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Abstract
Target-specific genome editing, using engineered nucleases zinc finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), and type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9), is considered a promising approach to correct disease-causing mutations in various
human diseases. In particular, hemophilia A can be considered an ideal target for gene modification via engineered
nucleases because it is a monogenic disease caused by a mutation in coagulation factor VIII (FVIII), and a mild
restoration of FVIII levels in plasma can prevent disease symptoms in patients with severe hemophilia A. In this study,
we describe a universal genome correction strategy to restore FVIII expression in induced pluripotent stem cells (iPSCs)
derived from a patient with hemophilia A by the human elongation factor 1 alpha (EF1α)-mediated normal FVIII gene
expression in the FVIII locus of the patient. We used the CRISPR/Cas9-mediated homology-directed repair (HDR) system
to insert the B-domain deleted from the FVIII gene with the human EF1α promoter. After gene targeting, the FVIII gene
was correctly inserted into iPSC lines at a high frequency (81.81%), and these cell lines retained pluripotency after
knock-in and neomycin resistance cassette removal. More importantly, we confirmed that endothelial cells from the
gene-corrected iPSCs could generate functionally active FVIII protein from the inserted FVIII gene. This is the first
demonstration that the FVIII locus is a suitable site for integration of the normal FVIII gene and can restore FVIII
expression by the EF1α promoter in endothelial cells differentiated from the hemophilia A patient-derived gene-
corrected iPSCs.

Introduction
Hemophilia A is a dominant hemophilic disorder,

affecting 1 in 5000 males, and is caused by a deficiency in
coagulation factor VIII (FVIII)1,2. Patients with severe
cases of hemophilia A suffer from frequent spontaneous
bleeding events in various organs, including the joints and
muscles, that can lead to chronic musculoskeletal dis-
abilities3. The major treatment for hemophilia A is sup-
plementation with clotting factor, but this requires

frequent intravenous infusions (1–3 times in a week for
prophylactic treatment) and high costs for clotting factor
concentrates4,5. Gene therapy of hemophilia A is expected
to become a therapeutic alternative to supplementation
with clotting factor concentrates. In particular, hemophilia
A is a feasible target for gene therapy because increasing
the plasma level of FVIII by only 1% causes therapeutic
improvements in patients with severe hemophilia A6,7.
Recently developed engineered nucleases, including zinc

finger nuclease (ZFN), transcription activator-like effector
nuclease (TALEN), and type II clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9), are already used in gene
therapy for various diseases and enable a more sophisti-
cated modification of mutated genes. Moreover, the
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potential for using engineered nucleases in patient-
derived induced pluripotent stem cells (iPSCs) and cell
type-specific differentiation techniques provides an
unlimited source for future ex vivo cell therapy materials
for autologous transplantation8,9. Previously, we showed
that an inversion genotype can be generated or corrected
in human iPSCs using TALEN10. We also showed that
CRISPR/Cas9 can revert inversion mutations in human
iPSC lines derived from patients with intron 1 or intron
22 inversion. We confirmed that transplantation of
endothelial cells derived from gene-corrected iPSCs can
rescue injury mortality in hemophiliac mice11. Others
have also used TALEN to insert the exon 23–26 cDNA
fragment at the deletion junction of exon 22 and intron 22
in intron 22 inversion patient-derived iPSCs, and found
that functionally active FVIII protein was expressed in
differentiated cells from gene-corrected iPSC lines12.
These previous corrections of intron 22 inversion in
patient-derived iPSCs are crucial because intron 22
inversion is the most common mutation of hemophilia A,
occurring in almost half of patients with severe
hemophilia A13,14.
However, the other half of severe hemophilia A is

caused by various types of mutations, including insertions,
deletions, and point mutations15. Therefore, to correct all
of these mutant types in hemophilia A patients, it is
inevitable that large arrays of customized sets of ZFN and
TALEN, single-guide RNAs (sgRNAs) for CRISPR/Cas9,
and targeting donors will be required. Another possible
and universal approach is the insertion of an FVIII
transgene into a specific site of the genome. This
approach is a more likely strategy for dealing with all
FVIII mutant variants because the FVIII transgene can
express the functional FVIII protein, regardless of mutant
variants of hemophilia A. In this way, a single set of genes
targeting an engineered nuclease and the FVIII gene
donor plasmid is sufficient to address virtually all hemo-
philia A mutant types.
In this study, we explored the possibility of a universal

gene-correction strategy in which the human EF1α
promoter-driven FVIII gene is expressed in the FVIII locus
of hemophilia A patient-derived iPSCs by using a CRISPR/
Cas9-mediated donor plasmid knock-in. We designed
knock-in donor plasmids for an expression cassette with
the B-domain deleted form of FVIII (BDD-FVIII) and the
EF1α promoter for insertion at exon 1 of the FVIII locus.
Importantly, insertion of the FVIII gene resulted in the
production of a functionally active FVIII protein from the
gene-corrected iPSC line-derived endothelial cells.

Materials and methods
Cell cultures
Human embryonic kidney (HEK293) cells were cultured

in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% (vol/vol) fetal bovine serum (FBS)
plus 1% (vol/vol) P/S. FVIII-deleted patient-derived iPSCs
(Park, C.Y., 2019, unpublished data), and gene-corrected
iPSC lines were maintained on Matrigel (Corning, Corn-
ing, NY, USA)-coated cell culture plates in STEM-
MACSTM iPSC-brew FX (STEMMACS medium; Miltenyi
Biotec, Bergisch Gladbach, Germany) medium for feeder-
free culture. Briefly, iPSCs were passaged as cells once
they reached a confluency of 70–80%. For passaging, we
rinsed iPSCs with Dulbecco’s phosphate-buffered saline
(dPBS) once and incubated them with Versene solution
(Gibco, Grand Island, NY, USA) for 4–5min. Next, we
changed the Versene solution for STEMMACS medium
and pipetted cells to dissociate the culture into small
clumps. iPSC clumps were split 1:10 and reseeded on a
new Matrigel-coated culture dish in STEMMACS med-
ium supplemented with 10 μM of Y27632 (Sigma-Aldrich,
St. Louis, MO, USA). The next day, the iPSC culture
medium was changed to fresh STEMMACS medium
without Y27632, and the medium was refreshed daily.

sgRNA preparation and validation
We purchased recombinant Streptococcus pyogenes

Cas9 (SpCas9) and sgRNA expression plasmids from
ToolGen (Seoul, Korea). Potential off-target sites that
differed by up to three nucleotides from the sgRNA were
also provided by ToolGen (Supplementary Table 1). To
validate the cleavage activity of the sgRNA, we transfected
Cas9 protein and sgRNA expression plasmids into
HEK293 cells. Three days after transfection, genomic
DNA was purified with DNeasy Blood & Tissue Kits
(QIAGEN, Hilden, Germany) and applied to the T7E1
assay as described previously16.

Donor plasmid construction
We used pcDNA4/BDD-FVIII (Addgene #40135) for

EF1α-FVIII knock-in donor plasmid construction. First,
we introduced a single point mutation in the respective
protospacer adjacent motif (PAM) site (C>T, 36 bp
downstream from the BDD-FVIII start codon) to evade
cleavage by Cas9/sgRNA. Then, the cytomegalovirus
(CMV) promoter of the original pcDNA4/BDD-FVIII was
substituted with the 1113 bp 5′-homology arm (left arm)
cloned from human genomic DNA and inserted into the
MfeI/NruI site. The human elongation factor 1 alpha
(EF1α) promoter was inserted into the MluI/NruI site
between the left arm and the BDD-FVIII open reading
frame. We inserted a bovine growth hormone (bGH)
polyadenylation signal and the neomycin resistance cas-
sette flanked by loxP sites fused by overlapping PCR into
the 3′ end of the BDD-FVIII open reading frame using the
NotI/MauBI site. Afterward, a 786 bp 3′-homology arm
(right arm) was cloned from human genomic DNA and
inserted into the PacI/MauBI site. The sequence of the
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donor plasmid from the 5′ end of the left arm and to the
3′ end of the right arm was confirmed by Sanger
sequencing at Cosmogenetech (Seoul, Korea).

Generation of gene-corrected patient-derived iPSCs
Patient-derived iPSC colonies were pretreated with

10 μM Y27632 for 2 h prior to electroporation. Cells were
then washed once with dPBS and dissociated into single
cells using TrypLETM Select (Gibco). iPSC cells (5 × 105)
were electroporated with 2 μg Cas9, 2 μg sgRNA expres-
sion vector, and 4 μg donor plasmids using a NeonR

electroporator (Invitrogen, Carlsbad, CA, USA) as pre-
viously described10. Transfected cells were plated onto a
Matrigel-coated plate with 10 μM Y27632 for 2 days.
G418 (100 μg/mL) was added to the culture medium
2 days after electroporation. After 12–14 days of
G418 selection, half of the surviving colonies were
manually lifted and lysed for genotype as described pre-
viously9. Correctly targeted colonies were dissociated into
single cells and reseeded for expansion and further

analysis. To generate single cell-derived correctly targeted
iPSCs, we performed an additional three rounds of single
colony passaging with G418 selection. After three rounds
of single colony passaging and G418 selection, the cor-
rectly targeted cell lines underwent excision from the
neomycin resistance cassette. We electroporated 2 μg
pCAG-Cre:GFP vector (Addgene #13776) into 5 × 105

iPSCs and performed clonal selection without a selection
drug.

PCR analysis of targeted FVIII gene knock-in
Genomic DNA was purified using DNeasy Blood &

Tissue Kits (QIAGEN) according to the manufacturer’s
instructions. We used primer sets specific to the donor
plasmid and genomic DNA sequences adjacent to the 5′
and 3′ ends of the integration junction. The target
location and sequences are shown in Fig. 1a and Sup-
plementary Table 2. We sequenced PCR amplicons of
knock-in junctions at Cosmogentech to verify their
identity.
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Fig. 1 Site-specific integration of the FVIII gene at a hemophilia A patient’s FVIII locus. a A schematic representation of the targeted insertion
of the FVIII gene at the human FVIII locus and the excision of the neomycin resistance cassette. Top depicts exon 1 of the human FVIII locus, and
below shows donor plasmid, which consists of a 1113 bp left arm (LA), human EF1α promoter (pEF1α), BDD form of FVIII (FVIII), bovine growth
hormone polyadenylation signal (PA), loxP-flanked neomycin resistance cassette (Neo), and 786 bp right arm (RA). The neomycin resistance cassette
was removed by Cre expression after the knock-in of the donor plasmid. Primers used in PCR analysis are represented by red arrowheads. b Genomic
PCR analysis of gene-corrected clones before (−) and after (+) Cre expression in the gene-corrected cell lines KI-1 and KI-2. The F1/R1 primer pair was
used to detect exon 1 (E1) of the FVIII locus. The primer sets F1/R2 and F2/R1 were used to detect the knock-in junctions of the 5′ and 3′ ends in
correctly targeted clones. The F3/R1 primer pair was used for detecting the removal of the neomycin resistance cassette. Genomic DNA from parental
patient iPSCs was used for the control (patient). c Partial chromatograms from a 1626 bp PCR amplicon generated with F3/R1, showing the
sequences around loxP in KI-1 and KI-2 cell lines after removal of the neomycin resistance cassette. Partial bGH poly A signal (PA), loxP, and partial
right arm (RA) shown in green, purple, and blue, respectively

Sung et al. Experimental & Molecular Medicine (2019) 51:45 Page 3 of 9

Official journal of the Korean Society for Biochemistry and Molecular Biology



Analysis of indel frequency
Genomic DNA was isolated from both the patient and

corrected iPSC clones using DNeasy Blood & Tissue Kits
(QIAGEN). To analyze the indel frequency, we amplified
the off-target regions using Phusion polymerase (Thermo
Fisher Scientific, MA, USA). The specific primer sets are
listed in Supplementary Table 3. Deep-sequencing
libraries were generated from the second PCR using the
TruSeq HT Dual Index primers. The resulting libraries
were subjected to paired-end sequencing using MiSeq
(Illumina, San Diego, CA, USA) at LAS, Inc. (Gimpo,
Korea) as previously reported17.

In vitro differentiation into three germ layers
We performed the in vitro three-germ layer forma-

tion assay as previously described10,18. Briefly, iPSC
colonies were manually dissected by glass hock and
lifted using collagenase type IV (Invitrogen) to generate
embryonic bodies (EBs). EBs were cultured on low-
attachment cell culture dishes in 5% FBS containing EB
culture medium [DMEM/F12 medium containing 4 ng/
mL basic fibroblast growth factor (bFGF; PeproTech,
Rocky Hill, NJ, USA), 20% knockout serum replacement
(Invitrogen), 1% nonessential amino acids (Invitrogen),
and 0.1 mM 2-mercaptoethanol (Sigma-Aldrich)]. After
1 week, EBs were plated onto Matrigel-coated dishes
and cultured for an additional 10 days for spontaneous
differentiation.

RNA isolation, reverse transcription polymerase chain
reaction (RT-PCR), and quantitative PCR (qPCR) analysis
We purified total RNA from patient-derived iPSCs or

iPSC-derived endothelial cells with an Easy-Spin Total
RNA Extraction Kit (Intron Biotechnology, Seongnam,
Korea) according to the manufacturer’s instructions.
Then, we used 1 μg purified total RNA to generate cDNA
with PrimeScriptTM RT Master Mix (TAKARA BIO, Inc.,
Otsu, Japan) and performed qPCR using SYBR® Premix
ExTaqTM (TAKARA BIO, Inc.). mRNA levels were
quantified using the CFX96 Real-Time System (Bio-Rad,
Hercules, CA, USA). Ct values of GAPDH were used as an
endogenous reference to normalize the relative expression
levels of target genes based on their Ct values. For semi-
quantitative RT-PCR, we used EmeraldAmp® GT PCR
Master Mix (TAKARA BIO, Inc.) to amplify the target site
according to the manufacturer’s instructions. Primer
sequences used for RT-PCR or qPCR are shown in Sup-
plementary Table 2.

Differentiation of endothelial cells from iPSCs
We performed endothelial cell differentiation from

iPSCs using a previously described protocol with minor
modifications19. Briefly, iPSCs were dissociated with
Versene solution and transferred to a new Matrigel-

coated dish in STEMMACS medium supplemented with
10 μM Y27632. On day 0 of differentiation, iPSCs were
treated with 6 μM CHIR99021 (Tocris Bioscience, Bristol,
UK) in STEMdiffTM APELTM2 medium (STEMCELL
technologies, Vancouver, BC, Canada) for 2 days. On day
2, CHIR99021-containing medium was changed to
STEMdiffTM APELTM2 medium with 25 ng/mL BMP4
(ProSpec, NJ, USA), 10 ng/mL bFGF (PeproTech), and
50 ng/mL VEGF-A (PeproTech) for 2 days. On day 4, cells
were detached with TrypLETM select, transferred to new
culture dishes and cultured in endothelial cell growth
medium-MV2 (ECGM-MV2; Promocell, Heidelberg,
Germany) supplemented with 50 ng/mL VEGF-A. The
ECGM-MV2 with VEGF-A was refreshed every 2 days.
On day 8 of differentiation, the resulting endothelial cells
were applied to the appropriate assays.

Immunocytochemistry
For immunofluorescent staining, we fixed cells on glass

slides with a 4% paraformaldehyde solution for 10min,
washed three times with PBS, and permeabilized with PBS
containing 0.1% Triton X-100 for 10 min at room tem-
perature. After blocking in blocking buffer (PBS con-
taining 2% bovine serum albumin) for 1 h at room
temperature, the samples were incubated with primary
antibody diluted in blocking buffer at 4 °C overnight. The
following primary antibodies were used: rabbit anti-OCT4
(1:200, Santa Cruz Biotechnology, Dallas, TX, USA),
mouse anti-SSEA4 (1:200, Millipore, Billerica, MA, USA),
rabbit anti-NESTIN (1:1000, Millipore), goat anti-SOX17
(1:200, Santa Cruz Biotechnology), mouse anti-α-SMA
(1:400, Sigma-Aldrich), mouse anti-CD31 (1:200, BD
Biosciences, San Jose, CA, USA), and rabbit anti-vWF
(1:500, Millipore). After washing three times with PBS, we
incubated samples with fluorescence-tagged secondary
antibodies (Alexa Fluor® 488 or Alexa Fluor® 594, 1:1000,
Invitrogen) in PBS for 30 min at room temperature.
Samples were washed again three times with PBS and
mounted onto slides using 4′,6-diamidino-2-pheny-
lindole-containing mounting medium (Vector Labora-
tories, Burlingame, CA, USA). All images were captured
with a fluorescence microscope (Eclipse Ti-U, Nikon
Instruments Inc., Tokyo, Japan).

FVIII activity assay
On day 8 of differentiation, we changed the endothelial

cell culture medium to phenol red free ECGM-MV2
medium with 50 ng VEGF-A. After 24 h incubation, the
supernatants were collected and concentrated 20 times
using centrifugal filter units (Millipore). FVIII activity in
the concentrated culture supernatant was measured using
the Coamatic® Factor VIII Chromogenic Assay Kit
(Instrumentation Laboratory, Bedford, MA, USA)
according to the manufacturer’s instructions.
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Statistics
All data values are expressed as the mean ± standard

error of the mean (S.E.M.) unless otherwise indicated.
Statistical significance was estimated using Student’s t-
test. A resulting p-value < 0.01 was considered statistically
significant.

Results
Sequence analysis of the FVIII gene breakpoint from a
patient with severe hemophilia A
In this study, we used an iPSC line derived from a

hemophilia A patient with a gross deletion (exon 8–exon
22) at the FVIII locus. Targeted genotype PCR from
intron 7 to intron 22 and Sanger sequencing analysis
revealed a gross deletion of 94,172 bp from exon 8 to
intron 22 at the patient’s FVIII locus (Supplementary Fig.
1a). We identified the mRNA sequences around the
deletion junction in the patient’s FVIII locus by using
mRNA transcripts from the patient-derived iPSC line.
RT-PCR and Sanger sequencing analysis targeting exon
7–exon 23 showed that partial exon 8 and intron
22 sequences were spliced out and that exons 7 and 23
were directly linked to make a shorter version of the FVIII
mRNA, which also generated a premature stop codon in
exon 23 (Supplementary Fig. 1b).

A strategy for the restoration of FVIII expression based
on donor plasmids knock-in in the FVIII locus
We hypothesized that insertion of the human EF1α

promoter-driven FVIII gene in exon 1 of the FVIII locus
would express functionally active FVIII protein regardless
of the mutant type. Therefore, we designed a nuclease
targeting 34 bp downstream from the start codon in exon
1 of the human FVIII locus on chromosome X for
homology-directed repair (HDR)-mediated knock-in
(Supplementary Fig. 2a). Next, we tested the cleavage
efficiency of the Cas9/sgRNA by transient expression of
the sgRNA and Cas9 expression vector in HEK293 cells. A
subsequent T7E1 analysis and Sanger sequencing of the
sgRNA target site revealed that the Cas9/sgRNA induced
various indels at the target site with a frequency of 11%
(Supplementary Fig. 2b, c).
Next, we designed a donor plasmid to restore FVIII

expression using a BDD-FVIII cDNA. The donor plasmid
was designed to use the human EF1α promoter for BDD-
FVIII expression. Based on this concept, the donor plas-
mid included the EF1α promoter, the BDD-FVIII cDNA, a
bGH polyadenylation signal, a loxP-flanked neomycin
resistance cassette, and the left and right arms (Fig. 1a).
We then introduced the CRISPR/Cas9 and sgRNA

expression vectors, and the donor plasmid into hemo-
philia A patient-derived iPSCs to create EF1α-BDD-FVIII
knock-in iPSC lines. After drug selection with G418,
genomic DNA of the surviving colonies was collected for

initial PCR screening to identify correctly targeted colo-
nies by amplifying each 5′ and 3′ knock-in junction with
the specific primer set of F1/R2 and F2/R1 (Fig. 1a). PCR
screening results indicated that the donor plasmid inser-
ted into exon 1 of the FVIII locus at a frequency of 81.81%
(18 colonies positive from a total of 22 colonies) (Sup-
plementary Fig. 3a, b). Then, we obtained two clones (KI-
1 and KI-2) after an additional three rounds of single
colony expansion and G418 selection. Targeted PCR
analysis of 5′ and 3′ knock-in junctions and Sanger
sequencing analysis of PCR amplicons showed that donor
plasmids were correctly targeted in exon 1 of the patient’s
FVIII locus (Fig. 1b, Supplementary Fig. 4a, b). Then, KI-1
and KI-2 cell lines were subjected to removal of the
neomycin resistance cassette by Cre recombinase
expression. Targeted genomic DNA PCR using a specific
primer set (F3/R1, Fig. 1a) and Sanger sequencing of the
amplified PCR amplicons confirmed the complete
removal of the neomycin resistance cassette in the knock-
in cell line after Cre expression and single colony
expansion (Fig. 1b, c).

Pluripotency and off-target analysis of gene-corrected
patient-derived iPSCs
We determined whether the KI-1 and KI-2 gene-cor-

rected cell lines remained pluripotent after gene targeting.
Our quantitative real-time PCR (qPCR) results showed
that gene-corrected cell lines expressed the pluripotent
marker genes OCT4, SOX2, and LIN28 at levels similar to
those of the parental hemophilia A patient-derived iPSC
line (Fig. 2a). We also confirmed uniform expression of
OCT4 and SSEA4 in iPSC colonies by immunocy-
tochemistry analysis (Fig. 2b). In vitro three germ layer
formation assays showed that these lines could be differ-
entiated into three germ layers (Fig. 2c). We then
sequenced off-target sites of the sgRNA in the gene-
corrected iPSC clone KI-1. We obtained a list of potential
off-target sites from ToolGen (Seoul, Korea) that differed
from the on-target site by up to three nucleotides. We
selected four potential off-target sites from the list and
subjected these sites to targeted deep-sequencing. No
significant mutations were found in any of the analyzed
off-target sites in the corrected KI-1 cell line (Supple-
mentary Fig. 5).

Restoration of FVIII expression in the gene-corrected
iPSC-derived endothelial cells
We then asked whether endothelial cells from gene-

corrected iPSC lines could restore FVIII expression. We
differentiated the gene-corrected KI-1 cell line into
endothelial cells19 and then examined the expression of
FVIII mRNA and the secretion of functionally active
FVIII protein. After 8 days of differentiation, the
endothelial nature of cells was confirmed by
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immunocytochemistry and PCR analysis. Differentiated
cells were positive for staining of the endothelial cell
markers CD31 and vWF (Fig. 3a). Then, we used PCR
analysis to evaluate the expression of FVIII and the
endothelial cell markers CD31 and vWF in iPSC-derived
endothelial cells. We used the primer set targeting exon
7–exon 10 to discriminate between the patient’s FVIII
and knocked-in BDD-FVIII mRNA. Our qPCR and RT-
PCR results showed no significant differences in the
endothelial cell markers CD31 and vWF between par-
ental patient iPSCs and the gene-corrected KI-1 cell line
(Fig. 3b, c). However, as we expected, the FVIII tran-
script was only detected in the KI-1 cell line-derived
endothelial cells, as shown by both qPCR and RT-PCR
analyses (Fig. 3b, c). We also confirmed by Sanger
sequencing that the PCR amplicon had normal exon
7–exon 9 sequences of FVIII cDNA (Fig. 3d).
Finally, we performed the FVIII activity assay to identify

whether functionally active FVIII protein was secreted
from gene-corrected iPSC-derived endothelial cells. We
confirmed a significant increase in FVIII activity (2.9-fold
increase) compared to the control in the endothelial cell
culture supernatant (Fig. 3e). Altogether, our data showed
that the insertion of the normal FVIII gene into exon 1 of
the mutant FVIII locus can generate a functional FVIII
protein in iPSC-derived endothelial cells.

Discussion
In this study, we used iPSCs derived from a severe

hemophilia A patient with a gross deletion of FVIII from
exon 8 to exon 22. With this mutation, one possible
approach for restoring FVIII expression might be
achieved by inserting the cDNA sequence spanning exon
8–exon 22 in the patient’s FVIII locus. However, this
approach only applies to one specific event but not for
other hemophilia A FVIII mutant variants. As we dis-
cussed above, we hypothesized that insertion of the FVIII
transgene into a specific locus of the human genome is a
suitable method for universal gene correction to over-
come this limitation. In the case of hemophilia B, the
second most abundant hemophilia type caused by a
mutation of factor IX (FIX), there have been efforts to use
the FIX locus itself to express the FIX gene. It is known
that insertion of the FIX exon 2 to exon 8 sequence in
intron 1 of the human FIX gene in a humanized hemo-
philia B mouse model restored FIX expression via ZFN-
mediated in vivo gene correction20. Another recent report
also showed that insertion of the FIX cDNA at exon 1 of
the human FIX locus restored FIX expression in gene-
corrected hemophilia B patient iPSC-derived hepatocytes,
both in in vitro and in vivo models21.
Similar to these approaches, we designed a universal

strategy to restore FVIII expression in patient-derived
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patient cells and gene-corrected iPSC lines. GAPDH was used to normalize gene expression. b Immunofluorescence staining to indicate expression of
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iPSCs. We inserted a human FVIII gene with EF1α
promoter-driven expression into exon 1 of the FVIII locus
in hemophilia A patient-derived iPSCs with high effi-
ciency (81.81% in initial screening). We also checked the
indel frequencies at off-target sites because unwanted
mutations at off-target sites are an important risk factor
for using engineered nucleases22,23. Our targeted deep
sequencing data suggest that there were no significant
mutations in the analyzed off-target sites.
We confirmed the expression of the FVIII transcript and

of the functionally active FVIII protein from gene-
corrected iPSC-derived endothelial cells. Recent findings
indicate that liver sinusoidal endothelial cells are a major
source of FVIII production; however, other endothelial
cell types, such as microvascular and lymphatic endo-
thelial cells, can also generate the FVIII protein24–26. Our
study and other previous studies also showed that endo-
thelial progenitor cells from human iPSCs could express

FVIII mRNA and functionally active FVIII protein11,12.
Moreover, FVIII-transduced human primary endothelial
cell progenitor cells are widely used for research into
ex vivo therapy for hemophilia A27–29.
Our results show that the insertion of the B-domain

deleted form of the FVIII gene with an EF1α promoter
restored FVIII expression in gene-corrected iPSC-derived
endothelial cells. We used the BDD-FVIII because it is
known that the B-domain is unnecessary for the coagu-
lation activity of FVIII. Moreover, BDD-FVIII has a rela-
tively small size (4.3 kb compared to the 7 kb full-length
FVIII cDNA), and an enhanced expression capability
compared to the full-length FVIII cDNA, so BDD-FVIII is
widely used in gene therapy for hemophilia A30–32.
However, it is also known that both B-domain deleted and
full-length FVIII cDNA have transcriptional repressor
sequences that cause inefficient transcription33,34. Addi-
tionally, deletion of the B-domain also results in a reduced
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Fig. 3 Restoration of FVIII expression in the gene-corrected iPSC-derived endothelial cells. a Immunofluorescence staining of endothelial cell
markers CD31 (green) and vWF (red) differentiated from the parental patient and gene-corrected iPSC clones. Nuclei were labeled with DAPI (blue)
(scale bar, 200 μm). b qPCR analysis of FVIII, CD31, and vWF in cells from the patient and from gene-corrected iPSC line-derived endothelial cells. The
FVIII transcript was amplified with primers based on exon 7 and exon 10. c Expression of FVIII and endothelial cell markers CD31 and vWF were
analyzed by RT-PCR. Endothelial cells were derived from cells from the patient and gene-corrected iPSC lines. d Sanger sequencing analysis of FVIII
amplicons from gene-corrected iPSC-derived endothelial cells with restored exon 7–exon 9 sequence. e The FVIII activity of cell culture supernatants
from either patient-corrected or gene-corrected iPSC-derived endothelial cells. FVIII activity was determined in 5 × 105 endothelial cells per single
detection. **p < 0.01 compared to the patient control
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rate of FVIII secretion because it is related to the normal
protein folding and efficient secretion of FVIII35. In par-
ticular, a significant portion of the primary translated
BDD-FVIII protein is misfolded and ultimately degra-
ded36. Moreover, the half-life of BDD-FVIII is shorter by
~3 h compared with normal FVIII (~12 h)37. These
properties of BDD-FVIII might have mildly increased
FVIII activity (2.9-fold increase) in our gene-corrected
iPSC-derived endothelial cells, even though we used the
EF1α promoter for enhanced FVIII expression of BDD-
FVIII at the human locus. Moreover, because the human
FVIII locus is located on the X chromosome, only one
copy of EF1α-driven FVIII mRNA transcription occurs
per gene-corrected iPSC-derived endothelial cell. There-
fore, we found relatively low expression of FVIII com-
pared to the viral transduction of FVIII in human primary
cells and can result in multiple FVIII transgene insertions
in one cell.
We hypothesize that using a modified coding sequence

of FVIII with enhanced transcriptional and secretion
abilities might address these limitations in our future
approach. Previous reports found that the insertion of
intron 1 of the FIX gene into human FVIII cDNA or a
hybrid of porcine FVIII and human FVIII cDNA enhanced
the production or coagulant activity of FVIII38,39. Intro-
ducing 226 amino acids with an N-glycosylation site to
the BDD form of FVIII also yielded a 10-fold increase in
FVIII secretion40. Codon-optimized FVIII resulted in a
29–44-fold enhancement of FVIII expression, and deliv-
ery of codon-optimized FVIII via a lentiviral vector
resulted in FVIII levels in hemophilic mice that were more
than 200% of those found in a normal human41. Although
we could not use an improved version of FVIII in our
experiment, the findings may provide enhanced FVIII
expression and secretion abilities for future studies using
our gene correction system.
In this research, we provided evidence that insertion of

the FVIII gene with an EF1α promoter at the FVIII locus
could restore FVIII expression in endothelial cells from
hemophilia A patient-derived iPSCs. Although we used
only one patient-derived iPSC line in this study, our gene
correction strategy is applicable to a broad spectrum of
FVIII mutations in hemophilia A, because the FVIII gene
inserted at the patient’s FVIII locus is expressed regardless
of FVIII mutant variation. These first proof-of-concept
experiments demonstrate that the insertion of the EF1α
promoter with the FVIII gene in the human FVIII locus is
a suitable strategy for the restoration of FVIII expression,
and provides a valuable and universal tool for future
ex vivo cell therapy for patients with hemophilia A.
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