity. We identified 7482
kataegic events in 1149 nonhypermutated genomes (observed in
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Fig. 5 Kataegis with respect to mutation signature. a Relative frequencies of kataegic events are shown across tumor types. b For
kataegic events in given tumor types, the relative frequencies of mutation signatures are shown. c-e Kataegic events with respect to
mutation signatures are shown for three cancer genomes. In biliary adenocarcinomas (c), two kataegic events (arrows) are attributed to
SBS16 mutations, suggesting that kataegis may arise with tumor-type-specific mutations. In one melanoma genome (d), three kataegic
events (arrows) include a significantly enriched number of mutations arising from two mutational processes (SBS7 and SBS13). In one head
and neck cancer genome (e), the selected example of kataegis (an arrow) includes mutations enriched for three mutation signatures (SBS7,

SBS11 and SBS13).

68.3% of 1683 cases examined, Supplementary Table 6), consistent
with the previous observation that kataegis is prevalent across
cancer genomes®. The frequency of kataegic events was
particularly high for some tumor types. For instance, all cases of
B-cell lymphomas, lung small cell carcinomas, and renal cell
carcinomas examined in this study harbored kataegic events
(Fig. 5a). Across all tumor types, the APOBEC-associated mutation
signatures of SBS2 and SBS13 contributed to most mutations in
kataegic events. The AID (activation-induced cytidine deaminase)-
associated mutation signature SBS9 contributed to a large
proportion of kataegic events in hematologic cancers (Fig. 5b).
The composition of mutation signatures in kataegic events can be
variable. For example, the kataegic events on chromosomes 7 and
20 of one biliary adenocarcinoma genome are largely attributed to
SBS16 mutations (arrows, Fig. 5¢), suggesting that lineage-specific
mutagenic events can occur in a localized manner. Although we
excluded hypermutated genomes, a large proportion of mutations
in the kataegis of melanoma genomes are attributed to UV-
associated SBS7 mutations. Figure 5d shows multiple kataegic
events in a single melanoma genome, with SBS7 and SBS13
mutations being mainly observed in kataegic loci across the
genome. To identify a robust association between mutagenic
processes and kataegic events, we used Fisher's exact test to
determine the extent of enrichment of mutations belonging to
individual mutation signatures in given kataegic events and cases.
Among the 21 kataegic events observed in the melanoma
genome illustrated in Fig. 5d, three events were enriched with
both the SBS7 and SBS13 mutations (p < 0.05, Fisher's exact test,
arrows indicated, Fig. 5d). By examining all kataegic events for
enrichment of multiple mutation signatures, we identified 4 and
189 kataegic events with significant enrichment for 3 and 2
mutation signatures, respectively. The mutation signature pairs
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most frequently observed in single kataegic events were SBS2 and
SBS13 (62 of 189 events, 34.6%), followed by SBS7 and SBS2/13
(41 of 1389 events, 21.7%). Among the genomes with three
enriched mutation signatures, one example of a head and neck
cancer case is depicted with an arrow in Fig. 5e. This kataegic
event occurred in chromosome 8 and harbored 7 SBS7, 8 SBS11,
and 13 SBS13 mutations in a single locus.

DISCUSSION

Mutation signatures have been used to infer the types and relative
contributions of mutational processes that have been operative in
individual cancer genomes**. Recent efforts have identified novel
mutation signatures and their associated causalities, facilitating
etiology-based mutation analyses?*™3'. Although mutation signa-
ture analyses have become indispensable components of cancer
mutation analyses; most studies have analyzed mutation signa-
tures at the level of individual cancer genomes. Several studies
have proposed algorithms to assign individual mutations to
mutation signatures®?®?2, but those methods are based on
sample-level mutation signatures and largely ignore regional
variations in mutation spectra. Instead of applying regression
methods'??°, we performed segmentation and clustering of
somatic mutations using a multinomial model. Then we used
mutation clusters, as sets of nonadjacent genomic segments, as
templates for assigning mutation signatures to individual somatic
mutations. Compared with sample- or segment-level assignments,
cluster-based mutation signature assignments are more sensitive
for discovering lineage-specific mutation signatures. We also
demonstrate that measures of mutation clonality (CCF) and
replication timing (Repli-seq) are more concordant for mutation
clusters than for randomly assigned sets of mutation segments.
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In this study, relative enrichment of somatic mutations in late-
replicating, GC-poor, heterochromatic regions compared to early-
replicating, GC-rich, euchromatic regions®'® was observed for all
mutation signatures except SBS6 mutations arising from MMR
deficiencies. Because DNA MMR corrects DNA mismatch with
5-methylcytosines in early-replicating regions, SBS6 mutations
that arise from a deficiency in the MMR pathway will show a more
uniform mutation distribution across genomes than mutations
that arise without MMR deficiencies (SBS1)'". This indicates that
the observed Mb-scaled correlation of most mutation signatures
(including SBS1) with replication timing might largely be due to
differential DNA repair activities' '3,

We also investigated the mutation densities of different
mutation signatures in the chromatin states defined by
chromHMM?3, We distinguished mutation signatures according
to their mutational strand asymmetries'> and found that
mutations with transcriptional and replicative strand asymmetries
had distinct mutation densities in different chromatin states.
Signatures with replicative strand asymmetry were more enriched
in transcribed states, such as “weak enhancer/transcription” and
“transcription elongation” whereas signatures with transcriptional
strand asymmetry were more enriched in other epigenetic states,
including promoter or repressed chromatin states. The observed
relationship between mutation signatures and chromatin states
suggests that transcribed chromatin might be more accessible to
TCR-NER activity. For example, SBS4 and SBS7 mutations arise
from well-recognized exogeneous mutagens, tobacco and UV,
respectively®*3>. Their resulting DNA adducts are recognized and
repaired by TCR-NER, such that those mutation signatures exhibit
a marked level of transcriptional strand asymmetry and relative
depletion in transcribed chromatin states. In addition, mutations
related to MMR defects (SBS6) showed contrasting epigenetic
correlation with mutations with transcriptional asymmetries,
suggesting that MMR activity targets epigenetic configurations
that are also vulnerable to NER activity; thus, MMR deficiency leads
to accumulation of mutations at transcribed chromatin. It was
recently reported that the H3K36me3 histone mark activates
MMR?® and that this histone mark is associated with transcribed
chromatin states®®. These findings suggest that MMR activity
shares target epigenetic configurations, such as transcribed
chromatin states, with TCR-NER. Thus, it is assumed that the
H3K36me3 histone mark and its preferred epigenetic configura-
tions might favor the activity of both MMR and TCR-NER.

Mutations that arise through activity of the APOBEC deaminase
(SBS2 and SBS13) are known to occur mainly on lagging strands.
Mutations on lagging strands might be relatively free from the
effects of TCR-NER, leading to the marked replicative strand
asymmetry of SBS2 and SBS13 mutations (Supplementary Fig. 11),
along with relative enrichment of those mutations in the
transcribed chromatin state (Fig. 2c). SBS10 mutations, on the
other hand, have marked replicative strand asymmetry (Supple-
mentary Fig. 11) and show a relatively flat distribution across
chromatin states (Fig. 2c). The replicative strand asymmetries of
SBS10 mutations are largely attributed to the role of POLE as a
proofreading polymerase for leading strands. In addition, it has
been proposed that MMR activity uses lagging strands as
“parental” strands to correct replication errors on the leading
strand'®. This particular behavior of MMR facilitates fixation of
SBS2/SBS13 mutations that occur on lagging strands, but it may
also facilitate repair of SBS10 mutations that occur on leading
strands, producing differential epigenetic correlative patterns for
SBS2/SBS13 and SBS10 mutations.

Interestingly, other than the transcribed states, the remaining
chromatin states, including active promoter, enhancer, and
heterochromatin, behave in a similar manner. One possible
explanation is that binding of transcription factors renders open
chromatin similar to closed chromatin, thus reducing local NER
and base-excision repair (BER) activities and leading to elevated
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mutation rates in promoter regions>’. Furthermore, our mutation-
centric examination revealed that most of the examined ChIP-seq
signals corresponding to various histone marks are consistently
elevated and depressed for mutation signatures with replicative
and transcriptional strand asymmetries, respectively. More inves-
tigation is needed to reveal the relationships between mutational
strand asymmetries and local-scale epigenetic features.

Nucleosome positioning might affect the local genomic
distribution of mutation signatures?®>, Consistent with a previous
report that nucleosome-bound DNA has higher mutation rates
than DNA in linker regionszs, our results show nucleosome
positioning signals to be enriched at the mutations of most
signatures. It has previously been assumed that mutations with
transcriptional strand asymmetry, such as SBS7, are targets of
global NER and that NER is less efficient at nucleosomes than at
linkers, leading to elevation of UV-related SBS7 mutations at
nucleosomes®>*°. Nevertheless, our results show that among the
signatures with elevated nucleosome positioning signals, most
have replicative strand asymmetry, with only SBS4/SBS7 having
transcriptional strand asymmetry. The elevated mutation fre-
quency of SBS17 at nucleosomes was proposed to be associated
with other DNA repair mechanisms, such as BER?®. Thus, mutation
signatures showing elevated nucleosome positioning signals
might be associated with either decreased NER or another repair
mechanism, such as BER, at nucleosome-bound DNA. The SBS2/
SBS13 and SBS10 mutation signatures with marked replicative
strand asymmetries also exhibited contrasting patterns of enrich-
ment and depletion, respectively, for nucleosome positioning
signatures. It is assumed that the preferences of those mutation
signatures for lagging and leading strands might explain this
contrasting pattern, e.g., MMR preferentially repairs replicative
errors on leading strands'>. Regardless, determining relative
depletion of nucleosome positioning signals for AlD-associated
SBS9 and hepatocellular carcinoma-associated SBS12/16 will
require further investigation.

We observed that the abundances of mutation signatures in
exonic regions are largely concordant with those of genome-
scale estimates, indicating that mutation signatures obtained
based on whole-exome data can largely represent the mutation
signatures of the entire genome. We also observed that mutation
signatures enriched toward the 5’ and 3’ gene ends can be
distinguished from those enriched in the middle of gene bodies.
This distinction is associated with replicative strand asymmetry.
Indeed, the relative depletion of mutations with transcriptional
strand asymmetry at the 5 and 3’ ends suggests that gene
boundaries are more vulnerable than gene bodies to TCR-NER.
On the other hand, enrichment of mutations with transcriptional
strand asymmetry at gene bodies suggests that they might be
subject to DNA repair mechanisms other than TCR-NER. It was
previously reported that exonic regions are depleted of muta-
tions in MMR-proficient, but not MMR-deficient, tumors®,
suggesting that gene body-specific depletion might be related
to MMR instead of TCR-NER.

The relative homogeneity of mutational processes at the amino
acid level highlights that specific hotspot-level mutations can be
evaluated in terms of a limited number of causative mutational
processes (e.g., KRAS-pG12 associated with SBS1). However,
homogeneity at hotspots should not be overstated because
~45% of the most frequently mutated hotspots do not have a
major mutation signature but are rather associated with multiple
mutation signatures (e.g., PIK3CA-p.H1047). In addition, we
observed TP53 mutations to commonly be associated with diverse
mutation signatures, highlighting the effects of multiple muta-
tional processes as they converge on TP53 mutations.

In this study, we demonstrate that CCF-based mutation
signatures can be delineated to show the time-scaled activity of
various mutations. Despite an effort to perform mutation
signature analyses using bins of mutations with similar CCFs*?,
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our mutation signature map at the resolution of individual
mutations can directly assess the evolutionary concordance of
pairs of mutational processes. Although it is expected that SBST,
the lifelong accumulation of C-to-T at methylated cytosines, might
be as an early mutagenic process that is followed by later
mutation processes such as APOBEC activity, our example case of
esophageal cancers further demonstrates that oxidative attacks
(SBS17) may precede APOBEC activity (SBS13).

According to our study, most kataegic events have APOBEC-
related mutation signatures (SBS2 and SBS13), but some events
harbor more than one mutation signature. Whether these unique
events represent separate evolutionary events (e.g. localized
APOBEC activity in the prevalence of SBS7 mutations in melanoma
genomes) or indicate that multiple mutational processes can
simultaneously act on a DNA segment in a localized manner to
generate kataegis events will require further evidence.

One limitation of this study is that we used a subset of mutation
signatures, i.e., the 17 mutation signatures available in COSMIC
Ver. 2 database. Although the mutation signatures used in the
study cover more than 90% of the somatic mutations present in
the dataset, it should be noted that the remaining mutation
signatures, as well as newly reported ones (e.g., 70 SBS signatures
in COSMIC Ver. 37 and novel mutation signatures®), might
provide additional genomic or epigenomic insights beyond those
in our study. Epigenetic features often show tissue- or cell type-
specific patterns, and thus, cell type-specific analyses of cancer
mutations can leverage their tumor-type-matching epigenetic
features. In this study, epigenetic features ranged from a limited
number to tissue or cell types, and such issue should be further
explored by using extended epigenetic features that can cover
major tumor lineages.
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