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Receptor Reserve Moderates Mesolimbic Responses to
Opioids in a Humanized Mouse Model of the OPRMI Al 18G
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The OPRM | A118G polymorphism is the most widely studied p-opioid receptor (MOR) variant. Although its involvement in acute alcohol
effects is well characterized, less is known about the extent to which it alters responses to opioids. Prior work has shown that both
electrophysiological and analgesic responses to morphine but not to fentanyl are moderated by OPRM | Al I 8G variation, but the mechanism
behind this dissociation is not known. Here we found that humanized mice carrying the |18GG allele (WmOPRMI-118GG) were less
sensitive than h/mOPRM -1 8AA littermates to the rewarding effects of morphine and hydrocodone but not those of other opioids
measured with intracranial self-stimulation. Reduced morphine reward in | I8GG mice was associated with decreased dopamine release in the
nucleus accumbens and reduced effects on GABA release in the ventral tegmental area that were not due to changes in drug potency or
efficacy in vitro or receptor-binding affinity. Fewer MOR-binding sites were observed in h/mOPRM[-118GG mice, and pharmacological
reduction of MOR availability unmasked genotypic differences in fentanyl sensitivity. These findings suggest that the OPRMI Al 18G
polymorphism decreases sensitivity to low-potency agonists by decreasing receptor reserve without significantly aftering receptor function.

INTRODUCTION

Opiate alkaloids isolated from Papaver somniferum, such as
morphine and codeine, have been consumed by humans for
their analgesic and euphorigenic effects for thousands of
years. During the past century, natural and synthetic opioid
analgesics of varying potency and intrinsic efficacy have
become mainstays of treatment for acute and chronic pain in
inpatient and outpatient settings, although these drugs carry
significant abuse liability. From 1999 to 2009, the number
of prescriptions for opioid drugs in the United States
increased fourfold, while admission rates for opioid abuse
treatment programs increased sixfold (Paulozzi et al, 2011).
In response, drug makers introduced abuse-deterrent
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formulations of several opioid analgesics, including oxyco-
done, which inadvertently increased demand for illegal
opioids, such as the acetylated morphine derivative, heroin
(Cicero et al, 2012).

The psychological and physiological effects of morphine
and other opioids are due to their intrinsic activity at
u-opioid receptors (MORs), which are seven-transmembrane
G protein-coupled receptors (GPCRs) expressed at presy-
naptic and postsynaptic sites throughout the mammalian
central nervous system, including the ventral tegmental area
(VTA), dorsal and ventral striatum, periaquaductal grey area
(PAG), and locus coeruleus. Although several brain loci
are associated with opioid abuse, the A10 dopaminergic
projection from the mesencephalic VTA to the forebrain
nucleus accumbens (NAc) is of particular importance, as it is
associated with motivated behavior and reward processing
(Schultz et al, 1997; Wise, 1998). In the VTA, opioids act via
the Gj/o-coupled MOR to disinhibit dopaminergic neurons
by attenuating inhibitory GABAergic tone, which promotes
burst firing and enhances dopamine release in terminal fields
(Di Chiara and Imperato, 1988; Johnson and North, 1992).
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Thus pharmacogenetic approaches to understanding MOR
activity in mesolimbic dopamine circuitry may help elucidate
heritable mechanisms altering opioid sensitivity.

One of the most widely studied functional genetic variants
of the MOR involves a single-nucleotide polymorphism
(rs1799971) in exon 1 of the MOR gene (OPRM1), in which
an adenine-to-guanine substitution at position 118 (118A - G
or A118G) corresponds to the loss of a putative glycosylation
site in the N-terminal extracellular domain (Bond et al, 1998;
Huang et al, 2012). Although the involvement of the OPRMI
A118G polymorphism in the acute effects of alcohol and the
treatment of alcohol dependence has been widely studied, less
is known about how this variant affects opioid reward and
its neural substrates. Here we employed behavioral, cellular, and
neurochemical assays to probe pharmacogenetic mechanisms
of opioid reward in a humanized mouse model of the OPRM1
A118G polymorphism (h/mOPRMI1 A118G mice) in which
Oprm1 was excised and replaced with OPRM!1 containing either
A or G at position 118 (Ramchandani et al, 2010).

MATERIALS AND METHODS

See Supplementary Materials for detailed Materials and
Methods.

Intracranial Self-Stimulation (ICSS)

h/mOPRMI1-118AA and 118GG mice were implanted with
stimulating electrodes in the medial forebrain bundle at the
level of the lateral hypothalamus and were conditioned to
perform ICSS as previously described (Robinson et al, 2013).
After baseline testing, mice were removed from the operant
chambers, injected with vehicle (i.p. or s.c.), fentanyl (s.c.),
oxycodone (i.p.), buprenorphine (i.p.), morphine (i.p.),
hydrocodone (i.p.); cocaine (i.p.), or U69,593 (i.p.), and
returned to the chambers for 15min of testing. Maximum
response rate (MAX) and brain stimulation reward (BSR)
threshold (6,) were calculated with custom-designed soft-
ware and normalized to baseline responses.

Microdialysis and Locomotor Activity

Mice were implanted with unilateral microdialysis guide
cannulae aimed at the nucleus accumbens as previously
described (Chefer et al, 2013). After baseline sampling, mice
were challenged with repeated injections of morphine or
fentanyl with microdialysis samples collected every 10 min.
Locomotor activity was measured using a Coulbourn
Instrument TruScan activity monitoring system (Allentown,
PA, USA). Dialysate DA concentrations were analyzed using
high-pressure liquid chromatography (HPLC) with electro-
chemical detection as previously described (Chefer et al,
2013). In the fentanyl/f-funaltrexamine experiment, locomo-
tion was measured in MedAssociates locomotor activity
chambers (St Albans, VT) as previously described (Robinson
et al, 2013).

Electrophysiological Recordings

Acute horizontal midbrain slices were prepared, and whole-
cell patch clamp recordings from VTA dopaminergic
neurons were obtained as previously described (Robinson
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et al, 2013). Miniature inhibitory postsynaptic currents
(mIPSCs) were recorded in oxygenated aCSF that contained
tetrodotoxin (500 nM) and kynurenic acid (1 pM). Recording
pipettes with a resistance of 2.5-3.5 MQ were filled with a
potassium chloride-based internal solution (containing the
following, in mM: 128 KCI, 20 NaCl, 1 MgCl,, 1 EGTA, 0.3
CaCl,, 10 HEPES, 2 MgATP, 0.3 Na;GTP) containing Alexa
Fluor 594 (Life Technologies, Carlsbad, CA). Following a
stable baseline, mIPSCs were recorded for 3 min before and
after 3-min exposure to morphine (100 nM) or [D-Ala2,
N-MePhe4, Gly-ol]-enkephalin (DAMGO; 100 nM) in the
presence or absence of naloxone (3uM), and postdrug
mIPSC frequency and amplitude was normalized to baseline.
After each recording, slices were stained for tyrosine
hydroxylase (TH), and Alexa Fluor 594-filled cells that
expressed TH were considered to be dopaminergic.

Preparation of Membranes and Receptor Binding

For binding assays, brainstem membranes from age-matched
male mice were prepared as previously described (Roth,
2013). The subcellular fractionation procedure (Kumar et al,
2010) and determination of the number of h/mOPRMI-
118A- and 118G-binding sites in each fraction using a
radioligand-binding assay were performed as previously
described (Roth, 2013). A competition binding assay was
used to determine the binding affinity of p-endorphin,
MET-enkephalin, DAMGO, fentanyl, morphine, oxycodone,
hydrocodone, and buprenorphine for h/mOPRM1-118A and
118G receptors using freshly prepared membranes as
previously described (Roth, 2013). The amount of protein
per sample was determined using the Bradford Assay.

Functional cAMP Assays

HEK293 cells were co-transfected with plasmids encoding
either h/mOPRM]I1-118A or 118G receptor DNA (10 ng) and
the cAMP biosensor GloSensor-22F (Promega), as previously
described (Roth, 2013; Vardy et al, 2013). HEK293 cells were
treated with 10 pl DAMGO, morphine, fentanyl, buprenor-
phine, oxycodone, or hydrocodone prepared in drug buffer
(0.1 nM-10 pM). After 20 min, cAMP production was
stimulated by addition of 10 pl isoproterenol (1.2puM) in
8% GloSensor reagent. Luminescence was read on a Wallac
MicroBeta TriLux plate scintillation counter (PerkinElmer,
Waltham, MA). The transduction coefficient (log(7/K,)) for
each agonist was determined for different levels of receptor
reserve (ie, transfection with 0.3-10.0 ng receptor DNA)
using the operational model of Black and Leff and normal-
ized to the reference ligand, DAMGO, as previously
described (Kenakin et al, 2012).

RESULTS

h/mOPRM1-118AA and 118GG Mice Display
Differences in the Rewarding Potency of MOR Agonists

Because the acute rewarding effects of abused substances are
critical for the initiation and maintenance of drug taking, we
examined the reward-potentiating or -devaluing effects of the
MOR agonists morphine, fentanyl, oxycodone, and hydro-
codone; the MOR partial agonist buprenorphine; the kappa
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opioid receptor agonist U69,593; and the psychostimulant
cocaine in h/mOPRMI-118AA and 118GG male mice
using ICSS. h/mOPRMI-118AA and 118GG littermates
displayed no differences in baseline ICSS responding
(Figure la) measured by average maximum operant response
rates (MAX;iga4 =126.9 +11.0 responses/50 s; MAX, 1566 =
107.0+11.5 responses/50s; tos=1.20, p=0.23) and
minimum amount of electrical stimulation (¢C) required to
sustain responding (6 (11saa)=0.42+0.03 pC; 6y (115G6G) =
0.41+0.03 pC; t95=0.30, p=0.76). Cocaine (Figure 1b;
F3)57=59.1, p<0001), U69,593 (Figure 1b, F3,63=32'1’
p<0.001), fentanyl (Figure 1lc; F,60=15.0, p<0.001),
buprenorphine (Figure 1c; Fyg4=4.5, p=0.003), and oxyco-
done (Figure 1c; Fy5,=14.7, p<0.001) had dose-dependent
effects on BSR threshold in both h/mOPRM1-118AA and GG
mice independent of genotype.

In contrast, robust interactions between genotype and dose
were observed for morphine (Figure 1c; F; 5, =8.0, p<0.001)
and hydrocodone (Figure 1¢; F; 5, =6.3, p=0.001). Although
cocaine and U69,593 showed expected dose-dependent
reward-potentiating and -devaluing effects, respectively, all
MOR agonists had biphasic effects on 6, in h/mOPRMI-
118AA mice. In contrast, h/mOPRMI-118GG mice were
relatively insensitive to morphine and hydrocodone and
showed no significant differences from vehicle across the
dose range tested (1.0-10.0 mg/kg i.p.). 118GG mice were
also less sensitive to effects of morphine on MAX
(Supplementary Table S1; F;s,=7.56, p<0.001), and a
main effect of genotype was observed for hydrocodone
(F35,=9.84, p=0.005). These findings indicate that while
h/mOPRM1I1-118GG mice are relatively insensitive to the
effects of morphine and hydrocodone on brain reward
function, they display no deficits in the rewarding effects of
other MOR agonists or cocaine or the anhedonic effects of
KOR agonists. For full statistical analyses of ICSS experi-
ments, see Supplementary Table S2.

Mesolimbic Responses to Morphine are Reduced in
h/mOPRM1-118GG Mice

Because ICSS and other motivated behaviors are strongly
influenced by dopaminergic neurotransmission, we mea-
sured morphine- and fentanyl-stimulated dopamine release
in the NAc using in vivo microdialysis in freely moving
h/mOPRM1I1-118AA and 118GG mice. Morphine (Figure 2a;
AUC analysis; F,3,=81.1, p<0.001) and fentanyl
(Supplementary Figure S1; Fs;s56=5.97, p=0.002) dose-
dependently increased NAc dopamine relative to baseline,
and a dose x genotype interaction was observed for mor-
phine (Figure 2a; F,;,=4.57, p=0.02) but not fentanyl
(Supplementary Figure S1; F;4,=0.24, p=0.87). Simulta-
neous measurement of locomotor activity showed that
morphine (Figure 2b; F,35=70.7, p<0.001) and fentanyl
(Supplementary Figure S1; F;4,=35.5, p<0.001) dose-
dependently increased locomotor activity, and a dosex
genotype interaction was observed for morphine (Figure 2b;
F,36=4.50, p=0.02) but not fentanyl (Supplementary Figure S1;
F34,=0.06, p=0.98). These findings indicate that h/mOPRM1-
118GG mice exhibit hyposensitivity of dopaminergic responses
to morphine.

Opioids disinhibit dopaminergic neurons in the mesence-
phalic VT'A by attenuating GABAergic neurotransmission at
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Figure 1 Effects of MOR agonists, U69,593, and cocaine on intracranial

self-stimulation (ICSS) in h/mOPRM -1 18AA and | 18GG mice. (a) Average
baseline rate—frequency curves for /mOPRM I -1 I8AA (black circles; n=49)
and | 18GG mice (yellow triangles; n=48) performing ICSS. (b and c)
Effects of cocaine (I-10mg/kg i.p.), U69593 (0.01-0.1 mg/kg ip.),
fentanyl (FENT; 0.01-0.3 mg/kg s.c.), buprenorphine (BUP; 0.01—10 mg/kg i.p.),
oxycodone (OXY; 0.01-10 mg/kg i.p.), morphine (MS; 1.0-10 mg/kg ip.), and
hydrocodone (HYD; 1.0-10mg/kg i.p.) on BSR threshold in h/mOPRM -
I 18AA (black circles; n=10, I'l,7,8,7, 10, and 8, respectively) and | 18GG
mice (yellow triangles; n=11, 12, 10, 10, 8, I, and 12, respectively).
Values represent mean + SEM. *p <0.05 vs h/mOPRM -1 18AA; #p<0.05
vs vehicle.

presynaptic sites (Johnson and North, 1992). We performed
whole-cell patch clamp recordings from dopaminergic
neurons in acute midbrain slices to measure the effects of
morphine on the frequency and amplitude of mIPSCs
compared with effects of the highly selective MOR agonist
DAMGO. In VTA dopaminergic neurons (confirmed by
post-hoc staining for TH; Figure 2c), no differences were
observed in baseline mIPSC frequency (Figure 2d; 4, =1.18,
p=025) or amplitude (Figure 2d; t4,=0.10, p=0.92)
between h/mOPRM1I-118AA and 118GG cells. mIPSCs were
completely abolished by bath application of the GABA,
receptor antagonist gabazine (SR-95531, data not shown).
Morphine (100nM) reduced mIPSC frequency in
h/mOPRMI-118AA mice (Figure 2e; t,=9.29, p<0.001)
but not in 118GG mice, and a significant difference between
genotypes was observed (t;5=4.59, p<0.001). Morphine did
not affect mIPSC amplitudes in either 118AA or 118GG mice
(Figure 2e), suggesting that MORs presynaptically inhibit
GABAergic transmission. The effects of morphine were
blocked by preapplication with the opioid antagonist
naloxone (1.OpM) in both 118AA and 118GG mice
(Figure 2e). In contrast to morphine, DAMGO (100 nM)
robustly decreased mIPSC frequency in both h/mOPRM]I-
118AA (Figure 2e and f; t;=6.50, p<0.001) and 118GG
(t;=4.91, p=10.002) mice but also had no effect on mIPSC
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Figure 2 Mesolimbic responses to opioids in h/mOPRM -1 18AA and | 18GG mice. (a and b) Effects of morphine (3—30 mg/kg i.p.) on dopamine release in
the nucleus accumbens and locomotor activity in | IBAA (n=10) and | 18GG (n= 10) mice, as determined by area under the curve (AUC) analysis. (c) Alexa
Fluor 594 dye-filled neuron stained for tyrosine hydroxylase (TH). (d) Baseline frequency (Hz) and amplitude (pA) of miniature inhibitory postsynaptic
currents (MIPSCs) in OPRM -1 18AA (black circles; n=21) and | 18GG (yellow triangles; n=23) mouse dopaminergic neurons in the ventral tegmental
area (VTA). (e) Effects of bath-applied DAMGO (100 nM), morphine (100 nM), and morphine (100 nM) following naloxone (NLX) preapplication (I pM)
on normalized mIPSC frequency and amplitude in | I8AA (black bars; n=8, 8, and 5, respectively) and | 18GG (yellow bars; n=9, 8, and 6, respectively)
dopaminergic neurons. (f) Representative traces showing mIPSCs recorded in the presence of 500 nM tetrodotoxin before and after DAMGO (100 nM)
application in | 18AA VTA slices. Values represent mean + SEM. *p < 0.05 vs h/mOPRM -1 18AA; #p<0.05 vs vehicle or baseline.

amplitude in cells of either genotype (Figure 2e). These
findings indicate that the presynaptic effects of morphine but
not DAMGO are blunted in the VTA of 118GG mice, which
may reduce disinhibition of dopaminergic neurons by acute
morphine exposure. For full results and statistical analysis of
electrophysiological experiments, see Supplementary Table S3.

h/mOPRM1-118A and 118G Receptors do not Display
Differences in Gjy-Coupling

In order to determine why the rewarding potency of
morphine and hydrocodone but not oxycodone, fentanyl,
or buprenorphine was decreased in h/mOPRMI-118GG
mice, we used several pharmacological assays to probe
MOR function in vitro. First, we measured Gj,-coupling
in transfected HEK cells and found no difference in
the potency (ECsy) or efficacy of DAMGO, fentanyl,
morphine, oxycodone, hydrocodone, and buprenorphine
to suppress isoproterenol-stimulated cCAMP production between
h/mOPRM1I-118A and 118G receptors (Figure 3a and b).
We further examined MOR signal transduction using
an application of the Black-Leff operational model (Black

et al, 1985) that allowed us to minimize the effects of
receptor density on relative agonist activity by comparing
relative receptor function given different amounts of receptor
reserve (0.3-10ng transfected DNA/well) (Kenakin et al,
2012). No genotype difference in the normalized transduc-
tion coefficient [Alog(7/K,)] was observed for any agonist
tested (Supplementary Table S4). Across agonists, there was
a direct, linear relationship between mean Alog(7/K,) at
h/mOPRM1I-118A and 118G receptors (Figure 3c¢; R*=0.94,
p=0.001), which suggests that h/mOPRM1-118A and 118G
receptor isoforms are equivalent in their ability to couple
Gi, for these ligands. For full results of cAMP assays and
statistical analyses, see Supplementary Table S4.

The h/mOPRM1 A118G Polymorphism does not Alter
Agonist-Binding Affinity but is Associated with
Decreased Tissue Receptor Content

Because it has been reported that the OPRMI All18G
polymorphism increases the potency of the endogenous
MOR agonist f-endorphin by increasing ligand-binding
affinity (Bond et al, 1998), we performed competition
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Figure 3 Effect of MOR agonists on Gj,-coupling in vitro. (a and b)
Effects of DAMGO, fentanyl (FENT), buprenorphine (BUP), morphine (MS),
oxycodone (OXY), and hydrocodone (HYD) on G4-coupling in HEK293
cells expressing either h/mOPRMI[-118A (a) or 118G (b) receptors
(EC50, nM, in parentheses) measured by inhibition of isoproterenol-
stimulated cAMP synthesis. (c) Linear regression of transduction coefficients
(log(T/Ka)) for each agonist normalized to DAMGO (Alog(T/Ka);
n=4, 03-100ng transfected DNA/experiment). Dashed line
indicates 95% confidence interval of regression line. Values represent
mean =+ SEM.
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binding assays to determine the affinity of each opioid
agonist, as well as endogenous opioid peptides (f-endorphin
and MET-enkephalin), using h/mOPRM1-118AA and 118GG
mouse brainstem membranes. All drugs tested had nano-
molar affinity (K;) for h/mOPRM]I-118A and 118G receptors,
and no genotypic differences were observed (Figure 4a-h).
A significant reduction in Byax was observed in 118GG
mouse membranes (Figure 4i; t;,=10.07; p<0.005). This
finding was replicated using CHO-K1 cells stably expressing
h/mOPRM1I1-118A or 118G receptors (Figure 4j): Byax was
60.5% lower in cells expressing the h/mOPRMI-118G
receptor (118A: 363.4+16.3fmol/mg protein; 118GG:
132.5+ 10.3 fmol/mg protein). For full results of competition
binding assays and statistical analyses, see Supplementary
Table S5.

In order to address the limitations of interpreting
differences in the relative maximum number of binding
sites (Bymax) in pooled samples, we conducted single
concentration [’H]-DAMGO saturation binding in subcel-
lular membrane fractions prepared from individual
h/mOPRMI-118AA and 118GG mice. Across fractions,
specific binding (fmol/mg protein) was significantly greater
in 118AA mice compared with 118GG littermates (Figure 4k;
118AA: 140.9+10.7 fmol/mg protein; 118GG: 108.5+5.7
fmol/mg protein; t;,=2.42; p=0.03), and no significant
difference in the percentage of total receptors localized to
either the nuclear/cytosolic (P1) or surface (P2) fraction was
observed between genotypes (Figure 41; F; 1, =0.98, p=0.34).
These data suggest that the total number of MOR-binding
sites is lower in h/mOPRM1-118GG mice, and because the
relative distribution of receptors in subcellular fractions was
not altered, it is unlikely that the h/mOPRMI A1l18G
polymorphism significantly alters receptor trafficking. For
full results and statistical analysis of saturation-binding
assays, see Supplementary Table S6.

Reduction of Receptor Reserve with the Irreversible
MOR Antagonist -Funaltrexamine Unmasks Genotypic
Differences in Fentanyl Sensitivity

Because h/mOPRMI1-118GG mice are less sensitive to MOR
agonists with low in vivo potency (eg, hydrocodone and
morphine) and display decreased numbers of MOR-binding
sites, we hypothesized that reduction of receptor reserve with
an irreversible antagonist (f-funaltrexamine or f-FNA)
would unmask genotypic differences in drug response to
fentanyl. Using a locomotor activity assay, we found that
0.3 mg/kg fentanyl (s.c.) significantly increased locomotor
activity in both h/mOPRMI1-118AA (Figure 5; t;3=11.2,
p<0.001) and 118GG mice (Figure 5; t;,=10.1, p<0.001)
compared with saline. There was no difference between
genotypes in response to either saline (F; ,5=0.92, p=0.35)
or fentanyl (F;,5=0.001, p=0.98), confirming our earlier
observations. Forty-eight hours after f-FNA exposure, a
robust reduction in the locomotor-stimulant effects of
fentanyl was observed in h/mOPRMI-118GG (Figure 5;
t;,=3.4, p=0.006) but not in h/mOPRMI-118AA mice
(t13=1.9, p=0.08), and a significant genotype difference was
observed (F;,5=6.1, p=0.02). This effect was specific to
fentanyl, as no difference in response to saline was observed
following S-FNA exposure (F;,5=1.3, p=0.27). These
findings demonstrate that pharmacological reduction of
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receptor number is sufficient to unmask genotypic differ-
ences in drug response, supporting the assertion that the
A118G polymorphism alters opioid sensitivity primarily by
altering receptor reserve.

and locomotion in h/mOPRM1I-118GG mice was associated
with decreased morphine- but not fentanyl-induced dopa-
mine release in the NAc in vivo and a reduction in the
inhibitory effects of morphine but not the highly potent MOR
agonist DAMGO on GABAergic neurotransmission in the
VTA ex vivo. These findings were not due to changes in drug
potency or efficacy in vitro or changes in ligand-binding
affinity. A significant reduction in total MOR-binding sites
was observed in 118GG mouse brainstem membranes, which,
however, did not affect the relative distribution of receptors in
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different subcellular fractions. Administration of the irrever-
sible MOR antagonist -FNA unmasked genotypic differ-
ences in the locomotor response to fentanyl, supporting the
hypothesis that the OPRM1 A118G polymorphism decreases
sensitivity to agonists with low in vivo potency by reducing
receptor reserve.

First, we found that h/mOPRMI-118GG mice are less
sensitive than 118 AA mice to the reward-potentiating effects of
morphine but not those of synthetic MOR agonists with higher
in vivo potency measured with ICSS. Stimulation of the medial
forebrain bundle during ICSS evokes dopamine transients in
the NAc, and BSR is attenuated by DIR antagonists (Cheer
et al, 2007). Similar to other rewarding drugs, morphine
decreases BSR threshold in mice (Elmer et al, 2010; Robinson
et al, 2012) in a dopamine-dependent manner (Kornetsky and
Duvauchelle, 1994). We also observed reduced effects of
morphine but not the highly potent MOR agonist fentanyl
on dopamine release in the NAc of h/mOPRM1I1-118GG mice
and reduced inhibition of GABAergic neurotransmission onto
dopaminergic VTA neurons by morphine but not the highly
potent MOR agonist DAMGO in h/mOPRMI-118GG cells.
As presynaptic MOR-mediated control of GABA release at
synapses with dopaminergic neurons in the VTA is a critical
mechanism regulating opioid reward in mice (Madhavan et al,
2010), reduced MOR function in the VTA likely diminished
morphine reward through a dopaminergic mechanism. Given
the consistency of diminished locomotor and conditioned
rewarding responses to morphine observed both in our mice
and in another murine model of the OPRMI Al18G
polymorphism (Mague et al, 2009), it is likely that aberrant
mesolimbic responses to morphine exist in human OPRMI-
118G carriers as well.

We observed that h/mOPRMI-118GG mice are less
sensitive to the reward-potentiating effects of hydrocodone,
without loss of sensitivity to oxycodone, fentanyl, or
buprenorphine. These observations do not appear to be
due to direct pharmacodynamic effects per se, as relative
in vivo potency rather than in vitro agonist potency or
efficacy predicted opioid sensitivity in 118GG mice. As
in vivo potency is dependent on both pharmacokinetics and
pharmacodynamics, both of these factors must be considered
when interpreting behavior associated with the OPRMI
A118G variant. Fentanyl was both highly potent and
efficacious in vitro and is approximately 100 times more
potent than morphine in humans due to its high lipophilicity
and brain penetrance (Eguchi, 2004). Buprenorphine is a
weak partial agonist but is 25-50 times more potent than
morphine in vivo as a result of its high MOR-binding affinity
and lipophilicity. Oxycodone, which is structurally similar to
morphine but less potent in vitro, was 30 times more potent
than morphine on ICSS, most likely due to superior brain
penetrance (Bostrom et al, 2008) and the substantial first
pass metabolism of morphine in mice. Hydrocodone, which
is equipotent to morphine in humans (Eguchi, 2004), had
both low potency and intrinsic efficacy in vitro. Given these
observations, it appears that low in vitro potency, bioavail-
ability, and brain penetrance predicts diminished rewarding
potency of opioids in h/mOPRM1I1-118GG mice.

Although low in vivo potency appears to predict decreased
opioid sensitivity in h/mOPRM1-118GG mice, we found no
evidence that loss of a putative N-terminal glycosylation site
affects Gj,-coupling, supporting several previous studies
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(Befort et al, 2001; Beyer et al, 2004; Knapman et al, 2014).
This is not surprising given that DAMGO and morphine
retain potency and efficacy at the MOR in the absence of the
extracellular N-terminus (Surratt et al, 1994). The intracel-
lular C-terminus affects signal transduction, desensitization,
and receptor internalization (Koch et al, 2001). Previous
investigations using OPRMI-118A and 118G receptors did
not find differences in receptor internalization following
DAMGO or morphine incubation (Beyer et al, 2004),
although direct arrestin recruitment, which is associated
with rapid desensitization, internalization, and G protein-
independent signaling (Arttamangkul et al, 2006; Dang et al,
2011; Dang and Christie, 2012), has not been measured to
our knowledge. Its involvement in OPRMI A118G pheno-
types warrants further investigation, and the inability to
measure f-arrestin recruitment is a limitation of our study.

Several in vitro, animal, and human studies suggest that
MOR expression is decreased by the OPRMI1 Al18G
polymorphism (Beyer et al, 2004; Kroslak et al, 2007;
Mague et al, 2009; Pecina et al, 2015; Ray et al, 2011;
Wang et al, 2012; Weerts et al, 2013). These changes may be
due to differences in mRNA stability (Zhang et al, 2005),
decreased receptor half-life (Huang et al, 2012), and/or
receptor trafficking (He et al, 2002). Mice containing a
homologous polymorphism at Oprm1I position 112 (A112G)
display decreased receptor mRNA in the hypothalamus,
PAG, VTA, NAc, and cortex, which was associated with
lower MOR protein and specific binding (Mague et al, 2009).
Follow-up studies indicate that Oprml-112G receptors in
striatal membranes have lower molecular mass when
compared with 112A littermates due to decreased N-terminal
glycosylation (Huang et al, 2012). Loss of glycosylation
impairs trafficking of several GPCRs to the cell surface,
including the KOR (Li et al, 2007) and p2-adrenergic
receptor (Rands et al, 1990), but we did not observe any
changes in the relative subcellular distribution of MOR-
binding sites in h/mOPRMI-118GG mouse brainstem
despite a lower total number of binding sites. It has recently
been shown that the reinforcing and mesolimbic effects of
heroin are enhanced in 112GG mice (Zhang et al, 2014).
Given that heroin sensitivity is not dependent on Oprml
exon 1 (Schuller et al, 1999), it is possible that the A118G
polymorphism alters the composition of alternatively spliced
receptor populations. Future studies will be required to
elucidate molecular mechanisms by which the A118G poly-
morphism alters receptor availability and determine their
functional effects within circuits associated with opioid abuse.

Naive h/mOPRMI-118AA and 118GG mice are equally
sensitive to fentanyl, supporting previous findings using
this model (Mahmoud et al, 2011). As a highly potent,
efficacious, and brain-penetrant agonist, fentanyl has a large
receptor reserve in vivo that appears to override differences
in tissue receptor content. Total MOR binding is lower in
h/mOPRM1I-118GG mice, which are more affected by
reductions in receptor number following treatment with
P-ENA, consistent with fewer ‘spare receptors,” ie, a lower
MOR reserve. Receptor depletion reduced the in vivo potency
of fentanyl on locomotor stimulation in 118GG mice without
significantly affecting 118AA mice. This finding supports
the hypotheses that (1) the OPRMI A118G polymorphism
influences opioid sensitivity by altering receptor reserve,
and (2) the effect of genotype can be modulated by changes



in receptor number. Fentanyl, oxycodone, and buprenor-
phine differ significantly in their structure and intrinsic
efficacy but are highly brain penetrant and have large
receptor reserves. Morphine and hydrocodone are less potent
and brain penetrant than fentanyl and buprenorphine and
have lower receptor reserves. Here we showed different
effects of a relatively low-potency (morphine) MOR
agonist compared with high-potency (fentanyl, DAMGO)
MOR agonists on behavior (ICSS, locomotion) and circuit
function (in vivo microdialysis, ex vivo electrophysiology)
in h/mOPRM1I-118GG and 118AA mice but no difference
in the function of 118G and 118A MOR isoforms in vitro.
Furthermore, by reducing receptor reserve with an irrever-
sible MOR antagonist we were able to demonstrate a lower
MOR reserve in 118GG mice measured with fentanyl-
stimulated locomotion. We conclude that agonist-specific
differences in opioid sensitivity in 118GG mice are
determined by the number of receptor-binding sites and do
not involve altered receptor function.

These investigations represent a reverse translational
approach to investigating how the OPRMI1 A118G poly-
morphism alters mesolimbic responses to opioids, which
may elucidate mechanisms influencing both opioid and
alcohol abuse in human populations. Meta-analyses suggest
that carrying the OPRM1I1-118G allele increases postsurgical
opioid analgesic requirement (Hwang et al, 2014), although
association with opioid dependence is not robust outside of
Asian populations (Haerian and Haerian, 2013). It is possible
that, given our findings, decreased drug reward is protective
against opioid abuse in some individuals, while resistance to
negative drug effects promotes intake in others. The OPRMI-
118G allele is also associated with greater subjective alcohol
reward and improved therapeutic response to naltrexone
(Heilig et al, 2011; Ray et al, 2012). We have recently shown
that h/mOPRMI-118GG mice are more sensitive to the
reward-potentiating effect of alcohol on ICSS and opioid
antagonism of alcohol drinking than their 118AA littermates
(Bilbao et al, 2014). These findings emphasize the potential
of this and other humanized mouse models to parse genetic
moderators of disease risk, predict medication efficacy in
patient populations, and ultimately inform clinical practice.
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