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Does SARS-CoV-2 affect neurodegenerative disorders? TLR2,
a potential receptor for SARS-CoV-2 in the CNS
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The coronavirus (COVID-19) pandemic, caused by severe acute respiratory system coronavirus 2 (SARS-CoV-2), has created
significant challenges for scientists seeking to understand the pathogenic mechanisms of SARS-CoV-2 infection and to identify the
best therapies for infected patients. Although ACE2 is a known receptor for the virus and has been shown to mediate viral entry
into the lungs, accumulating reports highlight the presence of neurological symptoms resulting from infection. As ACE2 expression
is low in the central nervous system (CNS), these neurological symptoms are unlikely to be caused by ACE2-virus binding. In this
review, we will discuss a proposed interaction between SARS-CoV-2 and Toll-like receptor 2 (TLR2) in the CNS. TLR2 is an innate
immune receptor that recognizes exogenous microbial components but has also been shown to interact with multiple viral
components, including the envelope (E) protein of SARS-CoV-2. In addition, TLR2 plays an important role in the pathogenesis of
neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, we
hypothesize that TLR2 may play a critical role in the response to SARS-CoV-2 infiltration in the CNS, thereby resulting in the
induction or acceleration of AD and PD pathologies in patients.
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INTRODUCTION
The coronavirus pandemic, which is caused by severe acute respiratory
system coronavirus 2 (SARS-CoV-2), has resulted in the infection of over
326million people, with more than 5.5 million deaths due to the disease1.
The disease is considered to be primarily respiratory, with the most
common symptoms including cough, fatigue, headache, muscle aches,
and a loss of taste and/or smell, among others2. The symptoms that are
centralized in the lungs present due to the damage to the alveolar tissue
caused by the virus, specifically, the resulting pneumonia, which coincides
with inflammation3. These symptoms are associated with the expression
of angiotensin-converting enzyme 2 (ACE2) in the lungs, which is known
as a receptor for SARS-CoV-2 andmodulates the cellular entry of the virus.
The spike (S) proteins of coronaviruses are known to bind to ACE2, and
SARS-CoV-2 has been found to be more infectious than earlier
coronaviruses since its binding affinity for ACE2 is higher4.
As the pandemic continues, increasing evidence has drawn

attention to the various local and systemic inflammatory effects of
the virus, such as cytokine storms5. These inflammatory effects
allow the transition of focus from localized damage in the lungs to
systemic damage in the body, specifically in the central nervous
system (CNS), where the virus was shown to produce pathologies
resembling various “classic” forms of neurodegeneration6. It has
been noted that patients with dementia have an increased risk of
contracting the virus, and it has also been suggested that those
who contracted the virus had pathological symptoms that
resembled those of neurodegenerative diseases such as Alzhei-
mer’s disease (AD) and Parkinson’s disease (PD)7–9.

AD and PD are the most common neurodegenerative disorders,
with ~6 and 1 million people, respectively, having the conditions
in the United States alone in 2021, with both values expected to
increase in the future as the average age increases10,11. In AD, the
cognitive deficits are caused by abnormal accumulations of
amyloid-β peptide (Aβ) and tau protein, called Aβ plaques and
neurofibrillary tangles, respectively, which are considered the
pathological hallmarks12. PD is a progressive neurological move-
ment disorder13. Common symptoms of PD include tremor,
rigidity, and bradykinesia, but nonmotor symptoms, such as
depression and anxiety, also occur13. PD is characterized by the
loss of dopaminergic neurons in the substantia nigra, and the
pathological hallmarks are the abnormal deposition of misfolded
proteins called Lewy bodies (LBs) and Lewy neurites (LNs), which
are primarily composed of α-synuclein (α-syn)13,14.
Toll-like receptor 2 (TLR2) belongs to a family of pattern

recognition receptors (PRRs) and is expressed on the surface of
numerous cells, including innate immune cells15. TLR2 recognizes
a variety of microbial components, such as lipopeptides and
peptidoglycan15. While TLR2 plays an important role in the innate
immune system, it has been demonstrated that TLR2 also plays an
important role in the pathogenesis of neurodegenerative diseases,
including AD and PD16–20. Therefore, TLR2 has been proposed as a
new therapeutic target for these diseases18,19,21.
In addition to being a systemic respiratory disease, infection

with SARS-CoV-2 induces neuropathology in patients22–26.
Although recent studies have reported the presence of
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SARS-CoV-2 infection in the CNS26,27, it is still under debate
whether SARS-CoV-2 can infect cells in the CNS28. Despite the
controversy, accumulating evidence supports the invasion of
SARS-CoV-2 into the CNS in patients, which could possibly induce
further delayed neurological complications28. Therefore, it is
reasonable to assume that there could be a receptor that might
recognize a component of SARS-CoV-2 in the brain, such as TLR2.
TLR2 has been known to interact with bacterial pathogens, and
recent studies have demonstrated that TLR2 can also detect
various viruses, including SARS-CoV-229–32. In addition, TLR2 is
widely expressed in brain resident cells, such as neurons and glial
cells33,34. Therefore, in this review, we speculate that a pathogenic
interaction between SARS-CoV-2 and TLR2 occurs in the CNS, and
we will examine its potential effects on AD and PD pathology.

MATERIALS AND METHODS
Human brain immunohistochemical analysis
The paraffin-embedded brain sections of control and SARS-CoV-2-
infected patients were kindly provided by Dr. Avindra Nath
(National Institute of Neurological Disorders and Stroke). The
procedure for immunochemical analysis has been described
elsewhere35,36. Briefly, blinded brain sections were incubated with
anti-ionized calcium-binding adapter molecule 1 (IBA-1, citrate
buffer treatment, 1:2000, Wako Chemicals, Richmond, VA), anti-
transmembrane protein 119 (TMEM119, citrate buffer treatment,
1:500, Abcam, Cambridge, UK), anti-cluster of differentiation 3
(CD3, citrate buffer treatment, 1:2000, Thermo Fisher Scientific,
Waltham, MA), or anti-phospho-α-synuclein (S129) (81 A, citrate
buffer treatment, 1:10,000, gift from Drs. Virginia Lee and John
Trojanowski, University of Pennsylvania, PA) at 4 °C overnight. The
next day, the sections were incubated with a biotinylated
secondary antibody and detected with an avidin D-HRP detection
system (ABC elite, Vector Laboratories, Burlingame, CA). The
immunostained sections were imaged by an Olympus BX41
microscope (Olympus, Tokyo, Japan).

SARS-COV-2 AND NEURODEGENERATIVE DISORDERS
Neuropathology of SARS-CoV-2-infected patients
There is increasing evidence that patients infected with SARS-CoV-
2 have neurological symptoms along with respiratory symp-
toms37,38. Approximately 36% of SARS-CoV-2-infected patients
have neurological symptoms39. The common neurological symp-
toms of patients include headaches and nausea, but patients can
also present with more severe neurological disorders, such as
meningo-encephalitis and acute cerebrovascular disease22–26.
Neuropathologies of SARS-CoV-2-infected patients are varied,
but common neuroinflammatory findings have been reported,
including astrogliosis, microgliosis, ischemia, hemorrhage, and
microvascular lesions in the CNS of patients40. Similar to previous
studies, our postmortem analysis revealed the activation of
microglia in the patients’ brains (Fig. 1). Whether T cells infiltrate
the CNS is controversial;41,42 however, a recent study suggested
that subpopulations of CD3+ and CD4+ T cells infiltrate the CNS
and interact with resident microglial cells in SARS-CoV-2-infected
patients43. Our postmortem study also detected a small number of
infiltrated CD3+ T cells in the cortex of SARS-CoV-2-infected
patients (Fig. 1).

How does SARS-CoV-2 enter the CNS?
Although the expression of ACE2 is very limited in the CNS and
the amount of SARS-CoV-2 present in the CNS after infection is still
disputed14,26, postmortem studies have identified the existence of
SARS-CoV-2 in the CNS of patients44. The presence of SARS-CoV-2
in the CNS was initially hypothesized due to anosmia that
presented as a common symptom of the infection45. This led to
the speculation of the olfactory bulb as a potential route of entry

for the virus into the brain46. Meinhardt et al. suggested that the
neural-mucosal interface could be a potential route for SARS-CoV-
2 neuroinvasion (Fig. 2)46. However, the study also demonstrated
the presence of the virus in other brain regions that had no direct
connection to this interface, leading them to suggest the
existence of other routes for SARS-CoV-2 neuroinvasion46. There
are four other potential CNS entry mechanisms of SARS-CoV-2,
although none have been proven (Fig. 2). Armocida and
colleagues proposed that the virus could infect neurons in the
peripheral nervous system and then take advantage of axonal
transport to gain access to the CNS47. McQuaid et al. suggested
the lateral ventricles and choroid plexus as a CNS entry
mechanism for SARS-CoV-248. Since these regions contain
epithelial cells, which express ACE2, it has been suggested that
the virus could cross the blood-cerebrospinal fluid barrier and
enter the choroid plexus and ventricular system. Recent studies
demonstrated that the expression of ACE2 is relatively high in the
corneal epithelium and suggested that ocular conjunctival
inoculation was enough to cause COVID-1949,50. In addition,
various sampling studies identified the presence of SARS-CoV-2
RNA within regions of the visual system, such as the retina, optic
nerve, conjunctiva, and vitreous body, in patients with confirmed
SARS-CoV-2 diagnoses51,52. A recent study revealed that the S
protein of the novel coronavirus can cross the blood-brain barrier
(BBB)53. Therefore, it has also been suggested that SARS-CoV-2
could impair the functional integrity of the BBB54,55.

Alzheimer’s disease and SARS-CoV-2
A recent clinical study found that the risk of SARS-CoV-2 infection
for patients with dementia was increased 2–3-fold compared with
cognitively healthy individuals8. In addition, the levels of total tau,
phosphorylated tau181, and glial fibrillary acidic protein, all
biomarkers for AD, were elevated in SARS-CoV-2-infected patients
with severe symptoms, suggesting a potential correlation
between AD and SARS-CoV-2 infection severity56. Transcriptomic
and interactomic data also showed a relationship between SARS-
CoV-2 and β-amyloid production and clearance, leading to the
conclusion that SARS-CoV-2 infection may exacerbate AD neuro-
pathology57. In addition, patients with the homozygous allele
apolipoprotein E4 (APOE4), an AD-associated gene, showed an
increased risk for SARS-CoV-2 infection, and APOE4 may also affect

Fig. 1 Representative immunohistochemical analysis of innate
and adaptive immune cells in the frontal cortex of control and
SARS-CoV-2-infected patients. White matter sections obtained
from one control and two SARS-CoV-2-infected patients were
immunostained with anti-IBA-1 and anti-TMEM119 for microglia
and anti-CD3 for T cells. Scale bars represent 50 μm.
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the severity of the host response to infection58,59. Furthermore, it
was found that SARS-CoV-2-infected patients with AD had a
higher rate of death due to the disease than SARS-CoV-2-infected
patients without AD60.
In addition to viral infection, the characteristic behaviors of AD

patients may increase the risk for SARS-CoV-2 infection and
severity. First, patients may not be able to follow the recommen-
dations from public health providers to reduce the spread of the
virus61. Second, the lack of social interaction due to the pandemic
may increase mental and psychological stress in AD patients62.
Increased psychological stress further accelerates the deteriora-
tion of cognitive function in AD patients62.
ACE2 is a known receptor for SARS-CoV-2, and its role in AD has

been extensively studied during the SARS-CoV-2 pandemic;
however, its role in AD is controversial63. A recent study found
an inverse correlation between ACE2 activity and AD patient
neuropathology, such as the accumulation of Aβ and phosphory-
lated tau64. In addition, Kehoe and colleagues reported a
reduction in ACE2 activity in the brain homogenate of AD patients
carrying the APOE4 allele64. However, Lim and colleagues showed
an increased level of ACE2 in the brain tissue of AD patients65.
Zhao and colleagues found that ACE2 expression was upregulated
in the occipital and temporal lobes and the hippocampal CA1
region in AD patients compared to healthy controls66. Therefore,
further studies are required to evaluate the role of ACE2 in AD
pathogenesis.

Parkinson’s disease and SARS-CoV-2
To date, the risk factor associating PD with SARS-CoV-2 infection has
not been clearly identified67. However, it has been suggested that
SARS-CoV-2 infection may trigger parkinsonism symptoms in healthy
individuals68. A case study by Lee and colleagues suggested the
potential effects of SARS-CoV-2 infection on the dopaminergic
mechanisms that led to the development of dysphagia in PD
patients69. In addition, a recent study reported that infection with
SARS-CoV-2 may worsen the symptoms of PD70. It was demonstrated
that the nucleocapsid (N) protein of SARS-CoV-2 sped up the process
of α-syn aggregation in vitro71.
The SARS-CoV-2 pandemic has also increased the level of

psychological stress in PD patients72 which may worsen the
symptoms of PD. For example, the accumulation of psychological
stress has been shown to cause the temporary aggravation of

motor symptoms73,74. One observational study found that 40% of
PD patients showed an exacerbation of their motor symptoms
during the pandemic75. In addition, the limitation of physical
exercise increases psychological stress72.

TLR2 AS A POTENTIAL SARS-COV-2 RECEPTOR IN THE CNS
TLR2
Toll-like receptors (TLRs) belong to a family of innate immune
receptors known as PRRs15. To date, 10 human (TLR1-10) and 13
murine (1-13) subtypes of TLRs have been identified76. TLRs are
type I transmembrane proteins and have a leucine-rich repeat
(LRR) motif, transmembrane domain, and cytoplasmic Toll/IL-1
receptor (TIR) domain77. TLRs are abundantly expressed in
multiple peripheral organs but are also expressed in the neuronal
and nonneuronal cells of the CNS78. TLRs can recognize both
exogenous pathogen-associated molecular patterns (PAMPs) and
endogenous damage-associated molecular patterns (DAMPs)79.
TLRs form a homo-/heterodimer to recognize different shapes of
pathogens80. For example, the TLR4 homodimer recognizes the
lipopolysaccharide of gram-negative bacteria, and the TLR3
homodimer recognizes double-stranded RNA81. Once activated,
TLRs trigger intracellular signaling cascades via myeloid differ-
entiation primary-response protein 88 (MyD88), except for TLR3,
which initiates signaling via Toll/interleukin 1 receptor domain-
containing adaptor interferon-β (TRIF), thereby resulting in the
induction of inflammatory cytokines and chemokines15.

The role of TLR2 in AD
TLR2 is an innate immune receptor, but increasing evidence
demonstrates its role in neurodegenerative diseases, including AD
and PD18,82. Recent genetic studies identified TLR2 as a risk factor
for late-onset AD (LOAD) in Han Chinese and Azeri Turk ancestry
populations83,84. While genetic association studies of TLR2 with AD
are still open to debate76, accumulating in vitro and in vivo studies
provide evidence for the pathogenic role of TLR2 in AD.
In microglia, the brain resident innate immune cells, TLR2

mediates fibrillar Aβ-induced immune responses85. In addition, the
activation of TLR2 enhances pathogenic Aβ uptake in microglia86.
On the other hand, genetic depletion of TLR2 reduces the Aβ42-
induced immune response and enhances Aβ clearance in cultured
microglia16,82. In an animal model of AD (APP/PS1 mice),

Fig. 2 Potential entry routes for SARS-CoV-2 into the central nervous system (CNS). SARS-CoV-2 can infiltrate the CNS via the penetration
of the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier in the epithelium of the choroid plexus, the corneal epithelium of the
eye, the olfactory epithelium of the olfactory bulb (nasal route), and the peripheral nervous system, including the mucosal epithelium,
enterocytes, and smooth muscle cells.
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functional inhibition of TLR2 decreases microgliosis, astrogliosis,
Aβ plaque deposition, and phosphorylated tau accumulation in
the brain regions, thereby improving cognitive function19,87,88. In
addition, genetic depletion of TLR2 shows protective effects
against memory and cognitive impairments in an AD mouse
model89,90. The expression of TLR2 is increased in AD patients and
animal models91,92. Furthermore, immunohistochemical analysis
demonstrates that the localization of microglial TLR2 is associated
with Aβ plaques in the brains of AD patients and aged mouse
models82,85,93.

TLR2 in PD
Although the pathogenic role of TLR2 in PD was demonstrated a
few years later than that in AD, it has also been extensively studied
for this short period18. Genetic associations of TLR2 polymorphisms
with PD were identified in northeastern Han Chinese and Greek
populations94,95. In 2013, we first demonstrated that neuron-
released oligomeric forms of α-syn activated microglial TLR2,
thereby inducing neurotoxic inflammation through the activation
of nuclear factor kappa B (NF-κB)17,96. This finding was supported
by subsequent in vitro and in vivo studies. Roodveldt et al.
demonstrated that pretreatment with a TLR2 agonist, but not other
TLR agonists, increased microglial susceptibility against α-syn97.
Qiao et al. showed that functional and genetic inhibition of TLR2
prevented microglial responses against neuron-released α-syn98.
Daniele et al. reported that α-syn treatment induced microglial
inflammatory responses by forming a TLR1/2 heterodimer com-
plex99. We also demonstrated that leucine-rich repeat kinase 2
(LRRK2), a PD-associated gene, and nuclear factor of activated T cell
1 (NFAT1) are downstream signaling molecules of TLR2 in
microglia, thereby modulating neurotoxic microglial activation100.
In a mouse model of PD, Drouin-Ouellet et al. reported that the
overexpression of α-syn increased the expression of TLR2101. La
Viola et al. demonstrated that oligomeric forms of α-syn induced
memory impairment through TLR2102. Interestingly, exercise
showed a protective effect in a 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine (MPTP)-induced PD mouse model via the down-
regulation of TLR2 and downstream signaling molecules, including
MyD88103. In PD patients, the level of TLR2 was elevated in the
blood compared to healthy controls101. Furthermore, the expres-
sion of TLR2 was also increased in the specific brain regions of PD
patients and aged animal models in accordance with disease
stages91,101.
Although TLR2 is primarily expressed in innate immune cells, recent

studies have demonstrated that neurons also express TLR281,104, which
has been demonstrated to play an important role in PD. We
demonstrated that the activation of neuronal TLR2 impaired autophagy
through the AKT/mammalian target of rapamycin signaling cascade,
thereby inducing the accumulation of neurotoxic α-syn aggregates105.
These findings were supported by Dzamko and colleagues, who also
demonstrated the elevation of neuronal TLR2 in the brains of PD
patients106.
The neuron-to-neuron and neuron-to-glial transmission of α-syn

has been proposed to play a central role in PD pathogenesis and
disease progression107. Although the primary role of TLR2 is
recognizing pathogens, TLR2 also modulates pathogen phagocy-
tosis in cells108. Genetic or pharmacological activation of TLR2
increased extracellular α-syn uptake by neuronal and glial cells,
while it was inhibited by genetic and functional depletion of
TLR217,21,105. Specifically, the α-syn transmission assay indicated
that the activation of TLR2 not only increased α-syn transmission
in neurons but also increased its propagation21. In microglia, the
internalization of monomeric α-syn was not affected by TLR2, but
the uptake of α-syn oligomer was significantly decreased by TLR2
inhibition in the cells17. In addition, the deposition of α-syn
increased in astrocytes that did not express α-syn in either PD
patients or mouse models21. These observations were reproduced
in PD models in which functional inhibition of TLR2 significantly

reduced astroglial α-syn deposition in both a PD mouse model
and a neuron-to-astrocyte α-syn monitoring system21.
Given that TLR2 plays an important role in PD, targeting TLR2

has been proposed as a promising immunotherapeutic option for
the disease18. Indeed, the administration of a TLR2 functional
blocking antibody improved α-syn neuropathology, neuroinflam-
mation, and motor behavioral deficits in a PD mouse model21.

TLR2 and SARS-CoV-2
Lipopeptides and gram-positive bacteria-derived lipoprotein are
considered the traditional ligands of TLR215. However, increasing
evidence also supports the interaction of TLR2 with viruses.
Varicella-zoster virus activates the inflammatory response in
monocytes via TLR2109. Furthermore, various viral proteins, such
as the structural proteins (p17, p24, and gp41) of human
immunodeficiency virus 1, the core protein of hepatitis C virus,
and glycoprotein B of herpes simplex virus 1, have been known to
interact with TLR2, thereby inducing cytokine gene expression110. In
addition, it was found that the S protein of SARS-CoV-1 activated
TLR2 in peripheral leukocytes, which resulted in the induction of
proinflammatory cytokine and chemokine gene expression, includ-
ing interleukin-6 (IL-6) and TNF-α111.
The exact pathogenic mechanism of SARS-CoV-2 is still largely

unknown. However, increasing evidence supports that TLRs might
play a role during SARS-CoV-2 pathogenesis112. It has been shown
that the surface proteins of SARS-CoV-2 could behave as a PAMP,
thereby inducing the upregulation of inflammatory factors in the
rodent model through TLR2 and TLR4113. Prophylactic adminis-
tration of a TLR2 agonist showed a protective effect against SARS-
CoV-2 infection and decreased virus transmission through the
activation of the innate immune system114. More importantly,
Zheng et al. demonstrated that TLR2 can sense the envelope (E)
protein of SARS-CoV-2, thereby inducing an inflammatory
response30. Signaling molecules downstream from TLR2, including
MyD88 and TRIF, were significantly increased in SARS-CoV-2-
infected patients with severe/critical conditions compared to
healthy controls. In addition, a pharmacological inhibitor of TLR2
inhibited the inflammatory responses of human leukocytes
against SARS-CoV-2 infection. Furthermore, genetic depletion of
TLR2 prevented inflammation and tissue damage in the lungs of
mice expressing human ACE2. These findings suggest that the
surface proteins of SARS-CoV-2 induce the activation of TLR2,
leading to inflammatory responses.

PROSPECTIVE: DOES SARS-COV-2 AFFECT AD AND PD
PATIENTS THROUGH TLR2?
ACE2 is a primary receptor for SARS-CoV-2. After infection, the
number of SARS-CoV-2-positive cells rapidly increases in the host
peripheral system115. However, the viral load in the CNS is lower
than that in the periphery26. Based on these observations, we
speculate that SARS-CoV-2 infection is limited in the CNS during
the early infection period for two reasons: the inhibition of SARS-
CoV-2 CNS infiltration by the existence of a physical barrier (the
BBB) and the low level of SARS-CoV-2 high-affinity receptors in the
CNS116. However, persistent infection with SARS-CoV-2 leads to
excessive peripheral immune responses, which could induce
damage to the BBB117. Therefore, a greater number of viruses
can infiltrate the CNS via the damaged barriers, which may
increase the chance that a viral component will meet a responding
receptor, such as TLR2, in the CNS (Fig. 3).
Many of the severe and critical conditions of SARS-CoV-2-

infected patients result in death115. However, vaccination against
SARS-CoV-2 will help reduce the numbers of patients who become
severely or critically ill. In addition, developing a medication for
COVID-19 would reduce the death rate of patients in the future. To
date, two treatments have been approved by the FDA: an
antibody cocktail targeting SARS-CoV-2 (REGN-COV2, REGENERON)
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and an oral antiviral medicine (Molnupiravir, Merck). On the other
hand, CNS-infiltrated viruses might survive longer than those in
the peripheral system due to the lack of an adaptive immune
system and the high selectivity of the BBB against drugs117.
Therefore, this prolonged presence of SARS-CoV-2 in the CNS may
cause further problems in the brain that might not present until
much later. Specifically, SARS-CoV-2 viral components may directly
affect patients with neurodegenerative diseases. According to
Zheng et al., the E protein of SARS-CoV-2 is activated and induces
TLR2 expression in innate immune cells30. Microglia, brain resident
innate immune cells, express TLR2, which plays a critical role in the
neuroinflammation of AD and PD patients17,85. Therefore, we
speculate that the viral components, especially the E protein, of

brain-infiltrated SARS-CoV-2 induces the activation of microglial
TLR2, thereby increasing the susceptibility of TLR2 to Aβ and α-syn
deposition in patients (Fig. 3). The chronic activation of TLR2 can
induce chronic neuroinflammation, which will accelerate disease
pathogenesis118. TLR2 is also expressed in neurons, and prolonged
infection with SARS-CoV-2 may induce neuronal TLR2 activation in
the brain. The induction of neuronal TLR2 is associated with
pathological α-syn neuron-to-neuron transmission and propaga-
tion, which is known to be associated with disease progression18.
In addition, the activation of neuronal TLR2 has been shown to
impair neuronal autophagy, thereby increasing abnormal accu-
mulation of neurotoxic misfolded proteins, such as α-syn105.
Therefore, the induction of neuronal TLR2 susceptibility by the E
protein of SARS-CoV-2 may lead to the deposition of abnormal
protein in the cells, thereby affecting the disease onset and/or
accelerating the disease progression of proteinopathy-associated
neurodegenerative diseases. Indeed, our preliminary postmortem
analysis revealed that the accumulation of phosphorylated α-syn,
one of the pathogenic forms of α-syn, was increased in the brains
of SARS-CoV-2-infected patients (Fig. 4). For these reasons, further
detailed studies are required to understand the pathogenic
interaction between SARS-CoV-2 and TLR2 and the potential of
TLR2 as target for COVID-19 treatment.
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