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Data-Driven Subgroups in Depression Derived from Directed
Functional Connectivity Paths at Rest
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Depressed patients show abnormalities in brain connectivity at rest, including hyperconnectivity within the default mode network (DMN).
However, there is well-known heterogeneity in the clinical presentation of depression that is overlooked when averaging connectivity data.
We used data-driven parsing of neural connectivity to reveal subgroups among 80 depressed patients completing resting state fMRI.
Directed functional connectivity paths (eg, region A influences region B) within a depression-relevant network were characterized using
Group lterative Multiple Model Estimation, a method shown to accurately recover the direction and presence of connectivity paths in
individual participants. Individuals were clustered using community detection on neural connectivity estimates. Subgroups were compared
on network features and on clinical and biological/demographic characteristics that influence depression prognosis. Two subgroups
emerged. Subgroup A, containing 7 1% of the patients, showed a typical pattern of connectivity across DMN nodes, as previously reported
in depressed patients on average. Subgroup B exhibited an atypical connectivity profile lacking DMN connectivity, with increased dorsal
anterior cingulate-driven connectivity paths. Subgroup B members had an over-representation of females (87% of Subgroup B vs 65% of
Subgroup A; x> =3.89, p=0.049), comorbid anxiety diagnoses (42.9% of Subgroup B vs 17.5% of Subgroup A; x*=5.34, p=.02), and
highly recurrent depression (63.2% of Subgroup B vs 31.8% of Subgroup A; x*=5.38, p =.02). Neural connectivity-based categorization
revealed an atypical pattern of connectivity in a depressed patient subset that would be overlooked in group comparisons of depressed
and healthy participants, and tracks with clinically relevant phenotypes including anxious depression and episodic recurrence. Data-driven
parsing suggests heterogeneous substrates of depression; ideally, future work building on these findings will inform personalized treatment.

INTRODUCTION

There is substantial heterogeneity in the clinical presentation
of depression. In a representative treatment-seeking sample
of 3703 depressed patients, over 1000 unique symptom
profiles were observed (Fried and Nesse, 2014). Thus,
although group comparisons of depressed and healthy
samples have revealed numerous biological and neural
features that track with depression on the whole, group
averages mask considerable heterogeneity and may not
accurately represent even a single individual patient (Gates
and Molenaar, 2012; Miller et al, 2002; Molenaar and
Campbell, 2009). We (Price et al, 2017) and others (Clementz
et al, 2016; Drysdale et al, 2017; Karalunas et al, 2014; Yang
et al, 2014) have reported that data-driven parsing of
biobehavioral heterogeneity within disorder domains (eg,
attention deficit, psychosis, and depression) can vyield
biologically based subgroups that predict external measures
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of functioning, clinical outcomes, and neurobiology with
better precision than traditional diagnostic subgroups.
Depressive heterogeneity notwithstanding, a large litera-
ture suggests depression-related alterations in neural con-
nectivity during the resting state (RS). RS connectivity
patterns tend to exhibit trait-like stability over time with a
high degree of individual specificity (Finn et al, 2015) and are
posited to represent neural functional architecture that
remains consistent across diverse conditions (eg, under
anesthesia). Meta-analyses suggest as a group, depressed
individuals exhibit elevated RS connectivity within regions of
the default mode network (DMN; (Kaiser et al, 2015)), a
network that deactivates during many tasks and is associated
with internal mentation, including self-referential processing
(Andrews-Hanna et al, 2010) and negative rumination (Zhu
et al, 2012). Hyperconnectivity across the DMN and regions
of the cognitive control network (CCN), as well as
hypoconnectivity between DMN and ventral affective net-
work (VAN) regions, were also reported in a meta-analysis
(Kaiser et al, 2015). However, the direction of RS findings in
individual studies of depression (eg, hyper vs hypoconnec-
tivity) is sometimes conflicting (Hasler and Northoff, 2011;
Kaiser et al, 2015), even though RS methods are considered
highly translatable and reliable. Conflicting findings are to be
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expected if meaningful neural heterogeneity is present within
depressed patients but overlooked in conventional group-
based analysis. This may lead to mixed or spurious findings
(Gates and Molenaar, 2012; Miller et al, 2002; Molenaar and
Campbell, 2009), incomplete etiological models, and confu-
sion within the literature, while overlooking biological
subgroups that may represent unique etiologies requiring
unique treatments. Consistent with this suggestion, a recent
data-driven approach suggested as many as four subtypes of
RS connectivity patterns within depression may be conflated
when depressed patients are averaged together (Drysdale
et al, 2017).

Clinically, one of the most widely acknowledged forms of
heterogeneity within depressed patients is the presence or
absence of comorbid anxiety. Roughly half of treatment-
seeking depressed patients report clinically significant
anxiety, which is associated with poor prognosis and
treatment response (Fava et al, 2008), greater severity and
disability, and higher risk of severe outcomes (eg, suicidality;
(Fava et al, 2004)). Few studies have examined the neural
substrates of this potential dichotomy within depressed
patients. During task performance, anxious depression may
have unique neural activation substrates spanning VAN,
DMN, and CCN regions (Demenescu et al, 2011; Etkin and
Schatzberg, 2011b; van Tol et al, 2012; van Tol et al, 2011).
However, brain processes may best be characterized as the
coordinated activity of disparate brain regions over time
(Heller et al, 2009; Sporns et al, 2004). RS connectivity offers
a glimpse at this coordinated activity in the absence of task
demands, which may capture idiosyncratic, endogenous,
habitual processing patterns akin to the habitual and
intrusive anxious thought patterns and affective states
reported by patients. In studies comparing RS connectivity
patterns for depressed individuals with and without comor-
bid anxiety (assessed both categorically and continuously),
unique patterns between and within the VAN, DMN, and
CCN have been reported (Oathes et al, 2015; Pannekoek
et al, 2015). Findings are generally consistent with the view
that anxiety and depression have both common and unique
neural substrates, informing an important etiological debate
by supporting both ‘shared diathesis’ and ‘independent-
factor’ models of psychopathology (Etkin and Schatzberg,
2011b). However, the patterns detectable within the neural
data in previous studies are necessarily constrained by the
investigators’ selection of independent variables (ie, anxiety
measures).

A more novel approach, facilitated by recent advances in
data-driven clustering, is to begin by parsing the hetero-
geneity contained in neural connectivity maps themselves,
enabling detection of biologically derived subgroups with
unique neural connectivity profiles. This approach allows the
optimal number of subgroups (from one—implying homo-
geneity—to the full sample size—implying no meaningful
similarities) to emerge organically from the connectivity
data. Subgroups can then be independently characterized
with respect to clinically relevant, observable characteristics.
We have previously used this approach in conjunction with a
connectivity method—Group Iterative Multiple Model Esti-
mation (GIMME (Gates and Molenaar, 2012; Gates et al, in
press))—shown to reliably recover, for each individual, both
the presence and the direction of connectivity among regions
(ie, does A predict B after controlling all other network-wide
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influences (including B’s influence on itself?)). GIMME was
motivated by a seminal paper that found no methods to date
could reliably detect individual-level models in simulated
data (Smith et al, 2011). These simulations reflected common
issues seen in fMRI data such as lower signal-to-noise ratio,
nonstationarity, poor region of interest (ROI) selection, and
HREF deviation within individuals, and GIMME was found to
perform excellently in these cases (Gates and Molenaar,
2012). A recent independent review highlighted GIMME as
one of the only approaches that can reliably capture both the
presence and direction of functional connectivity paths
within heterogeneous individuals (Mumford and Ramsey,
2014). Furthermore, in extensive Monte Carlo simulations,
Subgroup-GIMME (‘S-GIMME’) can arrive at the correct
cluster assignments nearly perfectly, even in sample sizes as
small as 25, and at rates far higher than clustering based on
more traditional connectivity metrics such as correlation
matrices (Gates et al, in press). When applied to fMRI data
collected from depressed and healthy individuals during a
positive mood induction, the resulting connectivity-based
subgroups predicted presence or absence of depression, as
well as numerous clinically relevant indices of affective
dysregulation (Price et al, 2017).

Here we applied this data-driven, brain-based categoriza-
tion approach to RS functional connectivity maps obtained
from 80 depressed patients (overlapping with those in our
previous report; see Supplementary Information), across key
nodes of three networks that show well-replicated roles in
depressive symptomatology: DMN, CCN, and VAN. Unique
goals of the present analysis were to focus explicitly on
parsing fine-grained heterogeneity within depressed patients
(rather than more broadly across both depressed and healthy
individuals) and to focus on the RS, which has been widely
studied in depression and shows promise as a method for
identifying clinically relevant biotypes (Drysdale et al, 2017).
S-GIMME produces subgroup-specific network connectivity
maps, informing an empirical data-driven model of con-
nectivity subtypes within depression. Based on previous
research suggesting anxious depression may represent a
unique phenotype with high clinical relevance, we then
assessed the external relevance of connectivity-based sub-
groups in predicting comorbid anxiety diagnoses. In an
effort to further understand whether study-specific sample
composition parameters may contribute to variable findings
when simple depressed vs healthy group comparisons are
used, we examined several other important clinical (severity
and recurrence) and biological (gender and age) features
routinely reported as sample characteristics in existing
studies. Our data-driven approach has the capacity to reveal
heterogeneity within functional neural architecture that is
masked by traditional group comparisons and ultimately
could inform development of discrete treatments targeting
discrete neurobiological etiologies.

MATERIALS AND METHODS

Participants were 80 unmedicated MDD patients with
moderate-to-severe depression (BDI mean =30.73; SD =9.5)
recruited for a larger treatment study (Siegle et al, 2012;
Supplementary Information and Table 1).
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Table | Subgroup Clinical and Demographic/Biological Characteristics

Subgroup A Subgroup B Statistic testing group Statistical Effect size
(n=57) (n=23) differences significance (p) (95% CI)
> | Comorbid anxiety disorder 17.5% (n=10/57) 42.9% (n=9/21) x> =389 0.021 OR=353 (I.17-10.60)
n=3 GAD n=2 GAD
n=1 PTSD n=2 PTSD
n=1 Specific phobia  n=1 Specific phobia
n=7 Social phobia n=7 Social phobia
n= Panic disorder
n=2 Anxiety NOS
Severe MDD 19.3% (n=11/57) 38.1% (n=8/21) ¥’ =294 0.086 OR=257 (0.86-7.73)
Highly recurrent MDD 31.8% (n=14/44) 63.2% (n=12/19) x> =538 0.020 OR=3.67 (1.19-11.34)
(=3 episodes)
Sex (% female) 64.9% (n=37/57) 87.0% (n=20/23) x> =389 0.049 OR=3.60 (I.18-11.00)
Mean age (SD) 353 (11.1) 373 (11.6) trg=.72 0473 d=0.18 (=031 to 0.66]

Abbreviations: GAD, generalized anxiety disorder; MDD, major depressive disorder; NOS, not otherwise specified; PTSD, posttraumatic stress disorder,
Some individuals (=2 Subgroup A; n =3 Subgroup B) met criteria for more than one comorbid anxiety diagnosis. Decreased total N's in denominators are due to loss
of diagnostic data due to database error (two participants) and insufficient information to confidently determine number of previous episodes and/or duration of current

episode (15 participants). Bold = p <0.05; italics = p<0.10.

fMRI Acquisition and Preprocessing

Data were acquired during a 7 min eyes-open RS block. T2*-
weighted images depicting BOLD contrast (TR=1500;
TE=27; FOV= 24cm; flip angle=80°% Twenty-nine
3.2mm slices; 280 TRs) were acquired on a 3T Siemens
Allegra (n=4) or a 3T Siemens Trio (n=76). Standard
preprocessing steps were applied (see (Price et al, 2017;
Supplementary Information). AFNI’s ANATICOR algorithm
was applied to remove artifacts (hardware and motion) that
may influence connectivity estimates. AFNI’s 3dvolreg
motion correction algorithm was applied. Timepoints with
incremental translational/rotational movement > 0.5 mm or
0.5° (1.7% of data) were removed from analysis (marked as
missing data).

Fifteen ROIs were selected a priori based on prior literature
in depression (emphasizing replicated and meta-analytic
findings) with the goal of spanning networks relevant to
ventral affective processing (VAN), self-referential processing
(DMN), and top—down regulation (CCN). See Supplementary
Information and Figure 1 for details of ROI definitions.

Directed Connectivity and Community Detection

The full sample of 80 individuals was processed and clustered
without regard to clinical/demographic features. Directed
paths (ie, establishing which of two ROIs statistically predicts
the other after controlling for other candidate regions
(including lagged auto-regressions)) between all pairs of
ROIs (both contemporaneous and at lag = 1TR) were derived
for each individual using S-GIMME (Gates et al, in press;
Lane et al, 2015). Briefly, using a unified structural equation
framework (Kim et al, 2007) and a Bayes net formulation,
S-GIMME first looks across individuals to detect signal from
noise and arrive at a map of lagged and contemporaneous
directed connections that exist for the majority (‘group-level
map’). Next, S-GIMME arrives at a similarity matrix using
the individual-level estimates of these group-level connec-
tions, as well as anticipated estimates for candidate

connections. Walktrap (Pons and Latapy, 2006), an ‘un-
supervised” community detection algorithm found to be
robust across many issues common in clustering (eg, unequal
cluster sizes; (Orman and Labatut, 2009)), is conducted on
this matrix to arrive at an optimal number of subgroups who
have shared connectivity patterns (similar strength, sign
(positive/negative), temporal pattern (contemporaneous/
lagged), and direction (eg, region A —region B) of
connectivity paths). S-GIMME then searches for subgroup-
level paths. Finally, S-GIMME robustly identifies individual-
level connections using group- and subgroup-derived
temporal patterns as a starting point. S-GIMME thus
generates group-level, subgroup-specific, and individual
(per-participant) connectivity maps characterizing the net-
work structure.

External Variables

Subgroups were independently tested and characterized
across several clinical and demographic features selected
a priori based on established clinical relevance and
interpretability. Selected variables were those likely to be
reported as sample characteristics in previous depressed vs
healthy group comparison studies (eg, dichotomous diag-
nostic designations), increasing relevance of present findings
to the extant literature. During a structured interview,
clinicians established: the presence/absence of at least one
comorbid anxiety diagnosis, the presence/absence of ‘severe’
depression, and the degree of recurrence of depressive
episodes. Recurrent depression was dichotomized as <3
episodes vs >3 episodes. Although this cut-point diverges
from the clinical definition of ‘recurrent depression’ (2+
episodes), it has been previously linked to clinical outcomes
and prognosis (Piet and Hougaard, 2011; Teasdale et al,
2000), and preserved an adequate distribution (eg, sufficient
individuals in each cell) for analysis, while circumventing
problems with distributional skewing. Gender and age were
examined as biological/demographic factors with relevance
in depression prevalence, presentation, and treatment
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Three-dimensional renderings of region of interest (ROI) locations in template space. For ROls that are bilateral, a uniform color is used to label

both hemispheres and regions are numerically labeled on the left hemisphere only; | =left ventrolateral PFC (L VLPFC); 2 =R VLPFC; 3 = perigenual anterior
cingulate cortex (pgACC); 4 =dorsal ACC (dACC); 5 =L dorsolateral PFC (L DLPFC); 6 = subgenual ACC (sgACC); 7 =L Insula; 8 =R Insula; 9 =L nucleus
accumbens (NucAcc); 10=R NucAcc; || =L Amygdala; 12=R Amygdala; |3 =posterior cingulate cortex (PCC); |4=left posterior parietal cortex
(L Parietal); I5=R Parietal. Figure reprinted from Biological Psychiatry, Vol 81, Price et al, "Parsing Heterogeneity in the Brain Connectivity of Depressed and
Healthy Adults During Positive Mood", p. 350, Copyright (2016), with permission from Elsevier.

(Cyranowski et al, 2000; Green et al, 2005; Szanto et al,
2003). Sources of missing data and overlap among external
variables are discussed in the Supplementary Information.

RESULTS
Connectivity Maps

Group level. At the group level, connectivity paths depicted
in Figure 2 were present, in addition to lagged autoregressive
effects at every ROI. ROIs behaved as a strongly inter-
connected network, including numerous ipsilateral and
within-network (VAN - VAN and CCN — CCN)
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connections, but notably lacked significant connections
between the two DMN nodes.

Subgroups. Based on unsupervised search for the optimal
number of subgroups, two subgroups emerged (see Supplemen-
tary Information for subgroup quality/stability information).
Subgroup A contained 71% (n=57) of participants; hence,
Subgroup B (29% of participants; n=23) was considered
to exhibit ‘atypical’ connectivity patterns relative to the
majority of depressed patients. Subgroup was unrelated to
the scanner where data were acquired =0.93, p=0.335);
to motion; and to other data quality measures (Supplementary
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Figure 2 (a) Regions of interest (ROIs) represented as nodes in rough anatomical space. Nodes of the ventral affective network (VAN) are presented in
blue; default mode network (DMN) in green; cognitive control network (CCN) in purple. (b) Group-level directed connectivity paths between regions of
interest (flattened to two dimensions and stretched in space to facilitate visualization of all significant paths). All identified paths are contemporaneous with
positive beta weights; additional lagged autoregressive (positive) paths were found for every ROI (not shown). Superimposed text displays beta-weights as
mean (SD) across all individuals with a given path. See Supplementary Information for further discussion.

Information). In paths unique to each subgroup (Figure 3),
only Subgroup A showed DMN — DMN connectivity
(a pgACC—PCC directed path). Subgroup A further
exhibited a unique dACC — R insula path, whereas Subgroup
B had a reversed direction of effect for dJACC — L DLPFC, as
well as an additional dACC— R parietal path and a L
insula — R amygdala path.

External Variables

Clinical variables. Subgroup B was associated with multiple
markers of poor prognosis in depression (Table 1). Comorbid

anxiety was over-represented in Subgroup B (42.9,%), a more
than threefold increase in odds (y*=5.34, p=0.021). Highly
recurrent depression was similarly over-represented in Sub-
group B (63.2%) relative to Subgroup A (31.8%; 7 =538,
p=0.020). Subgroup B had a nonsignificant over-
representation of ‘severe’ depression diagnoses (38.1 vs 19.3%
in Subgroup A; x*=2.94, p=0.086). See Supplementary
Information for analyses of additional clinical variables.

Biological/demographic variables. Subgroup B was almost
exclusively comprised of females (87.0%, n=20/23) in
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Figure 3 Subgroup-specific connectivity paths. All identified paths are contemporaneous with positive beta weights. Superimposed text displays beta-
weights as mean (SD) across all individuals with a given path. (a) Directed connectivity paths unique to subgroup A (in red), superimposed on group-level
connectivity map (in gray). (b) Directed connectivity paths unique to subgroup B (in red), superimposed on group-level connectivity map (in gray).

contrast to Subgroup A (64.9%; y*=3.89, p=0.049). Sub-
groups did not differ on age (t;3=0.72, p=0.473).

Summary. In aggregate, analyses suggested connectivity-
based subgroups had external clinical and real-world
relevance with regard to key sample composition features.

DISCUSSION

In the present analysis, two data-driven RS connectivity
subgroups were identified within a depressed sample using a
robust method for recovering functional neural network
structure among heterogeneous individuals. The larger group
exhibited a directed pathway linking two hubs of the DMN,
whereas a smaller subgroup showed an ‘atypical’ connectivity
pattern where within-DMN connectivity was notably lacking
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and where dACC-driven paths were more prominent.
Connectivity-based subgroups tracked with several clinical
and demographic features, suggesting clinical relevance. The
‘atypical’ (smaller) subgroup was associated with markers
previously linked to poor prognosis in depression, including
comorbid anxiety and high episodic recurrence, and with
female gender.

Strength of connectivity within the DMN is posited to
reflect perseverative self-focus in the absence of exogenous
instruction (Andrews-Hanna et al, 2010) and has been tied to
negative rumination (Zhu et al, 2012), a perseverative form
of cognition that increases risk for depression (Nolen-
Hoeksema et al, 1993). Our findings suggest there is a potent
direct influence from the pgACC to the PCC—two
prominent nodes of the DMN—in the majority, but not all,
of depressed patients. A minority of patients lack this specific



path after controlling for the influence of all other regions
included in our network, suggesting the functional influence
of these two regions on one another is diminished in this
subgroup, with fluctuations in activity over time being more
completely explained by other inputs present across the
entire sample (depicted in Figure 2b). Meta-analytic findings
suggest that, on average, depression is associated with
hyperconnectivity between PCC and medial PFC regions
(Kaiser et al, 2015). Although caution is warranted given the
novel directed connectivity method applied here, current
findings could suggest such patterns are driven by the
majority of depressed patients, whereas a sizable minority do
not display strong connectivity within this circuit. Differ-
ences in sampling of these two depressive subgroups across
studies might therefore yield differential strength of findings
which, based on our observations for external variables, may
be reflected in clinical and demographic features. Because of
our focus on external variables representing widely reported
sample characteristics, this hypothesis could be readily tested
in future meta-analyses making use of the large number of
existing non-directed (correlational) connectivity studies.
Within-subject variability in connectivity patterns (ie, cou-
pling dynamics) (Hutchison and Morton, 2015) may also
contribute to mixed findings. Quantifying such dynamics,
ideally in conjunction with an approach capable of parsing
between-subject heterogeneity, represents a promising novel
direction for patient classification (Rashid et al, 2016).

Our findings were dictated by differential patterns present
in the neural connectivity data itself, rather than on a priori
selection of individual differences variables. Nevertheless,
findings are potentially informative regarding the neural
substrates of key sources of depressive heterogeneity observed
clinically. Anxious depression is a widely-recognized clinical
subgroup associated with poor prognosis (Fava et al, 2004,
2008), which has distinct neural features including altered
activity and connectivity within the networks studied here
(Demenescu et al, 2011; Etkin and Schatzberg, 2011b; Oathes
et al, 2015; Pannekoek et al, 2015; van Tol et al, 2012; van Tol
et al, 2011). Our findings are potentially consistent with prior
studies suggesting that both common (here, group-level) and
unique (subgroup-specific) neural substrates underlie depres-
sion and anxiety. The data-driven approach reveals that
connectivity features track with diagnostic boundaries, yet do
not overlap perfectly with these features, suggesting con-
nectivity patterns contain unique information that could be
obscured by conventional group comparisons.

One network distinction apparent across the two sub-
groups included a directed path from left DLPFC — dACC in
Subgroup A, which was reversed in Subgroup B. Subgroup B
additionally showed a unique dACC — parietal path, whereas
Subgroup A showed a unique dACC — insula path. Although
the dACC was historically construed as a strictly ‘cold’
cognitive region (Bush et al, 2000), contemporary concep-
tualizations highlight its additional role in the generation and
expression of negative emotion (Etkin et al, 2011a), in
particular within the context of anxiety research. Thus, its
pivotal role in defining depression subgroups that tracked
with comorbid anxiety may be significant. For example,
greater overall dACC-driven activity might reflect a greater
influence of fear-driven processing over cognition. Two
additional specific paths present in Subgroup B, right
VLPFC — right parietal and left insula — right amygdala,
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could reflect additional VAN-driven processing at rest. This is
potentially consistent with a previous report of increased RS
connectivity between VAN and CCN regions that was specific
to comorbid anxiety and depression (Pannekoek et al, 2015)
and also with the prominent roles for exaggerated ‘bottom-
up’ influences of the VAN in neuroanatomical models of both
anxiety and depression (Drevets et al, 2008; Etkin et al, 2009;
Mathew et al, 2008; Price and Drevets, 2010). Notably, in
supplemental analyses, connectivity-based subgroups did not
track primarily with any one specific anxiety diagnosis
present in the current sample, nor with a continuous measure
of anxiety, suggesting the present finding related only to
transdiagnostic, clinically diagnosed anxiety. Given that
anxiety is itself a highly heterogeneous condition, future
studies should include larger and more diverse anxiety
presentations, with further attention to heterogeneity across
both categorical and continuous measures.

At least 50-60% of depressed patients experience more
than one episode (American et al, 2001) and it is well-
established that risk of future depressive episodes increases
with each prior episode (Solomon et al, 2000), becoming
particularly (>90%) likely in individuals who have had three
or more episodes (American et al, 2001). This pattern could
reflect increasingly well-practiced negative cognitions (Beck
and Bredemeier, 2016) that become easily re-activated
following subsequent stressors through a process termed
the ‘kindling effect’ (Monroe and Harkness, 2005; Post,
1992). Alternatively, there may be two subgroups of patients,
each with ‘stable-liability’—one prone to high recurrence and
another who will experience only a few sporadic (if any)
additional episodes (Anderson et al, 2016). Few studies in
human patients have examined the neural substrates of
differential recurrence. In at least some patients with a
history of high recurrence, our data suggest involvement of a
functional neural architecture with stronger baseline influ-
ences stemming from VAN regions and from dACC to other
CCN regions, which could be consistent with stronger
internally driven affective ‘schema’ that co-opt cognitive
resources. However, findings simultaneously highlight in-
dividual differences in connectivity, with a full half of
patients with high recurrence showing greater similarity to
the ‘typical” (larger) depressed subgroup. This could indicate
more than one neurocognitive pathway to recurrence, only
one of which was characterized here; for example, patients in
Subgroup A with high recurrence might differ in non-
assessed neural networks or during distinct task states (eg,
under emotional provocation). Likewise, 37% of patients in
Subgroup B did not report high recurrence at the time of
assessment. With prospective follow-up, a highly recurrent
pattern might become evident in these specific patients—a
testable hypothesis for future work.

One other sample characteristic—gender—tracked with
connectivity subgroup, such that the ‘atypical’ subgroup was
almost exclusively female. Females are 2 x more likely than
males to experience MDD, a gender discrepancy that first
appears in adolescence. Posited mechanisms of this gender
gap include biological and psychosocial factors (Cyranowski
et al, 2000; Angold and Costello, 2006; Crone and Dahl, 2012;
Hyde et al, 2008). Depressed females also show distinct
clinical features, including higher rates of comorbid anxiety
(Schuch et al, 2014). In RS data, healthy females have shown
greater connectivity of amygdala subregions to numerous
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VAN and CCN regions (Engman et al, 2016; Kogler et al,
2016; Lopez-Larson et al, 2011), possibly consistent with the
unique insula — amygdalar pathway found here in Subgroup
B. However, group comparisons by gender may set up a false
dichotomy, as females were over-represented in Subgroup B,
but also well-represented (65%) in Subgroup A. Future
analyses should aim to delineate additional biobehavioral
features that may distinguish those depressed women in the
female-heavy subgroup from those biologically classified
together with the vast majority of depressed men.

Using identical S-GIMME methods applied to data collected
during a positive mood induction, we previously reported in
an overlapping sample (which also included healthy controls)
that the majority of depressed patients showed widespread
hyperconnectivity across this network of regions, in particular
for ventrally driven pathways (Price et al, 2017). Here we
explicitly searched for and parsed heterogeneity within
depressed patients at rest. The subgrouping patterns from
the two analyses did not appear highly convergent either in
terms of the distinguishing (subgroup-specific) directed
pathways or the specific parsing of patients (Supplementary
Information), suggesting the two approaches yielded unique
information that could be jointly informative for practical
goals such as predicting clinical trajectories. Data-driven
subgroups derived from correlational (ie, non-directional)
patterns within depressed patients’s RS data were also
divergent anatomically from those identified here, although
they likewise tracked with anxious phenotypes of depression
(Drysdale et al, 2017). Future work should empirically
establish combinations of information that are most informa-
tive for clinically imperative tasks (eg, matching patients to
specific interventions).

Limitations

Although regions analyzed in the network were limited to 15
to increase interpretability and reduce processing time,
results may have varied with the inclusion of different or
additional regions, as many potentially relevant regions (eg,
dorsomedial PFC beyond the ACC boundaries) were omitted
in favor of the present set. Alternate forms of data-driven
subtype analysis, recently applied to RS connectivity in
depression (Drysdale et al, 2017), are able to consider a wider
network of brain regions, although these methods differ in
that they rely on correlational patterns rather than char-
acterizing directional influences—a method that may be less
accurate for subgrouping according to simulations (Gates
et al, in press). Data-driven subgroups are dictated by the
individuals in the sample and may have differed with a larger
sample or greater representation of certain groups (eg, older
participants and more ethnic minorities). Replication is
essential to understand the robustness and generalizability of
these specific subgroups. In addition, the hard-clustering
approach did not allow for multiple subgroup membership,
meaning that some individuals could be similar to both
subgroups. External clinical variables were assessed cross-
sectionally; testing prospective prediction and the stability of
subgroups over time are critical next steps. Although
assessment tools that accurately parse biobehavioral hetero-
geneity may one day be informative in clinical decision
making, numerous hurdles remain, including: external
validation of subgroups in larger, independent samples;
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developing prediction algorithms with sufficiently high
accuracy for specific outcomes; and ideally, translation to
clinic-ready assessment methods, given that fMRI is
expensive and not widely available to patients. Finally, the
directional brain pathways quantified here based on
temporal patterns require external validation, eg, using brain
stimulation methods to experimentally manipulate one
region and observe downstream effects on other regions.

CONCLUSIONS

RS connectivity, an index of coordinated brain activation
across a neural network, is posited to reflect stable neural
functional architecture impacting the brain’s reactive
responses to a wide range of stimuli. Although RS conn-
ectivity alterations are widely implicated in depression, our
findings using a robust data-driven algorithm suggest no
one-size-fits-all pattern. In particular, the lack of reliable
DMN connectivity within 29% of patients suggests a
replicated biomarker of depression, DMN hyperconnectivity,
may not apply equivalently to all patients. A clinical
implication is that diverse depression treatments that appear
to normalize DMN hyperconnectivity (eg, conventional anti-
depressants, intravenous ketamine, and mindfulness medita-
tion; (Berkovich-Ohana et al, 2016; Karim et al, 2016; Lv
et al, 2016), as well as targeted mechanistic treatments (eg,
neurofeedback to decrease DMN connectivity (Zhang et al,
2013) and transcranial magnetic stimulation (Drysdale et al,
2017)), could be ill-matched for a sizable minority of
patients. These patients might benefit instead from treat-
ments that reduce dACC- and VAN-driven influences—
which could represent fear-driven cognitive processing,
particularly given the link observed to comorbid anxiety.
Identifying treatments capable of addressing the atypical
connectivity pattern may be particularly clinically impactful,
as this pattern tracked with markers of poor prognosis.
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