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Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert

indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive

periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for

development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation,

such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by

derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine

signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that

impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-

related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral

response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and

clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed

exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand

and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins

of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine

the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment

approaches for neuropsychiatric disorders.
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INTRODUCTION

Neuronal activity during development shapes functional
connectivity between neurons and thus determines the
‘wiring’ of the mammalian brain. As best described for the
development of sensory systems, such plasticity is often
restricted to specific developmental periods, so-called sensi-
tive periods. If certain events must occur within specified
time windows to allow for normal maturation, respective
time windows are referred to as critical periods. The best-
studied example is the critical period for the formation of
ocular dominance columns, when retinal activity determines
columnar size (Espinosa and Stryker, 2012; Hensch, 2005).
Sensitive or critical period plasticity allows for circuit matu-
ration to respond/adapt to external (environmental) and
internal (genetic) factors. Although adaptive from an evolu-
tionary perspective, heightened plasticity during sensitive

periods also permits environmental and genetic factors to
shift ontogenetic pathways and confer risk for disorders.
Here we review developmental periods that are sensitive

to monoamine signaling and influence adult behavior of
important relevance for psychiatry. First, we provide a short
overview of dopamine (DA) and serotonin (5-HT) system
development, because this information relates to mechan-
istic aspects of monoamine-sensitive periods. We then
briefly review the murine neonatal 5-HT-sensitive period
with consequences on sensory system development, because
these findings provide the best-characterized examples of
stark neuroanatomical malleability and reveal guiding
conceptual principles that relate to monoamine-sensitive
periods in general. Thereafter, we focus on two periods: the
murine early postnatal period, highlighting its role in
shaping adult anxiety/depression-related behaviors and
cognition, and the murine periadolescent (PA) period,
highlighting monoamine signaling-related consequences on
adult aggression and behavioral stimulant sensitivity. For
both periods, we review preclinical data to provide mech-
anistic insight, as well as epidemiological and clinical data
to point out translational relevance. The murine embryonic
period is reviewed by Stanwood et al in this issue.
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MONOAMINE SYSTEM DEVELOPMENT

In humans, 5-HT neurons are first detected when the
embryo is 5 weeks old (Sundstrom et al, 1993), with rapid
growth and proliferation until the 10th week of gestation
(Levallois et al, 1997). After 15 weeks of gestation, 5-HT cell
bodies cluster in the raphe nuclei (Takahashi et al, 1986).
Levels of 5-HT increase during the first 2 years and then
decline to adult levels after the age of 5 years (Sodhi and
Sanders-Bush, 2004). In rodents, this dynamic maturation
of the 5-HT system is also present (Figure 1). The first 5-HT
neurons appear at the 12th day of rodent gestation (Lauder
and Bloom, 1974). 5-HTergic neurons start releasing 5-HT
on embryonic day 13 (E13) (Lambe et al, 2000; Lidov and
Molliver, 1982a), and levels of 5-HT peak within the first
postnatal week, after which they decline, reaching adult
levels at around postnatal day 15 (P15; Hohmann et al,
1988). 5-HTergic neurons continue to elaborate their
innervation patterns throughout the embryonic and early
postnatal life, until about P21 (Lauder, 1990). Hence, in
mice and rats, the presynaptic 5-HT components surface
around E12 and mature until about P21. An additional
aspect of presynaptic 5-HTergic system maturation is the
transient adoption of a 5-HTergic phenotype by several
otherwise non-5-HTergic neuron populations during late
embryonic and early postnatal development (Gaspar et al,
2003; Lebrand et al, 1996, 1998; Salichon et al, 2001).
Lastly, 5-HT receptors are expressed early in embryonic
development, even before 5-HTergic afferents reach their
innervation targets (Bonnin et al, 2006; Hellendall et al,
1993). During these early developmental stages, 5-HT
arising from placental sources acts on 5-HT heterorecep-
tors, enabling developmental 5-HT signaling even before
5-HTergic axons have reached their targets (Bonnin et al,
2011).
Midbrain DA neurons appear during the second month of

gestation in humans, and between E12 and E15 in rodents

(Olson and Seiger, 1972). In rats, starting at E15, DA-
positive fibers pass through the developing striatum
to cortical regions. The development of cortical DA
innervation continues to increase until P60, after which
density and topography of DAergic afferents remain con-
stant (Kalsbeek et al, 1988). Interestingly, several measures
of DAergic system maturation transiently peak during
adolescence (Figure 1). For example, DA transporter (DAT)
density in the striatum increases from P25 through P50, but
then decreases continuously until P90 (Moll et al, 2000;
Tarazi et al, 1998a). DA receptors are first expressed by E14
in the rat and E12 in the mouse (Araki et al, 2007; Jung and
Bennett, 1996), and during postnatal development, striatal
DA receptor-binding capacity continues to gradually
increase until P28–P40, after which it diminishes again to
reach stable levels at around P60 (Giorgi et al, 1987; Tarazi
et al, 1998b; Teicher et al, 1995). Likewise, DAergic cell
activity in mice is low at weaning, then increases to a peak
at P45, after which it declines once again (McCutcheon and
Marinelli, 2009). In the ventral tegmental area (VTA), this
transient increase in DAergic activity is characterized by
increased non-bursting activity and longer burst duration
(McCutcheon et al, 2012). Lastly, tissue DA levels
peak between P25 and P40 (Noisin and Thomas, 1988).
Hence, pre- and postsynaptic DA system maturation follows
an expansion–contraction course, peaking during late
adolescence.
Due to the expression of the pre- and postsynaptic

components of the 5-HT and DA systems during develop-
ment, with monoaminergic neurons innervating and
releasing neurotransmitter, and with extraneuronal sources
providing central monoamines, it is easily conceivable that
5-HT and DA have a critical role in modulating neurode-
velopment and functional circuit formation. Animal studies
support this hypothesis, and have uncovered consequences
of dysregulated developmental monoamine signaling on
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Figure 1. Transient peaks in monoamine system development. The graph displays relative levels of 5-HTergic and DAergic measures in the CNS across
rat and mouse development: monoamine tissue concentration (5-HTof placental and raphe origin and DA), DA receptor binding (DA receptors) DAergic
firing frequency (DAergic activity), and DAT binging (DAT). Green labels 5-HTergic aspects, and red labels DAergic aspects. The dashed line separates
embryonic (left) from postnatal (right) development. ‘Transiently 5-HTergic’ demarks the time window during which non-5-HTergic neurons transiently
adopt a 5-HTergic phenotype. CNS, cerebrospinal fluid; DA, dopamine; 5-HT, serotonin.
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cytoarchitecture and -physiology, neuronal circuit proper-
ties, and behavior. Interestingly and counter intuitively, too
much monoamine signaling seems to be more disruptive to
normal development than too little.

A 5-HT-SENSITIVE DEVELOPMENTAL
PERIOD IMPACTING THE SOMATOSENSORY
AND VISUAL SYSTEM

During embryonic and postnatal development, monoa-
mines modulate neurodevelopmental processes such as cell
division, migration and differentiation, axonal and dendri-
tic elaboration and connectivity, and myelination and
apoptosis (Gaspar et al, 2003; Haydon et al, 1984, 1987;
Lauder, 1990; McCarthy et al, 2007; Popolo et al, 2004;
Tarazi et al, 1998b; Teicher et al, 1995). 5-HT, eg, exerts
prominent autoregulatory control in dorsal and median
raphe nuclei formation during embryonic development by
acting on 5-HT1A and 5-HT1B autoreceptors to limit the
number of 5-HTergic neurons (Rumajogee et al, 2004). An
example for heteroregulation of fundamental developmental
processes is its modulatory effect on axonal guidance
factors. Through 5-HT1B/1D heteroreceptors, 5-HT reverses
the attraction exerted by netrin-1 on the developing
posterior dorsal thalamic axons into repulsion, thereby
contributing to patterning of thalamocortical connections
in the developing brain (Bonnin et al, 2007). The two most
prominent examples for 5-HTergic modulation of cortical
and subcortical brain organization on a system-wide level
relate to somatosensory and visual system formation.

5-HT and Somatosensory System Development

The rodent somatosensory cortex (SSC) contains barrel
fields, with individual barrels representing single processing
units for each vibrissa (reviewed in (Erzurumlu and Gaspar,
2012; Inan and Crair, 2007; Petersen, 2007; van Kleef et al,
2012)). Barrels reside in layer IV and are organized around
thalamocortical projections from the ventroposteromedial
(VPM) nucleus of the thalamus (Killackey, 1973). Thala-
mocortical VPM neurons transiently express 5-HTT and
vesicular monoamine transporter 2 (VMAT2) from E15 to
P10, allowing for 5-HT uptake and vesicular storage
(Hansson et al, 1998; Lebrand et al, 1996; Lebrand et al,
1998). The transient expression of 5-HTT and the main-
tenance of low local 5-HT levels is critical for the formation
of the barrel fields, as monoamine oxidase A (MAOA) or
5-HTT-knockout mice fail to develop barrel fields (Cases
et al, 1996; Persico et al, 2001). The sensitive period for
5-HTergic modulation of barrel field formation has been
mapped to P0–P4 (Vitalis et al, 1998).
The proposed mechanism by which excess 5-HT leads to

disruption of barrel field formation involves 5-HT1B recep-
tors, also transiently expressed by thalamocortical afferents
during the first postnatal week in rodents (Bennett-Clarke
et al, 1993). VPM 5-HT1B receptors are located on axon
terminals and inhibit the release of glutamate relative to

incoming stimuli (Laurent et al, 2002; Mooney et al, 1994).
Yet, such glutamatergic synaptic neurotransmission is
necessary for the formation of barrel columns (Li et al,
2013). Genetically removing 5-HT1B receptors from MAOA-
and 5-HTT-knockout mice rescues the formation of barrel
fields (Salichon et al, 2001), affirming that the excess
extracellular 5-HT availability in MAOA- and 5-HTT-
knockout mice disrupts barrel field formation through
5-HT1B receptor activation. Intriguingly, birth reduces
extracellular 5-HT levels and this reduction is necessary
and sufficient for birth to serve as an initiator for barrel
formation (Toda et al, 2013).
Too little 5-HT can also pose problems for barrel field

formation. Lesioning 5-HT fibers on the day of birth leads
to a 20–30% decrease in the size of barrels at P6 and P60
(Bennett-Clarke et al, 1994), and depleting 5-HT in neonatal
pups with the toxin p-chloroamphetamine decreases the
number of 5-HTergic axons in the barrel field, and delays
the segmentation of thalamocortical projections into
individual barrels (Blue et al, 1991). VMAT2-knockout
mice, which have virtually undetectable levels of 5-HT, DA
and norepinephrine (NE) in the brain, also show a lack of
barrel formation in SSC; however, thalamocortical axons
segregate properly, with a 1-day delay. This dissociation
between the effects of VMAT2 deficiency on layer IV barrels
and thalamocortical axons indicates that monoamines are
essential for the formation of barrels in the cortex, but not
for thalamocortical axon patterning (Alvarez et al, 2002).

5-HT and Visual System Development

In rodents, crossed and uncrossed retinal fibers have a
distinct pattern of distribution within the superior collicu-
lus (SC) and the lateral geniculate nucleus (LGN; Reese and
Cowey, 1983). This adult pattern is due to spontaneous
activity within retinal cells, as well as competition between
inputs from the two eyes. Blocking neural activity in one eye
prevents normal pattern formation in the SC (Thompson
and Holt, 1989), and blocking activity in the target region
disrupts pattern development within the LGN (Shatz and
Stryker, 1988). In mammals, retinal axons initially innervate
the contralateral and ipsilateral LGN in an intermingled
fashion. Over a critical period spanning from approximately
P3 to P8, ipsilateral and contralateral retinal axons become
organized into a predictable layer-dependent pattern of
distribution through gradual pruning of inappropriate pro-
jections and expansion of correct projections in retinotha-
lamic axons (Sretavan and Shatz, 1986).
Increased 5-HT disrupts normal pattern development in

the SC of the Syrian hamster (Mooney et al, 1998), and
MAOA-knockout mice show a failure of crossed and
uncrossed retinal fibers to segregate in the LGN and the
SC (Upton et al, 1999). This disrupted pattern can be
rescued by inhibiting 5-HT synthesis during the first
2 weeks of life (Upton et al, 1999). During this 2-week
period, retinal fibers transiently express 5-HTT, VMAT2,
and HTR1B (Hansson et al, 1998; Lebrand et al, 2006; Upton
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et al, 2002; Upton et al, 1999). Therefore, a similar mech-
anism is proposed for the 5-HT-mediated alteration in
pattern development in somatosensory and visual systems.
Transient 5-HTT expression keeps extracellular 5-HT below
a critical concentration. An excess of extracellular 5-HT
such as seen in 5-HTT- or MAOA-knockout mice activates
5-HT1B receptors on thalamocortical or retinogeniculate
axon terminals, thereby decreasing their excitatory gluta-
matergic output (Rhoades et al, 1994) and disrupting the
activity-dependent maturation of axon collaterals necessary
for the segregation of SC and LGN inputs. Interestingly, a
lack of 5-HT or 5-HT1B receptors affects the refinement of
the SC retinal projection, whereas the establishment of
eye-specific patterns in the dorsal LGN appears not to be
sensitive (Upton et al, 2002). But as observed for barrel field
formation, birth-induced reduction of extracellular 5-HT
levels regulates the segregation of retinal ganglion cell axons
to the LGN (Toda et al, 2013).

Functional Consequences

5-HTT� /� mice display reduced cerebral glucose utiliza-
tion in response to whisker stimulation across all levels of
somatosensory whisker processing (Esaki et al, 2005), a
deficit that is rescued by the administration of the 5-HT
synthesis inhibitor parachlorophenylalanine (PCPA).
Behavioral deficits that could result from somatosensory
or visual system dysfunction include prolonged righting
and trembling during locomotion seen in MAOA-deficient
pups (Cases et al, 1995) and motor deficits seen in both
MAOA- and 5-HTT-deficient adult mice (Bortolato et al,
2013; Cases et al, 1995; Morelli et al, 2011); however, proof
of a causal relationship is thus far lacking.

Clinical Relevance

High levels of 5-HT during a sensitive perinatal period
cause permanent anatomical defects in the somatosensory
and visual system. The underlying mechanisms likely apply
to other systems as well, because transient expression of
5-HTT also occurs in other sensory, thalamic, hippocampal,
hypothalamic, and prefrontal cortical neurons throughout
development in rodents (Lebrand et al, 1996; Lebrand et al,
1998; Narboux-Neme et al, 2008). Transient ectopic 5-HTT
expression during development is also observed in non-
human primates, eg, in sensory neurons of the common
marmoset (Lebrand et al, 2006). In human 12 to 14-week-
old fetuses, 5-HTT-immunolabeled fibers have been
identified in the rostral and caudal limbs of the internal
capsule, including putative thalamocortical fibers that
project from the mediodorsal thalamus to the frontal cortex
(Verney et al, 2002). Thus, humans and rodents may share a
similar role for 5-HT and 5-HT uptake during cortical
development. The hypothesized conservation of ectopic
5-HTT expression in humans is of interest because it might
relate not only to sensory phenotypes but also to clinical
psychopathology.

Many psychiatric and neurodevelopmental disorders,
including autism spectrum disorder, attention deficit hyper-
activity disorder, developmental coordination disorder, and
schizophrenia encompass sensory and/or motor deficits
(Butler et al, 2001; Crane et al, 2009; Dewey et al, 2007;
Doniger et al, 2002; Piek and Dyck, 2004; Rogers and
Ozonoff, 2005). Symptoms vary broadly, manifesting as
sensory hypo- or hyper-responsiveness, or problems with
sensory filtering. The presence of sensory symptoms in
these disorders that are primarily characterized by emo-
tional and cognitive dysfunction supports the hypothesis of
common mechanisms underlying sensory/motor and emo-
tional/cognitive phenotypes.

A 5-HT-SENSITIVE DEVELOPMENTAL
PERIOD IMPACTING ADULT EMOTIONAL
BEHAVIOR AND COGNITION

Though limbic circuits retain some plasticity in adult life,
their formation and interconnectivity is predominantly set
during embryonic and postnatal development. Heightened
plasticity during circuit development bestows malleable
potential to environmental and genetic factors (Hensch,
2004; Knudsen, 2004). Hence, much like the maturation of
sensory systems, limbic circuit formation may also pass
through sensitive developmental periods, during which external
and internal factors can impact and modulate circuit
formation and consequently, behaviors encoded by them.
Such a model is congruent with mood disorders often having
their origins in early life (Baram et al, 2012; Caspi et al,
2003; Kendler et al, 1992; Moffitt et al, 2007; Pietrek et al,
2013; Quinn et al, 2013; Wals and Verhulst, 2005). Although
our understanding of the molecular factors that define
maturing limbic circuit properties is still limited, 5-HT has
emerged as one such factor modulating not only adult
limbic function, but also limbic circuit formation.

5-HT and Emotional and Cognitive Behavior

5-HT signaling modulates emotional behavior (Arango et al,
2003; Charney, 1998; Fernandez and Gaspar, 2012). Reduced
plasma and platelet 5-HT levels as well as blunted prefrontal
cortical responses to elevated 5-HT are observed in psycho-
pathological states such as depression, panic disorders,
and post-traumatic stress disorder (Anderson et al, 2004;
Cannon et al, 2013; Davis et al, 1997; Kovacic et al, 2008;
Lesch et al, 1996; Maron et al, 2004; Spivak et al, 1999).
Manipulations evoking hypo-5-HTergic states such as
tryptophan depletion exert prodepressive effects (Blokland
et al, 2002; Feder et al, 2011), whereas selective 5-HT
reuptake inhibitors (SSRIs) that block the 5-HTT and hence
enhance synaptic 5-HT levels have antidepressant and
anxiolytic efficacy (Fuller and Wong, 1990). Preclinical
research mirrors this relationship, as reduced firing of 5-
HTergic neurons is often observed in animal models of
depression and anxiety (Bambico et al, 2009; Challis et al,
2013). Although genome-wide association studies (GWAS)
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have thus far not identified genetic risk loci for depression
(Flint and Kendler, 2014), the relationship between
perturbed 5-HTergic signaling and affective behavior is
further supported by genetic linkage and association
studies. Congruent with the generally positive correlation
of 5-HTergic phenotypes and emotion, low-expressing
alleles of TPH2 coding for the 5-HT-synthesizing enzyme
tryptophan hydroxylase 2 (Gutknecht et al, 2007; Reuter
et al, 2007; Zill et al, 2004) and the high-expressing variant
of the presynaptic inhibitory receptor HTR1A (Lemonde
et al, 2003; Schmitz et al, 2009) are associated with negative
emotionality and enhanced predisposition to depression
and suicidality. However, polymorphisms in the regulatory
regions of MAOA, which negatively influence its transcrip-
tional levels (Sabol et al, 1998), are also associated with
enhanced anxiety and depressive behavior (Schmidt et al,
2000; Tadic et al, 2003). Likewise, the hypomorphic short (s)
allelic variant of the 5-HTT gene-linked polymorphic region
(5-HTTLPR) is associated with trait anxiety and ‘neuroti-
cism’, and increased susceptibility to environmental stress
in some (Grabe et al, 2012; Lesch et al, 1996; Xie et al, 2009),
albeit not all studies (Fisher et al, 2012; Peyrot et al, 2013).
These surprising associations are in line with reduced
expression of 5-HTT found in brains of depressed
individuals and suicide victims (Underwood et al, 2012;
Willeit et al, 2000). Anxiogenic associations with hypo-
morphic MAOA and 5-HTT alleles are opposite to what one
would predict based on the anxiolytic and antidepressant
effects of monoamine oxidase inhibitors and drugs blocking
the 5-HTT (Fuller and Wong, 1990). However, pharmaco-
logical treatments usually circumvent developmental peri-
ods, whereas genetic factors act throughout life, including
development. Hence, these results suggest that elevated
5-HT levels may exert starkly contrasting effects on emo-
tional behavior, depending upon the age of exposure.
Both non-human primate and rodent models support

a central role for 5-HTergic genotypes in establishing
psychiatric vulnerability. MAOA-deficient mice exhibit
enhanced startle behavior and decreased exploration of
novel environments (Cases et al, 1995; Chen et al, 2004).
These behavioral phenotypes correlate with increased
monoamine levels specifically in postnatal life, as the
gradual rise in monoamine oxidase B (MAOB) normalizes
adult monoamine metabolism (Tsang et al, 1986). Whereas
MAOA activity impacts 5-HT, DA, and NE levels,
5-HTT function selectively regulates 5-HT signaling. In
5-HTT� /� mice, elevated extracellular 5-HT correlates
with enhanced anxiety, learned helplessness, behavioral
despair, and impaired social interaction (Ansorge et al,
2004; Kalueff et al, 2007; Lira et al, 2003; Moy et al, 2009;
Muller et al, 2011). 5-HTT-knockout animals also exhibit
impaired extinction recall of fearful memories (Wellman
et al, 2007). Loss-of-function and hypomorphic 5-HTT
variants also enhance the susceptibility to adverse beha-
vioral effects of stressors. Rhesus macaques carrying an
orthologue of the 5-HTT s allele and 5-HTT� /� mice
exhibit exaggerated behavioral and neuroendocrine

responses to mild stress, particularly when also exposed
to early-life stress (Adamec et al, 2006; Jiang et al, 2009).
Resembling the phenotype of 5-HTT-deficient mice, loss of
all or only presynaptic inhibitory 5-HT1A receptors results
in increased anxiety-related behaviors (Gross et al, 2002;
Heisler et al, 1998; Parks et al, 1998; Ramboz et al, 1998;
Richardson-Jones et al, 2011).
Indicating a linear relationship between developmental 5-

HT tone and adult emotional behavior, multiple transgenic
models of life-long hypo-5-HTergic function, including
those defective in raphe specification (LMX1b-PET1Cre,
PET1-Tox, PET1� /� ), 5-HT packaging (VMAT2-
SERTCre), or exhibiting enhanced reuptake of synaptic
5-HT (5-HTT-overexpressing mice), display enhanced
exploration of novel environments and reduced innate
anxiety (Dai et al, 2008; Jennings et al, 2006; Kiyasova et al,
2011a; Narboux-Neme et al, 2011). However, some con-
stitutive mutants for genes involved in 5-HTergic fate
specification (PET1� /� ) and synthesis (TPH2� /� ) with
drastically reduced 5-HT levels exhibit prodepressive and
anxiogenic behavior (Beaulieu et al, 2008; Hendricks et al,
2003). Hence, a simple linear relationship breaks apart at
extreme ends, suggesting that both severe depletion and
elevation of 5-HT during development adversely influences
adult emotional behaviors, but still supporting the core
hypothesis that developmental 5-HT signaling establishes
the set point for adult emotionality.
Direct proof of this hypothesis requires temporal control

over 5-HTergic parameters, which constitutive genetic
models lack. Pharmacologic probing of the 5-HTsystem
during development lacks 100% target specificity but has
nevertheless proven invaluable in advancing our knowledge
of 5-HT-sensitive periods (Table 1). For example, animals
administered SSRIs or 5-HTT blocking tricyclic antidepres-
sants during the first 3 weeks of postnatal life (P4–P21), but
not in adulthood (P90–P107 or P56–P70), mimic the
prodepressive and anxiogenic phenotype observed in
transgenic models with constitutively enhanced 5-HTergic
tone (Ansorge et al, 2004, 2008; Popa et al, 2008). We have
recently refined this SSRI-sensitive period to P2–P11, and
extended the behavioral characterization, finding impaired
hippocampal-dependent spatial learning and contextual
fear learning, as well as diminished amygdala and PFC-
dependent fear extinction and extinction recall (Rebello
et al, 2014). This P2–P11 period, interestingly, not only lies
within the maturation period of both 5-HTergic afferents
and cortical circuits (Kiyasova and Gaspar, 2011b; Lidov
and Molliver, 1982a; Lidov and Molliver, 1982a; Vitalis et al,
2013), but also coincides with the peak of cortical 5-HT and
5-HT metabolite levels (Hohmann et al, 1988; Figure 1).
Such tight confinement of this sensitive period, however,
does not persist when comparing between species. For
example, although in mice, PA SSRI exposure lacks
persistent consequences on fear-, anxiety-, or stress-related
behaviors (Norcross et al, 2008; Yu et al, 2014), rats exhibit
increases in anxiety-like behavior following P25–P46, P35–
P49, or P67–P88 5-HTT blockade (Iniguez et al, 2010, 2014;
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Karpova et al, 2009). Likewise, although in mice, 5-HTT
blockade between P2 and P11 impairs cognitive behavior
(Rebello et al, 2014), pharmacological perturbations that
enhance levels of 5-HT from P11 to P20 but not from P1 to
P10 result in dose-related impairments of sequential learning
and spatial learning and memory in rats (Broening et al,
2001; Morford et al, 2002). These findings suggest that 5-HT-
sensitive periods exhibit species-specific characteristics.
Furthermore, specific behavioral phenotypes resulting from
postnatal SSRI treatment appear to exhibit differential
sensitivity to the timing of SSRI treatment. Interestingly,
both rat and mouse studies have revealed timing-dependent
bidirectional effects of chronic 5-HTT blockade. Although
clomipramine or SSRI exposure in rats from P8 to P21 causes
enhanced immobility in the forced swim test (Hansen et al,
1997; Vogel et al, 1990); PA (P35–P49), but not adult (P65–
P79), fluoxetine (FLX) exposure reduces floating (Iniguez
et al, 2010). In mice, P2–P11 FLX exposure increases forced
swim test immobility (Rebello et al, 2014), whereas P4–P21

or P35–P49 FLX exposure reduces floating (Iniguez et al,
2014; Karpova et al, 2009).
Importantly, developmentally blocking the other two

major brakes of 5-HT signaling, MAOA and 5-HT1A

autoreceptors, results in comparable behavioral sequelae,
but again, some differences exist with regard to timing
(Table 1). The refined 5-HTT blockade sensitive period
(P2–P11) overlaps with the MAOA blockade sensitive
period (P2–P21; Yu et al, 2014), but dissociates from the
5-HT1A receptor blockade sensitive period (Donaldson
et al, 2014; Gross et al, 2002; Lo Iacono and Gross, 2008;
Richardson-Jones et al, 2011; Vinkers et al, 2010).
Pharmacological 5-HT1A receptor blockade from P0 to P21
(Gross et al, 2002; Vinkers et al, 2010) or P13 to P34
(Lo Iacono and Gross, 2008), is sufficient to elicit the
adult anxiety phenotype. Furthermore, the suppression of
endogenous HTR1A autoreceptor expression throughout
life or from P2 to P30 is sufficient to increase anxiety in the
adult (Donaldson et al, 2014; Richardson-Jones et al, 2011).

TABLE 1 Consequences of Transient Monoaminergic Interference on Adult Behavior

Abbreviations: CSA, cocaine self administration; EPM, elevated plus maze; FST, forced swim test; ICSS, intracranial self stimulation; IIA, isolation-induced aggression test;
LD, light dark box test; NSF, novelty-suppressed feeding test; OF, open field test; PC, place conditioning; RI, resident–intruder test; SD, social defeat test; SE, shock
escape test; SIA, shock-induced aggression; SP, sucrose preference test; TST, tail suspension test.
Dark green indicates increased anxiety/depression-like behavior. Light green indicates increased anxiety but decreased depression-like behavior. Red indicates
increased aggression/behavioral stimulant response, dark blue indicates reduced aggression/behavioral stimulant response, light blue indicates mixed behavioral
DAergic challenge response.
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Overall, even with the species and target effects taken into
account, the convergence of behavioral malleability when
interfering with 5-HT signaling during early postnatal
periods highlights the importance of this time window for
circuit maturation and circuit plasticity.

Mechanistic Insight on the Postnatal
Establishment of Perturbed Emotionality

Elevated postnatal 5-HT levels may exert their effects by
impinging on the normal developmental trajectory of both
its target limbic neurocircuits as well as the 5-HTergic
system itself. For example, the autoinhibitory effect of
5-HT on 5-HTergic differentiation reduces 5-HT neuronal
numbers in embryonic raphe cultures (Rumajogee et al,
2004) and 5-HTT� /� mice (Lira et al, 2003). Though these
changes might carry their own behavioral consequences,

they likely dissociate from the effects produced by increased
early postnatal 5-HT signaling, because 5-HTergic cell
numbers are set at that time point. However, additional
aspects of 5-HTergic function are still malleable during
postnatal periods (Figure 2). 5-HTergic neurons of the
dorsal raphe fire at a fourfold lower rate in 5-HTT� /�
mice when compared with controls (Lira et al, 2003).
Likewise, rats exposed to clomipramine from P8 to P21 and
mice exposed to FLX from P4 to P21 also have reduced
5-HTergic neuronal activity when compared with vehicle-
treated controls in adulthood (Kinney et al, 1997; personal
communication MSA). Furthermore, 5-HTergic fiber
density in the HPC and medial PFC (mPFC) of rats treated
with citalopram (Maciag et al, 2006; Weaver et al, 2010) or
mice treated with FLX (personal communication MSA)
during postnatal development is reduced. These anatomical
abnormalities might synergize with hypo-5-HTergic tone to

Figure 2. The 5-HT-sensitive developmental period—neural correlates of behavioral sequelae. (a) Diagram of critical developmental processes that
overlap temporally with early postnatal SSRI treatment (P2–P11). Due to the temporal overlap, these processes provide candidate mechanistic
underpinnings of early postnatal SSRI-induced alterations in affective behaviors. (b) Key nodes involved in anxiety and depressive behaviors and their
basic functions and connectivity in the normal adult brain. (c) Summary of alterations occurring within the key nodes of the circuit as a result of
developmental 5-HT elevation, and the resulting anxiety and depressive behaviors seen during adulthood. AMY, amygdala; mPFC, medial prefrontal
cortex; HPC, hippocampus; DR, dorsal raphe nucleus; MR, median raphe nucleus; IL, infralimbic cortex; SSRI, selective 5-HT reuptake inhibitor; 5-HT,
serotonin.
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weaken functional connectivity and thus 5-HTergic mod-
ulation of the HPC and mPFC, which in turn could underlie
increased anxiety/depression and impaired cognition. Test-
ing of such direct causal relationships between circuit-
specific 5-HTergic input and behavior are underway in
many labs that are applying optogenetic and pharmacoge-
netic tools to decipher the 5-HTergic code in vivo. For
example, a recent study has uncovered a role for 5-HT in
encoding reward, wherein the enhanced activity of dorsal
raphe neurons is observed in reward-associated tasks, and
optogenetic manipulation of 5-HTergic neuronal activity
strongly biases reward-associated behaviors (Liu et al,
2014).
In addition to autoregulation, 5-HT acts via 14þ hetero-

receptors located on a vast and diverse population of
postsynaptic target cells. With these heteroreceptors emerg-
ing early in development, it is likely that enhanced levels of
early postnatal 5-HT act via heteroreceptors to influence
postsynaptic circuit maturation thus evoking structural,
physiological, and behavioral consequences. Several specific
5-HT heteroreceptors have emerged as potential candidates
in mediating 5-HT-sensitive period consequences. For
example, 5-HT2A receptors in the forebrain have a key role
in the regulation of anxiety behavior, as their constitutive
ablation reduces conflict anxiety (Weisstaub et al, 2006). As
adult treatment with 5-HT2A antagonists fails to evoke
similar anxiolytic effects (Griebel et al, 1997; Kehne et al,
1996), the HTR2A� /� phenotype might have develop-
mental origins. Conversely, increased 5-HT2A receptor
signaling during development would be predicted to exert
anxiogenic consequences in adulthood. Indeed, postnatal
blockade of the 5-HT2A and 5-HT2C receptors prevents the
emergence of early SSRI-evoked anxiety and depressive
behavior (Sarkar et al, 2013). The dynamic developmental
expression characteristics of cortical HTR2A further sup-
port a causal role for this particular receptor in mediating
the effects of early postnatal 5-HTT blockade: the shift of
cortical neuron responses to 5-HT, from 5-HT2A-mediated
excitation in early postnatal life to predominantly inhibitory
responses past P15 could explain the extent of the murine
5-HTT sensitive period (Beique et al, 2004; Zhang, 2003).
5-HT3A receptors have been invoked as critical mediators

of developmental 5-HT signaling through studies of cortical
cytoarchitecture. Postnatal FLX treatment reduces the
arborization of apical dendrites of layer 2/3 infralimbic
(IL) but not prelimbic (PL) pyramidal neurons in mice
(Rebello et al, 2014; Figure 2). A similar 5-HT sensitivity has
been reported for layer 2/3 pyramidal neurons in the SSC,
where increased 5-HT signaling from E8 to E18 decreases
apical dendritic arborization (Chameau et al, 2009;
Smit-Rigter et al, 2012). This latter effect is mediated
by 5-HT3A receptors present on reelin secreting
Cajal–Retzius cells (Smit-Rigter et al, 2012), which upon
activation stimulate the release of reelin, which in turn limits
cortical neuron apical dendritic elaboration (Chameau et al,
2009; Smit-Rigter et al, 2011). As Cajal–Retzius cells are still
present and active in the first two postnatal weeks, a similar

mechanism involving hyperactivation of the 5-HT3Arecep-
tors can be postulated for the cytoarchitectural changes
observed following postnatal FLX treatment. Differential
activity or sensitivity of this pathway as a function of time
and region might underlie the restriction of postnatal SSRI
consequences to the apical arbors of IL and not PL neurons.
An interesting, yet unstudied, aspect in that regard is whether
developmental 5-HT signaling permanently impacts the
cytoarchitecture and consequently function of Cajal–Retzius
cells themselves and/or other HTR3A expressing interneur-
ons such as neurogliaform cells.
5-HT1B receptors are also strong candidates for mediating

the effects of excessive early-life 5-HT on cytoarchitecture.
The critical role of 5-HT1B receptors in shaping sensory
system development can be hypothetically transposed to
the maturation of non-sensory thalamocortical connectivity
and cortical architecture, as well as hippocampal wiring.
Neurons of the thalamic medial dorsal nucleus that project
to the mPFC and influence pyramidal cell dendritic
arborization (Marmolejo et al, 2012), express high levels
of HTR1B (Bonnin et al, 2006), 5-HTT, and VMAT2 in early
postnatal life (Lebrand et al, 1998). Therefore, 5-HT could
act through 5-HT1B receptors to modulate the activity of
thalamocortical afferents projecting to the PFC and thus
influence thalamocortical axonal fields and cortical cytoar-
chitecture, thereby contributing to the postnatal SSRI-
induced structural changes in the PFC.
Taken together, current preclinical data allow us to

conclude that increased extracellular 5-HT during P2–P11,
regardless of the primary cause, elicits adult anxiety and
depression-like behavior and impairs cognition in rodents.
Mechanistic studies highlight that 5-HT receptor diversity
results in pleiotropic effects of 5-HT during development to
elicit these long-lasting changes in emotional and cognitive
behavior (Figure 2). Most mechanistic insight has related
specific receptors to specific neuroanatomical and neuro-
physiological phenotypes. How such phenotypes relate to
adult behavior remains to be established for most cases.
Optogenetic and pharmacogenetic techniques have proven
invaluable for testing causal relationships between neuro-
physiology and behavior. Tools to manipulate and sculpt
cytoarchitecture and circuit connectivity remain to be
established.

Early-Life Adversity and 5-HT Perturbation

Exposure to diverse early-life stressors including inadequate
maternal care, maternal separation, and novelty exposure
evoke persistent enhancements in anxiety and depression-
related behaviors, altered cognitive function, and dysregulated
neuroendocrine responses to adult stressors (Kalinichev
et al, 2002; Lehmann et al, 1999; Suri et al, 2013). Con-
comitantly, early-life adverse experience evokes 5-HTergic
dysregulation in mice. For example, early-life stress
exposure increases postnatal 5-HT and 5-HT metabolite
levels in the dorsal raphe and its limbic projection areas, the
amygdala, the HPC, and the mPFC (Franklin et al, 2011;
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Ohta et al, 2014; Raftogianni et al, 2012; Rentesi et al, 2013),
and reduces dorsal raphe HTR1A expression and 5-HT1A

receptor levels (Leventopoulos et al, 2009; Ohta et al, 2014),
together strongly indicative of a postnatal hyper-5-HTergic
phenotype. Furthermore, maternal separation increases
prefrontal 5-HT2A/2C receptor function during the second
postnatal week (Benekareddy et al, 2010) and blockade of
5-HT2A/2C function during maternal separation prevents the
emergence of the adverse early stress-evoked behavioral and
molecular sequelae (Benekareddy et al, 2011). Together,
these findings strongly indicate that early-life stress acts
through early postnatal 5-HT-sensitive period interference
to impact adult behavior.
If this model is broadly applicable, then early-life stress

should interact with genetic factors that also alter 5-HT
signaling to confer risk for later life emotional dysfunction.
Indeed, some studies indicate that 5-HTT genotypes interact
with life history to determine adult vulnerability to
psychopathology: eg, individuals carrying the s allele are
more likely to suffer from depression only in the back-
ground of stressful life history, and in particular when
adverse early events were experienced (Caspi et al, 2003;
Grabe et al, 2012; Xie et al, 2009). All positive candidate
gene linkage and association studies for major depression
and related disorders have come under criticism, because
GWAS have so far failed to independently identify risk
alleles (Flint and Kendler, 2014). However, because the
study of human environmental factors, as well as insight
gained through the work on non-human primate and rodent
models, converge to highlight the importance of develop-
mental 5-HT, we predict that GWAS will eventually detect
genetic risk factors which likewise impinge on develop-
mental 5-HT signaling.

Clinical Relevance

Basic research has strongly shaped the model in which
maturing 5-HTergic input during developmental periods
has an instructive role in the maturation of limbic neuro-
circuits, and dysregulation of 5-HTergic signaling impinges
on normal development to evoke persistent changes in
emotionality. Early human studies investigating this rela-
tionship have focused greatly on the 5-HTTLPR variants,
and their role in psychopathology, with many but not all
studies reporting an association between the low-expressing
s allele and increased trait anxiety (Lesch et al, 1996;
Schinka et al, 2004; Sen et al, 2004), increased incidence and
severity of major depressive disorder following a stressful
life event (Caspi et al, 2003; Culverhouse et al, 2013; Karg
et al, 2011; Munafo et al, 2009; Risch et al, 2009; Zalsman
et al, 2006), and heightened behavioral reactivity to fearful
stimuli (Armbruster et al, 2009; Brocke et al, 2006).
A common 5-HTT-polyadenylation polymorphism reducing
5-HTT expression is associated with fear extinction recall
deficits (Hartley et al, 2012; Yoon et al, 2013).
Consistent with these behavioral data, brain imaging

studies demonstrate an association between the s allele and

higher levels of amygdala activation in response to fearful
stimuli (Furmark et al, 2004; Hariri et al, 2002; Kobiella
et al, 2011; Murphy et al, 2013; Scharinger et al, 2010),
reduced grey matter volumes in the dorsolateral PFC,
amygdala and the HPC (Atmaca et al, 2011; Frodl et al,
2008; Kobiella et al, 2011; Pezawas et al, 2005), micro-
structural changes in the uncinate fasciclus, a white matter
tract connecting limbic and frontal areas, including the
amygdala and anterior cingulate cortex (Pacheco et al,
2009), and decreased coupling of the amygdala-anterior
cingulate circuit (Heinz et al, 2005; Lemogne et al, 2011;
Pezawas et al, 2005; Roiser et al, 2009; Shah et al, 2009;
Volman et al, 2013). Importantly, functional coupling
between the anterior cingulate cortex and the amygdala is
correlated with trait anxiety (Hahn et al, 2011; Prater et al,
2013).
Although the influence of the 5-HTTLPR on promoter

activity and the production of mRNA, protein product, and
5-HT reuptake activity has been documented in cellular
assays (Bradley et al, 2005; Heils et al, 1996; Lesch et al,
1996; Philibert et al, 2008; Stoltenberg et al, 2002),
paradoxically nearly all attempts to examine the influence
of 5-HTTLPR promoter variants on 5-HTT levels in adult
brain have been negative (Lim et al, 2006; Murthy et al,
2010; Oquendo et al, 2007; Parsey et al, 2006; Preuss et al,
2000). This disconnect leaves open the possibility of a more
prominent impact of the 5-HTTLPR on developmental
5-HTT expression, including transient 5-HTT expression
during human fetal development. Such a role would be
congruent with clinical and endophenotype-related associa-
tions originating during sensitive developmental periods.
The 5-HT-sensitive murine P2–P11 period roughly corre-

sponds to the 3rd trimester of human gestation. Conse-
quently, preclinical findings become relevant in the context
of SSRI use during pregnancy. Up to 8% of pregnant women
are reported to use SSRIs, and their use during pregnancy is
currently increasing (Andrade et al, 2008; Bakker et al,
2008). SSRIs cross the placental barrier (Hendrick et al,
2003; Rampono et al, 2004) and can be measured in
amniotic fluid (Loughhead et al, 2006). Although SSRIs do
not cause any overt developmental abnormalities in the
neonates (Chambers et al, 1996; Pastuszak et al, 1993;
Simon et al, 2002), in utero exposure to SSRIs increases the
risk of preterm birth and lower birth weights (El Marroun
et al, 2012; Grzeskowiak et al, 2012; Oberlander et al, 2006).
Furthermore, an association between the use of SSRIs
during pregnancy and persistent pulmonary hypertension
(Chambers et al, 2006; Kieler et al, 2012), congenital cardiac
defects (Berard et al, 2007; Diav-Citrin et al, 2008; Pedersen
et al, 2009) and a slight delay in motor development (Casper
et al, 2003; de Vries et al, 2013; Hanley et al, 2013) have
been noted in the neonates. Exposed infants also display
indications of central nervous system stress at 3 weeks after
birth (Salisbury et al, 2011), and affected neurological
functioning as measured by general movement at 3–4
months postpartum (de Vries et al, 2013). Symptoms
appear to be moderated by infant 5-HTTLPR, as infants
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homozygous for the s allele display higher severity of
symptoms (Oberlander et al, 2008), reinforcing the
hypothesis that a high level of 5-HT during development
is detrimental. To date, little is known about the long-term
impact of in utero SSRI exposure on brain development,
adult behavior, and the prevalence of emotional disorders
later in life. Recent studies have suggested enhanced
internalizing behavior in childhood (Oberlander et al,
2010), and an increased risk of autism spectrum disorders
in prenatally SSRI-exposed offspring (Croen et al, 2011; Rai
et al, 2013). These findings are in line with an association
noted between the 5-HTTLPR and specific deficits observed
in autism spectrum disorders, whereby those possessing the
s allele demonstrate higher deficiencies in nonverbal and
social behaviors (Brune et al, 2006). Still, further research
is needed to determine whether associations with SSRI
exposure are causal, and to disentangle the effects of
maternal depression versus maternal SSRI use on infant and
childhood emotional behavior (Misri et al, 2006; Oberlander
et al, 2010; Oberlander et al, 2007; Salisbury et al, 2011).
Although small, non-population-based cohort studies ob-
served no excess risk by age 3 to 7 (Nulman et al, 1997;
Nulman et al, 2002), more longitudinal studies are required
to assess the long-term effects of postnatal SSRI exposure
on the development of psychiatric disorders (Malm et al,
2012). Ultimately, we hope that within the next 5 years, such
longitudinal as well as additional epidemiological popula-
tion-based studies will produce data that will allow
clinicians to better weigh risks and benefits when con-
fronted with depression during pregnancy.

A 5-HT- AND DA-SENSITIVE PERIOD
IMPACTING ADULT AGGRESSION

Aggression is a behavioral construct often subdivided along
defining characteristics, such as target, mode, or cause of
aggression. The most frequent distinction occurs between
premeditated violence, which represents a planned behavior
and is associated with low autonomic response, and impul-
sive aggression, which is reactive and associated with high
autonomic response (Barratt and Felthous, 2003; Gollan
et al, 2005; Meloy, 2006). Adult aggression is critically
regulated by monoamine signaling, 5-HT, and DA signaling
in particular. These two monoamines appear to have
generally opposing roles, with DA promoting and 5-HT
inhibiting aggression.

DA and Aggressive Behavior

Hyperactivity of the DA system is associated with increased
impulsive aggression. In animals, nucleus accumbens (NAc)
DA release increases in anticipation of aggressive episodes
(Ferrari et al, 2003; Malison et al, 1998), and NAc and PFC
release increases during and following aggressive encoun-
ters in rats (Tidey and Miczek, 1996; van Erp and Miczek,
2000). Systemic administration of methamphetamine or the
DA receptor agonist apomorphine decreases the threshold

for defensive attack behavior elicited by electrical stimula-
tion of the ventromedial hypothalamic (VMH) nucleus in
cats (Maeda and Maki, 1986; Maeda et al, 1985). Conversely,
systemic administration of the D1/D2 receptor antagonist
risperidone (Rodriguez-Arias et al, 1998), the D2 receptor
antagonist raclopride (Aguilar et al, 1994), and the D1

antagonist SCH23390 (Rodriguez-Arias et al, 1998) all
reduce aggression. Furthermore, blockade of D1 or D2

receptors in the NAc attenuates aggression in mice
(Couppis and Kennedy, 2008). Mice lacking DAT exhibit a
hyper-DAergic tone, which correlates with hyper locomo-
tion (Giros et al, 1996), and increased reactive aggression
following mild social contact (Rodriguiz et al, 2004).
Moreover, cocaine, which blocks the DAT, significantly
escalates aggression when administered during adolescence
(P27–P57; DeLeon et al, 2002; Harrison et al, 2000), and
methamphetamine significantly increases aggression in
male mice when administered chronically (Sokolov and
Cadet, 2006; Sokolov et al, 2004). Heterozygous catechol-o-
methyl transferase (COMT)-deficient male mice exhibit
increased frontal cortex DA levels and increased aggression
(Gogos et al, 1998). Lastly, specific activation of the VTA
DAergic neuronal activity using optogenetic stimulation
increases isolation-induced aggression (Yu et al, 2014).
Results from preclinical animal models are congruent

with human studies. For example, levels of DA metabolites
in the cerebrospinal fluid (CSF) of violent offenders
positively correlate with psychopathy (Soderstrom et al,
2001). Typical and atypical antipsychotic agents that
antagonize the D2 receptor attenuate pathological aggres-
sion (Brizer, 1988; Chengappa et al, 1999; Dorevitch et al,
1999; Lenox et al, 1992; Lerner et al, 1979; Rocca et al, 2002;
Schulz et al, 1999). However, low levels of D2/D3 receptors
in the rodent NAc and decreased D2/D3 receptor binding in
the midbrain of the human, are likewise correlated with
impulsive behavior (Buckholtz et al, 2010b; Dalley et al,
2007), still highlighting the DA system but possibly
suggesting compensatory adjustment. Human genetic-asso-
ciation studies have also linked the DA system to aggres-
sion. Among people with a diagnosis of personality disorder,
the low-expressing G allele of the COMT rs165599 SNP is
associated with self-reported aggression (Flory et al, 2007).
Likewise, among individuals diagnosed with schizophrenia,
the low-activity Met allele of the COMT Val158Met
polymorphism is associated with high aggression (Bhakta
et al, 2012; Gu et al, 2009; Han et al, 2004; Hong et al, 2008;
Koh et al, 2012; Kotler et al, 1999; Lachman et al, 1998;
Singh et al, 2012; Strous et al, 2003; Volavka et al, 2004c).
DRD2 and DRD4 gene variants interact to predict adolescent
conduct disorder and adult antisocial behavior (Beaver
et al, 2007), as well as dysfunctional impulsivity (Colzato
et al, 2010), and differences in inhibitory control are
associated with the DRD4 VNTR polymorphism (Congdon
et al, 2008). Collectively, these studies support the DA
hypothesis of aggression, which states that DAergic hyper-
function increases aggression (de Almeida et al, 2005a; Seo
et al, 2008).
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5-HT and Aggressive Behavior

Hypoactivity of the 5-HT system is also correlated with
increased impulsive aggression. In rats, prefrontal extra-
cellular 5-HT declines to 80% of baseline levels during
aggressive encounters (van Erp and Miczek, 2000). In
rhesus macaques and vervet monkeys, levels of the 5-HT
metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the CSF
are negatively correlated with aggression (Higley et al, 1992,
1996a, 1996c), risk taking (Higley et al, 1996b), and
impulsivity (Fairbanks et al, 2001; Mehlman et al, 1994).
Furthermore, manipulations that lower 5-HTergic signaling,
such as PCPA injections, increase impulsivity and aggres-
sion, whereas increasing 5-HT signaling using 5-HT
precursors or SSRIs can reduce aggressive behavior in
rodents (Chiavegatto et al, 2001; Di Chiara et al, 1971;
Hodge and Butcher, 1974; Koe and Weissman, 1966; Miczek
et al, 2001). Pointing at a critical role for 5-HT1 receptor
subtypes in mediating the antiaggressive effects of increased
5-HT signaling, systemic administration of drugs activating
5-HT1A and 5-HT1B receptors exert antiaggressive effects
(Bannai et al, 2007; Centenaro et al, 2008; de Boer and
Koolhaas, 2005; Miczek et al, 1989; Olivier et al, 1995;
Sijbesma et al, 1991). The link between 5-HT and aggression
has been further established using genetically modified
mouse models. Pet1 knockout mice, which have an 80%
reduction in the number of 5-HTergic neurons, exhibit
increased aggression (Hendricks et al, 2003). Likewise, life-
long 5-HT depletion resulting from TPH2 deletion (Alenina
et al, 2009; Angoa-Perez et al, 2012; Mosienko et al, 2012) or
Tph2 hypofunction (Beaulieu et al, 2008) increases adult
aggression and impulsivity. Conversely, in mice lacking the
5-HTT, increased extracellular 5-HT is associated with
reduced aggression and social approach behavior (Bengel
et al, 1998; Holmes et al, 2002; Kim et al, 2005; Mathews
et al, 2004; Page et al, 2009). Supporting the model in which
5-HT1B receptor signaling exerts inhibitory control over
aggressive behavior, male mice that lack 5-HT1B receptors
exhibit increased aggressive behavior (Brunner and Hen,
1997; Saudou et al, 1994; Zhuang et al, 1999). Finally,
decreasing 5-HTergic activity during adulthood using a
pharmacogenetic approach increases territorial isolation-
induced aggression using the resident–intruder assay
(Audero et al, 2013).
In humans, 5-HTergic hypofunction and impulsive

aggression are also often associated. Neurochemical studies
find low concentrations of CSF 5-HIAA associated with impul-
sivity and aggression in many cohorts (Brown et al, 1979,
1982; Kruesi et al, 1990, 1992; Linnoila et al, 1983; Virkkunen
et al, 1995; Virkkunen et al, 1994). Several studies also report
a blunted neuroendocrine and central metabolic response to
a pharmacological 5-HT challenge using fenfluramine in
individuals with high aggression (Coccaro et al, 1989, 1996,
1997b; Siever et al, 1999). Importantly, the endocrine
response to fenfluramine challenge also inversely correlates
with self-rated aggression and impulsivity in a group of
healthy controls (Manuck et al, 1998). Conversely, SSRIs

reduce impulsive aggression (Berman et al, 2009; Coccaro
and Kavoussi, 1997a), and signaling through the 5-HT2A

and 5-HT2C receptors exerts opposing effects on impulsive
behavior, with 5-HT2A antagonists reducing and 5-HT2C

antagonists increasing impulsivity (Krakowski et al, 2006;
Winstanley et al, 2004). Furthermore, orbitofrontal 5-HT2A

receptor availability is increased in physically aggressive
personality disorder patients (Rosell et al, 2010; Soloff et al,
2007).
Human genetic-association studies have also linked the

5-HT system to aggression. Allelic variants in the 5-HTT
and TPH1 are associated with aggression in some studies
(Davidge et al, 2004; Patkar et al, 2002; Volavka et al,
2004c; Winstanley et al, 2004), and a TPH2 haplotype has
been associated with suicidal/parasuicidal behavior
and aggression scores (Perez-Rodriguez et al, 2010).
Furthermore, the Tyr452 allele of the HTR2A has been
associated with childhood onset aggression (Mik et al,
2007). Considered together, studies support the 5-HT
hypothesis of aggression, which states that 5-HTergic
hypofunction increases aggression.

A Developmental Role for 5-HT and DA in
Regulating Aggressive Behavior

Although many principal roles of 5-HT and DA signaling
in modulating aggression have been established, many
seemingly paradoxical experimental results reveal the
divergent consequences of manipulating levels of these
neurotransmitters as a function of time. For example, unlike
the anxiolytic effects of pharmacologic MAOA inhibition
in adulthood, constitutive loss-of-function mutations of
MAOA result in a syndrome characterized by antisocial/
aggressive behavior in humans (Brunner et al, 1993).
Consistently, mice with genetic inactivation of MAOA
(MAOA� /� ) exhibit not only neophobia but also heigh-
tened levels of aggression (Cases et al, 1995; Godar et al,
2010; Scott et al, 2008). The divergent effects of genetic (life-
long) mutations versus pharmacologic inhibition (during
adulthood) suggest that perturbed monoamine signaling
during sensitive periods of brain maturation differentially
modulates adult aggression. Several studies now support
this hypothesis (Table 1). For instance, adult aggressive
behavior is sensitive to PA (P22–P41) DA- and 5-HT
manipulations (Yu et al, 2014). Specifically, transient
MAOA and DAT blockade during PA mimics the adult
hyperaggressive phenotype found in MAOA-deficient mice,
whereas transient postnatal (P2–P21) or adult (P180–P201)
MAOA blockade does not impact adult aggressive behavior.
These temporal characteristics establish the existence of a
sensitive period. Interestingly, 5-HTT blockade during that
same PA period mimics the adult hypoaggressive phenotype
found in 5-HTT-deficient mice, suggesting that a common
underlying developmental process is modulated bidirec-
tionally through DA and 5-HT. These findings can explain
the increased aggression seen in constitutive MAOA, DAT,
and COMT loss-of-function mouse lines (Cases et al, 1995;
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Gogos et al, 1998; Rodriguiz et al, 2004; Scott et al, 2008),
and also support a developmental mechanism for the low-
aggression phenotype of 5-HTT� /� mice (Holmes et al,
2002).
PA monoaminergic manipulations also alter the beha-

vioral response to amphetamine challenge in adulthood,
with transient MAOA or DAT blockade increasing, and
transient 5-HTT blockade reducing locomotor activity after
amphetamine challenge (Yu et al, 2014) (Table 1). Because
altered amphetamine response is an indication for altered
DAergic function, and with the causal link between VTA
activity and aggression established, these data indicate that
PA monoamine signaling permanently impacts the DAergic
system, setting its activity/sensitivity and thereby determin-
ing baseline aggression levels. Whether this model of causal
relationships applies or whether altered aggression and
altered amphetamine response are independent conse-
quences of interfering with adolescent monoamine signaling
remains to be established.
Intriguingly, transient pharmacological DAT blockade from

P11 to P20 and P20 to P35 in rats has the opposite effect on
the behavioral response to stimulant exposure in adulthood,
diminishing the locomotor response to cocaine challenge,
while transient methylphenidate exposure during adulthood
does not alter the motor response to cocaine (Andersen
et al, 2002, 2005; Dow-Edwards and Busidan, 2001; Mague
et al, 2005) (Table 1). It will be interesting to determine if
aggressive behavior is analogously affected. Currently, these
findings indicate that the sensitive period for the potentiating
effect of the stimulant exposure (and possibly the aggression-
increasing effect of stimulant exposure) might reside in a
narrower window, which is positioned in late rather than
early adolescence. Indeed, rats exposed to cocaine from P28 to
P34 exhibit sensitized responses to cocaine challenge at P37,
P48, and P96 (Brandon et al, 2001; Table 1). Likewise,
preliminary data from our lab indicate that P32–P41 DAT
blockade is sufficient to increase adult aggression and
amphetamine response in mice (personal communication
MSA; Table 1). These findings demonstrate that altered
DAergic signaling can impact adult behavior as a function of
developmental timing. Together, these data therefore suggest
that permanent changes in aggressive behavior and stimulant
sensitivity are jointly defined based on the developmental
period during which monoaminergic interference occurs, the
monoamine system targeted by the interference, and the
valence of the interference.

Mechanistic Insight on the PA Establishment of
Perturbed Emotionality

The classic aggression circuitry involves hypothalamic areas
and the periaqueductal gray (PAG), with upstream control
of these regions being provided by the septum, the
amygdala, and PFC (Dalley et al, 2011; Davidson et al,
2000; Pavlov et al, 2012) (Figure 3). Electrical stimulation of
the intermediate hypothalamic area and the VMH (the
‘hypothalamic attack area’) leads to aggressive behavior in

cats and rats (Hess, 1928; Kruk et al, 1979, 1983; Lammers
et al, 1988; Roeling et al, 1994; Wasman and Flynn, 1962).
More recently, pharmacogenetic and optogenetic studies
have confirmed these findings in mice, and have refined
neuroanatomical, cellular, and conceptual insight. Specifi-
cally, optogenetic stimulation of neurons in the ventrolat-
eral subdivision of the VMH (VMHvl) causes male mice to
attack males, females, and inanimate objects, whereas
pharmacogenetic silencing of the VMHvl reversibly inhibits
aggression, demonstrating both necessity and sufficiency of
this region in certain aggressive behaviors (Lin et al, 2011).
Intriguingly, the neuronal population responding to ag-
gressive situations is intermingled and overlapping with
neurons, which are active during mating (Lin et al, 2011).
VMHvl neurons send axons to the dorsolateral PAG,
electrical stimulation of which also triggers aggression in
cats, suggesting that this hypothalamic-PAG pathway is
central to the mediation of aggressive behavior (Siegel and
Shaikh, 1997). The VMHvl receives afferents from the PFC,
the lateral septum, the bed nucleus of the stria terminalis
(BNST), the amygdala, and other hypothalamic regions
(Toth et al, 2010), all of which modulate aggression. Most
strikingly, lesions to the rostral lateral septum cause
hyperdefensiveness/hyperirritability, a phenomenon called
‘septal rage’ (Sodetz and Bunnell, 1970). Conversely, septal
stimulation decreases aggression (Potegal et al, 1980). The
amygdala receives input from the HPC, and many cortical
and thalamic areas, and sends afferents to the hypothalamus
and PAG (Gregg and Siegel, 2001).The amygdala thereby
integrates sensory and emotional information to modulate
and adapt behavioral output, which includes aggressive
behavior (Gregg and Siegel, 2001). Neural inputs from the
PFC to the VMHvl originate largely from the mPFC and the
orbital frontal cortex (OFC) (Toth et al, 2010). Lesions
of these cortical regions caused by trauma, tumors, and
neurodegeneration result in emotional disturbances,
including disinhibited aggressive behavior. Striking lesion
examples include Phineas Gage(Damasio et al, 1994; Van
Horn et al, 2012), and patients who had suffered penetrating
head injuries during their service in Vietnam (Grafman
et al, 1996; Pardini et al, 2011). Imaging studies further
support a role of the mPFC and OFC in modulating aggres-
sive behavior. For example, patients with borderline persona-
lity disorder or antisocial personality disorder display
reductions in mPFC and OFC volumes (Hazlett et al, 2005;
Narayan et al, 2007; Raine et al, 2000). Frontal activity is
inversely correlated with history of violence, and impulsive
aggressive behavior (Goyer et al, 1994; Lee et al, 2008; Raine
et al, 1998; Volkow et al, 1995). These studies support a
central role of the mPFC and OFC in serving as a top–down
‘brake’ on the hypothalamic-PAG aggression pathway.
In summary, studies on humans and animal models have

identified critical nodes within a complex circuit controlling
aggressive behavior. Intriguingly, it overlaps with circuitry
controlling fear, anxiety, and mating behavior at the
neuroanatomical and even cellular level (Canteras and
Graeff, 2014; Lin et al, 2011; Silva et al, 2013; Tye et al,
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2011), indicating that the interdependence of these beha-
viors is hardwired.
Monoaminergic afferents target the central nodes of this

aggression circuitry, and thereby confer modulatory and

regulatory consequences on behavior (Figure 3). However,
monoaminergic action in target regions depends on several
factors ranging from the neuroanatomical connectivity map
at the cellular level and the receptor complement present on

VMHvl

mPFC
OFC

5-HT DA

LS

PAGdl

Aggressive behavior

mPFC
OFC

5-HT

PET imaging:  5-HT1AR binding decreased 
and 5-HT2AR binding increased in aggression
Local infusion: 5-HT1AR, 5-HT1BR agonists 
reduce aggression

AMY5-HT
Local infusion: 5-HT1AR agonist 
reduces aggression, 5-HT2A/2CR agonist 
increases aggression.

VMHvl5-HT
Local infusion: suppression of vasopressin-
induced aggression through AH 5-HT1AR 
and 5-HT1BR 

PAGdl5-HT Local infusion: 5-HT1AR agonist or
5-HT2A/2CR agonist reduce aggression

increases aggression
LS
MS

5-HT

VTA
SNc

5-HT

mPFC
OFC

DA AMY ???PAGdl LS
DR
MR

AMY

De Almeida et al, 1997
de Almeida et al, 2005b
Gregg et al, 2001 
Shaikh et al, 1997

De Almeida et al, 1997
de Almeida et al, 2006

Jackson et al, 2005
Morrison et al, 2014 

De Almeida et al, 1997

VMHvlDA
Local infusion: increased aggression 
through AH D2R agonist; reduced 
aggression through VMH  D2R antagonist

???

Sweidan et al, 1991
Schwartzer and Melloni, 2010

Parsey et al, 2002
Rosell et al, 2010
Centenaro et al, 2008
da Veiga et al, 2011

Local infusion: 5-HT1AR agonist 

Figure 3. Monoaminergic modulation of aggression circuitry. The central VMHvl–PAG aggression pathway is most prominently controlled by the lateral
septum (LS), the amygdala (AMY), and mPFC/OFC (a, central part). This aggression circuit in turn is modulated by 5-HTand DA signaling (a, lateral part).
Red indicates aggression promoting circuit elements and green indicates aggression ameliorating circuit elements, as revealed through local lesioning,
inhibition, and/or stimulation studies. The dark colors for VMHvl and LS indicate the high severity of behavioral consequences elicited by stimulation of
the VMHvl (also known as the ‘hypothalamic attack area’) and septal lesioning (eliciting ‘septal rage’). (b) Summary of studies giving insight into the role of
local 5-HT and DA signaling in modulating aggressive behavior. AH, anterior hypothalamic nucleus; DA, dopamine; MS, medial septum; PAGdl,
dorsolateral periaqueductal grey; 5-HT, serotonin.
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the various cell types, to the intensity and pattern of the
monoaminergic signal. A few studies have focused on the
role of specific receptors within specific regions. PET
imaging studies demonstrate a negative correlation between
lifetime aggression and 5-HT1A receptor binding in the
anterior cingulate, mPFC and OFC, the amygdala, and the
dorsal raphe (Parsey et al, 2002). Consistently, local
infusion of 5-HT1A and 5-HT1B receptor agonists into the
ventral OFC decreases aggressive behavior in rodents
(Centenaro et al, 2008; da Veiga et al, 2011). Local infusion
of a 5-HT1A receptor agonist into median raphe nucleus, the
corticomedial amygdaloid nucleus, or the dorsal PAG also
reduces aggressive behavior, whereas conversely local
infusion of a 5-HT1A receptor agonist into the medial septal
area increases aggressive behavior (De Almeida and Lucion,
1997). In cats, local infusion of a 5-HT1A receptor agonist
into the PAG decreases defensive rage behavior elicited by
electrical stimulation of the medial hypothalamus (Gregg
and Siegel, 2001; Shaikh et al, 1997). Finally, 5-HT1A and
5-HT1B receptors modulate aggression by suppressing
vasopressin’s proaggressive function in the anterior
hypothalamus (AH; Jackson et al, 2005; Morrison and
Melloni, 2014). Together, these studies demonstrate a broad
involvement of 5-HT1 receptor-type signaling in modulat-
ing, mostly inhibiting, aggressive behavior. Local infusion
of 5-HT2A/2C receptor agonist into the corticomedial
amygdaloid nucleus increases, but infusion into the dorsal
PAG reduces aggression in female rats (de Almeida et al,
2005b, 2006). Interestingly, orbitofrontal availability of
5-HT2A receptors assessed through PET imaging is higher
in personality disorder patients with physical aggression
when compared with patients without aggression or healthy
controls (Rosell et al, 2010). These findings are congruent
with the role of 5-HT1-type receptor signaling, indicating
that 5-HT-mediated inhibition of PFC activity (5-HT1A and
5-HT1B receptor agonism and 5-HT2A receptor antagonism)
acts to decrease aggressive behavior. However, this conclu-
sion contradicts the model in which the PFC serves as a
top–down ‘brake’ on the hypothalamic-PAG aggression
pathway. Reconciling these models will require higher
resolution knowledge about prefrontal circuitry, taking into
consideration 5-HT receptor localization, 5-HT/DA inter-
action, and local inhibitory and excitatory networks on one
hand, and behavioral dissection along different types of
aggression and impulsivity on the other hand.
PET imaging studies also give some insight into the role

of DA signaling in human aggression. For example,
amphetamine-associated striatal DA release is positively
correlated with impulsivity (Buckholtz et al, 2010a).
However, other studies indicate the opposite relationship,
finding a negative correlation between levels of aggression
and DA storage capacity in the midbrain and the striatum
(Schluter et al, 2013). Patients suffering from schizophrenia,
who display high levels of aggression, show an upregulation
of the D2 receptor in the striatum (Hirvonen et al, 2005),
and haloperidol and risperidone are often used successfully
to alleviate aggression in such patients (Volavka et al,

2004b). In cats, apomorphine or D2 receptor agonist micro-
injection into the medial preoptic-AH (mPO-AH) facilitates
feline affective defense behavior elicited by electric stimula-
tion of the VMH (Sweidan et al, 1991). Conversely, D2

receptor antagonist infusion into the VMH blocks the
proaggressive effect of both electrical stimulation and
apomorphine potentiation (Sweidan et al, 1991). Likewise,
D2 receptor antagonist infusion into the AH of an aggressive
Syrian hamster model dose dependently suppressed ag-
gressive behavior (Schwartzer and Melloni, 2010). In a rat
model of aggression, local infusion of haloperidol into the
NAc reduces aggressive behavior (Beiderbeck et al, 2012).
Taken together, these findings provide evidence for D2

receptor mediated promotion of aggression in the mPO-AH,
VMH, and NAc.
How does monoamine signaling during the PA sensitive

period affect circuit properties to impose changes on
aggressive behavior? Monoaminergic systems themselves
remain plastic during adolescence, and thus permanent
alterations to their function could underlie altered adult
behavior. For example, cocaine treatment during adoles-
cence increases aggressive behavior in male Syrian hamsters
(Harrison et al, 2000), and also leads to deficits in 5-HT
afferent innervations to the AH, lateral septum, medial
amygdala, and BNST (DeLeon et al, 2002). Because 5-HT
signaling inhibits the proaggressive effect of vasopressin
infusion into the AH, and because electrically evoked
vasopressin release in the AH is increased in hamsters after
chronic cocaine exposure from P27 to P56 (Delville et al,
1996; Ferris et al, 1997; Ferris and Potegal, 1988; Jackson
et al, 2005; Koolhaas et al, 1998), a model was put forward
in which chronic PA cocaine exposure reduces 5-HTergic
afferents to the AH, disinhibiting vasopressin’s proaggres-
sive effects (Jackson et al, 2005; Morrison and Melloni,
2014). Such a model is consistent with the 5-HT hypothesis
of aggression, in particular with hypo-5-HTergic animal
models displaying increased aggressive behavior. Never-
theless, the causal relationships of the model remain to be
proven and in the context of sensitive period conceptualiza-
tion, it will be interesting to see if behavioral, anatomical,
and physiological consequences are transient or persistent.
Another example suggesting a monoaminergic mechan-

ism is based on the correlation between aggression and
the behavioral response to amphetamine (Yu et al, 2014):
because of the bidirectional consequences on aggression
and amphetamine-induced locomotion seen with P22–P41
5-HTT and DAT blockade, it is tempting to speculate that
the primary hit occurs at the DA system. In this model, PA
DA and 5-HT signaling bidirectionally affect the DA system
to opposingly alter aggressive behavior and behavioral
response to amphetamine challenge. Alternatively, DAergic
and 5-HTergic PA signaling could act on one common, or
multiple independent, downstream circuits that affect
aggression. Here, high aggression caused by high PA DA
signaling should be rescued by concomitant high PA 5-HT
signaling. However, PA MAOA blockade blocks both 5-HT
and DA metabolism, yet it increases aggression and
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behavioral response to amphetamine (Yu et al, 2014),
indicating that the DA system is downstream of and
dominant over the 5-HT system. Such a model is congruent
with the DA hypothesis of aggression, and in particular with
the enhanced aggressive behavior observed in hyper-
DAergic animal. However again, the causal relationships
of this model remain to be proven.
Models of general 5-HT hypofunction or DA hyperfunction

cannot explain the specificity of behavioral consequences
observed with PA monoaminergic perturbations. For
example, PA monoamine interference impacts adult aggres-
sive but not affective behavior, but changes to the affective
domain would be expected if a globally altered 5-HT system
underlies the behavioral sequelae. Likewise, animals with
altered aggression do not display altered baseline locomotor
activity, which would be expected if a globally altered DA
system mechanistically underlies the behavioral sequelae.
Hence, it is likely that PA monoamine interference impacts
only certain aspects of monoamine systems, such as
anatomically defined sub-projections or specific signaling
components. An example for the latter mechanism is
provided by the consequences of juvenile methylphenidate
exposure. Specifically, P20–P35 methylphenidate administra-
tion reduces DRD3 (but not DRD1, DRD2, DRD4, or DRD5)
expression in the mPFC (but not NAc or striatum) at P60 in
rats (Andersen et al, 2008), and these changes are associated
with differential molecular responses to DA system targeting
drugs (Andersen and Sonntag, 2014).
Lastly, many circuit elements downstream of monoami-

nergic synapses could carry the critical changes that are
responsible for the behavioral phenotypes. For example,
the functional connectivity between the central mediators
and modulators of aggressive behavior, the septum,
the amygdala, the PFC, the VMH, and the PAG, might be
permanently established through PA monoamine signaling.
The most prominent albeit still somewhat indirect examples
in support of this model stem from human imaging studies.
Humans carrying the MAOA-L allele, which is associated
with increased aggression and impulsivity, also demonstrate
aberrant coupling between the amygdala and the ventro-
medial PFC when exposed to emotionally relevant stimuli
(Buckholtz and Meyer-Lindenberg, 2008; Dannlowski et al,
2009). Furthermore, metabolic activity between right OFC
and ventral amygdala is tightly coupled in healthy subjects
but not in patients with borderline personality disorder
(New et al, 2007). In animal models, optogenetic tools can
be applied to assess physiological connectivity and to
investigate the relationship between circuit parameters such
as connectivity and behavior. Therefore, these tools will
have an important role in testing alternative models and in
elucidating circuitry-related mechanisms.

PA Adversity and Monoamine Perturbation

Adolescence is a vulnerability window for stress exposure to
elicit long-lasting behavioral consequences. Human adoles-
cents exhibit greater stress reactivity than non-adolescents

(Dahl and Gunnar, 2009) and PA stress can trigger the onset
of neuropsychiatric disorders, most prominently schizo-
phrenia and substance abuse (Hoffman and Dobscha, 1989).
Furthermore, chronic stress during adolescence impacts
PFC development (Casey et al, 2010, 2011; Hoftman and
Lewis, 2011; Lupien et al, 2009; Selemon, 2013) and is
associated with lower cognitive performance in adulthood,
both in humans (Casey et al, 2010; Rahdar and Galvan,
2014) and rodents (Lukkes et al, 2009). Interestingly,
although the DA system undergoes a transient expansion
phase of high plasticity during adolescence (Figure 1), stress
exposure can influence its maturation. Exposure to social
defeat stress during adolescence, and not adulthood, for
example reduces basal extracellular levels of DA in the
mPFC but not NAc (Watt et al, 2009) and increases
behavioral response to amphetamine challenge (Burke et al,
2013). mPFC DA release inhibits glutamatergic input to the
NAc (Thierry et al, 1986), hence disinhibition of this
pathway might underlie the locomotor enhancing effect.
Similarly, post-weaning stress through isolation rearing
decreases DA turnover in mPFC (Heidbreder et al, 2000),
but enduringly increases both basal and stimulant-induced
DA levels in NAc (Hall et al, 1998; Jones et al, 1992).
Together, these data indicate enhanced mesolimbic and
reduced mesocortical DAergic activity as a consequence of
PA stress.
Although 5-HT system maturation precedes DA system

maturation (Lambe et al, 2000), PA stress still impacts the
5-HT system. Isolation rearing decreases basal 5-HT turn-
over in the NAc (Heidbreder et al, 2000), but not in the PFC
or caudate putamen (Jones et al, 1992). However, isolation
rearing increases NAc 5-HT release in response to inescap-
able foot shock and associated context exposure (Fulford
and Marsden, 1998, 2007). Conversely, isolation stress
attenuates amphetamine-, KCl- and novelty-evoked 5-HT
release in the PFC and HPC (Bickerdike et al, 1993; Dalley
et al, 2002), whereas post-weaning social isolation and
maternal separation, change 5-HT fiber density in hypotha-
lamic areas involved in aggression (Haller, 2013).
Together, these findings demonstrate reorganization of

the DAergic and 5-HTergic systems in response to PA
adversity, which might impact adult behaviors including
aggression.

Clinical Relevance

Aggressive behavior has a large societal impact and
contributes to the pathology of a number of psychiatric
conditions including psychotic disorders, anxiety disorders,
attention deficit disorder, drug abuse, and suicide. Elucidat-
ing the developmental contribution to pathological aggres-
sion is central to understanding its pathophysiology, and
thus critical to advance our understanding of these
disorders in order to ultimately devise effective prevention
and treatment strategies. Human aggressive behavior has its
roots in infant development, but during childhood and
adolescence control of aggressive impulses is established
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(Cote et al, 2007; Nagin and Tremblay, 1999; Tremblay
and Szyf, 2010). Thus, there are two conceptual develop-
mental phases for the establishment of adult aggressive
behavior, (1) the establishment of baseline aggression and
(2) the establishment of the control of baseline aggression.
Both phases are influenced by genetic and environmental
factors (Cote et al, 2007). Highlighted in this review is the
latter phase, which passes through a 5-HT- and DA-
sensitive period, and to the best of our knowledge impacts
circuit maturation of systems such as the monoaminergic
systems and the PFC, which ultimately control and
modulate the central hypothalamic-PAG pathway. Findings
on the 5-HT- and DA-sensitive PA period comport with
human vulnerabilities to aggression conferred by functional
genetic polymorphisms. For example, aggressive behavior
has been associated with loss-of-function and low-expres-
sing MAOA alleles (Brunner et al, 1993; Buckholtz and
Meyer-Lindenberg, 2008; Caspi et al, 2002; Zalsman et al,
2005), the 10R variant of DAT1 (Bedard et al, 2010; Guo
et al, 2007), and the low-activity met allele of the COMT
(Volavka et al, 2004a). The sensitive period model predicts
that these risk alleles act primarily during PA to alter
brain maturation and circuit formation leading to altered
behaviors.
A specific type of environmental factor relevant to the

5-HT- and DA-sensitive PA period is drug exposure.
Because molecules targeting monoamine signaling consti-
tute the most widely prescribed (eg, antidepressants/
anxiolytics) and/or abused (eg, amphetamine, methamphe-
tamine, cocaine) psychoactive drugs in the markets today,
their use during adolescence might significantly impact
public health, beyond their prescribed or recreational
purpose. For example, SSRIs taken during PA might impact
brain maturation to reduce adult aggression, whereas
stimulant exposure during PA could increase adult aggres-
sive behavior. More data is needed to understand human
relevance and adequately compare risks and benefits,
especially of prescribed medication, but some findings
already indicate translatability. For example, chronic
stimulant exposure increases aggressive behavior in ro-
dents, non-human primates and humans (Dawe et al, 2009;
Martin et al, 1990; Sokolov et al, 2004), even in abstinent
stimulant users (Sekine et al, 2006). Furthermore, human
individuals with antisocial traits also show mesolimbic DA
hypersensitivity to amphetamine, as impulsivity is posi-
tively correlated with the magnitude of amphetamine-
induced DA release in the striatum (Buckholtz et al, 2010a).
On the basis of the notion that DAergic abnormalities

contribute to specific complex disorders such as schizo-
phrenia and substance abuse, the PA 5-HT- and DA-
sensitive period might have broader etiological relevance
for psychopathologies beyond aggression. In this context, it
is important to emphasize the bidirectional characteristic of
the monoaminergic modulation of brain development and
adult behavior. Thus, findings not only give insight into risk
factors for psychopathology (exposure as a function of time,
disrupting brain development to negatively impact adult

function), but also reveal potential preventive treatment
approaches (exposure as a function of time, normalizing
brain development to positively impact adult function).

OUTLOOK

The available data demonstrate the existence of sensitive
periods that influence life-long vulnerability to anxiety,
depression, aggression, and substance abuse. Such sensitive
periods have been most extensively characterized for
sensory systems (eg, visual cortex), but conceptually similar
principles apply to the development and organization of
brain circuitry that mediate the more complex behaviors
described here. Specifically, we have reviewed three
sensitive periods during which transiently altered mono-
amine signaling carries long-lasting consequences on adult
brain function.
Respective findings lead to the following three working

hypotheses:

1. Any manipulation, which increases 5-HT signaling
during development (P0–P4 in mice), will impair
somatosensory cortex maturation and lateral geniculate
nucleus/superior colliculus topography.

2. Any manipulation, which increases 5-HT signaling
during development (P2–P11 in mice), will increase adult
anxiety/depression-like behavior and impair cognition.

3. Any manipulation, which increases DA signaling during
development (P22–P41 in mice), will increase adult
aggression and behavioral response to stimulants,
whereas any manipulation that increases 5-HT signaling
during that same period will decrease adult aggression
and behavioral stimulant sensitivity.

Respective findings have the following three translational
implications:

1. Genetic and environmental factors, which affect 5-HT
signaling during gestational development, act in concert
to predispose to, or protect against, impaired topography
within somatosensory and visual system neurocircuitry.

2. Genetic and environmental factors, which affect 5-HT
signaling during late gestational development, act in
concert to predispose to, or protect against, depression
and anxiety disorders and cognitive dysfunction.

3. Genetic and environmental factors, which affect DA and
5-HT signaling during adolescence, act in concert to
predispose to, or protect against, high aggression and DA
dysfunction.

Relevance is underscored by the multitude of known
rare and common functional variants in genes impacting
5-HT and DA signaling, the impact of the omnipresent
environmental factor ‘stress’ on monoamine signaling, and
the high frequency in the use of drugs and medications that
target the 5-HT and DA systems.
Furthering our knowledge of sensitive periods that

determine the developmental trajectory of complex
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behaviors is a necessary step toward improving prevention
and treatment approaches for neuropsychiatric disorders.
Preclinical studies will continue to identify neurobiological
correlates of disordered behaviors and test causal relation-
ships in current and future neuropathology models, leading
the way to novel treatment approaches. Genetic studies
might take advantage of the predicted converging effects
of multiple genetic factors on monoaminergic signaling.
Likewise, gene� environment or environment� environ-
ment interaction studies might analyze the impact of
various factors that converge on specific monoamine
signaling pathways. Longitudinal and population-based
epidemiological studies investigating the side effects of
drugs and medications years after cessation of consump-
tion/treatment are essential.
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