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A two-level atom can generate a strongmany-body interaction
with light under pulsed excitation1–3. The best known e�ect is
single-photon generation, where a short Gaussian laser pulse
is converted into a Lorentzian single-photon wavepacket4,5.
However, recent studies suggested that scattering of intense
laser fields o� a two-level atom may generate oscillations in
two-photon emission that come out of phase with the Rabi
oscillations, as the power of the pulse increases6,7. Here,
we provide an intuitive explanation for these oscillations
using a quantum trajectory approach8 and show how they
may preferentially result in emission of two-photon pulses.
Experimentally, we observe the signatures of these oscillations
by measuring the bunching of photon pulses scattered o�
a two-level quantum system. Our theory and measurements
provide insight into there-excitationprocess thatplagues5,9 on-
demand single-photon sourceswhile suggesting the possibility
of producing new multi-photon states.

We begin by considering an ideal quantum two-level system that
interacts with the outside world only through its electric dipole
momentµ (ref. 10). Suppose the system is instantaneously prepared
in the superposition of its ground |g〉 and excited |e〉 states

|ψi〉=
√
1−Pe|g〉+

√
Pe|e〉 (1)

where Pe is the probability of initializing the system in |e〉. From this
point, spontaneous emission at a rate of Γ governs the remaining
system dynamics and a single photon is coherently emitted
with probability Pe, while no photon is emitted with probability
1−Pe. As detected by an ideal photon counter, this results in the
photocount distribution

Pn={P0,P1,P2, ...}={1−Pe,Pe, 0, ...} (2)

where Pn is the probability to detect n photons in the emitted pulse.
It is on this principle that most indistinguishable single-photon
sources based on solid-state quantum emitters operate4,5.

A popular mechanism for approximately preparing |ψi〉 is the
optically driven Rabi oscillation4,11. Here, the system is initialized
in its ground state and driven by a short Gaussian pulse from a
coherent laser beam (of width τFWHM) that is resonant with the
|g〉↔|e〉 transition. Short is relative to the lifetime of the excited
state τe= 1/Γ to minimize the number of spontaneous emissions
that occur during the system–pulse interaction5,9. As a function
of the integrated pulse area, that is, A=

∫
dtµ ·E(t)/~, where

E(t) is the pulse’s electric field, the system undergoes coherent

oscillations between its ground |g〉 and excited |e〉 states. For
constant-area pulses of vanishing τFWHM/τe, the final state of the
system after interaction with the laser field is arbitrarily close to
the superposition

|ψf (A)〉=
√
1−Pe(A)|g〉+e−iφ

√
Pe(A)|e〉 (3)

where φ is a phase set by the laser field. Examining Pe(A) (Fig. 1a
dotted line), we see Rabi oscillations that are perfectly sinusoidal,
with the laser pulse capable of inducing an arbitrary number of
rotations between |g〉 and |e〉. Because |ψf (A)〉 looks very much
like |ψi〉 for arbitrarily short pulses, it is commonly assumed that
the photocount distribution Pn always has P1�Pn>1. However, we
will use a quantum trajectory approach to show that, unexpectedly,
P2>P1 for any τFWHM<τe when A=2nπ, with n∈{1, 2, 3, ...}.

To visually illustrate the process that is capable of generating
two photons, we discuss the remainder of the theory section with
a convenient pulse width of τFWHM= τe/10. Because of the finite
pulse length, we expect that in roughly τFWHM/τe of the quantum
trajectories a spontaneous emission occurs during the system–pulse
interaction. Therefore, it is difficult to define |ψf 〉, and the expected
number of photons emitted by the system E[n] provides a better
signature of the Rabi oscillations (Fig. 1a solid line). Notably, a
consequence of the spontaneous emissions is that E[n] does not
exactly follow the sinusoid of the ideal Rabi oscillations (difference
highlighted with the shaded region). Because E[n] > Pe(A), the
system must be occasionally re-excited to emit additional photons
during the system–pulse interaction.

We now examine this re-excitation process in detail, first by
considering the commonly studied case of an on-demand single-
photon source with A = π (Fig. 1b). By driving a half Rabi
oscillation, known colloquially as a π-pulse11, the probability of
single-photon generation ismaximized. Because the excitation pulse
is short (grey dashed line) compared to the excited-state lifetime, the
emitted wavepacket has an exponential shape (blue line). To further
understand the probabilistic elements of the photon emission, we
study a typical quantum trajectory8,12 representing Pe(t) (green
line). The system is driven by the π-pulse into its excited state,
where it waits for a photon emission at some later random time
(denoted by the green triangle) to return to its ground state. After
computing thousands of such trajectories, Pn is generated from
the photodetection events and shows P1 ≈ 1 (inset), indicating
that the system acts as a good single-photon source. The small
amount of two-photon emission (P2) occurs due to re-excitation of
the quantum system during interaction with the pulse. It roughly
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Figure 1 | Simulations showing pulsed two-photon emission from an ideal quantum two-level system. a, Rabi oscillations in the excited-state population
from an ideal two-level system (dashed line). Signatures of Rabi oscillations in the emitted photon number under excitation with a pulse of length
τFWHM=τe/10, where τe is the excited-state lifetime (solid line). b, System dynamics under excitation by a pulse of area π. Dashed grey line shows the
driving pulse shape, blue line shows the ensemble-averaged excited-state probability, green line shows a typical quantum trajectory with one photon
detection (denoted by the green triangle). Inset shows photocount histogram Pn under π-pulse excitation, with single-photon emission P1 dominating.
c, System dynamics under excitation by a pulse of area 2π. Dashed grey line shows the driving pulse shape, blue line shows the ensemble-averaged
excited-state probability, red line shows a typical quantum trajectory with two photon emissions (denoted by the red triangles). Inset shows photocount
histogram Pn under 2π-pulse excitation, with P0 dominating but P2�P1. d, Photocount distribution Pn (solid lines) and photon number purities πn (dashed
lines) versus pulse area (under same excitation conditions as solid line in a). n={1, 2,3} shown in colours {green, red, and purple}, respectively.
Note: green is associated with single-photon-related indicators and red is associated with two-photon-related indicators in all figures.

accounts for the disparity between E[n] and Pe(A= π), and is
an important but often overlooked source of error in on-demand
single-photon sources.

As our first clue that re-excitation during the system–pulse inter-
action can yield interesting dynamics, the difference between E[n]
and Pe(A) is not constant as a function of A, and is maximized
for A= 2nπ. Therefore, we now take a closer look at the system’s
dynamics for a 2π-pulse (Fig. 1c) and find a photocount distribution
where P2� P1 (inset). To understand why the two-level system
counter-intuitively prefers to emit two photons over a single pho-
ton, consider a typical quantum trajectory (red line). The emission
probability is proportional to Pe(t) (blue line), which peaks halfway
through the excitation pulse. Therefore, the first photon is most
likely to be emitted after approximately π of the pulse area has been
absorbed (first red triangle), and a remaining approximately π in
area then re-excites the system with near-unity probability to emit
a second photon (second red triangle). This two-photon process is
triggered during the system–pulse interaction and, although these
photons are emitted within a single excited-state lifetime, they have
a temporal structure known as a photon bundle13. Signatures of
the bundle can be found in Pe(t): the emission shows a peak of
width τFWHM followed by a long tail of length τe. This shows the
conditional generation of a second photon based on a first emission
during the system–pulse interaction, which means that the two-
photon bundling effect dominates for arbitrarily short pulses and
even for long pulses as well (Supplementary Fig. 4). Hence, although

the efficiency as a pulsed two-photon source is given by P2≈6%, an
ideal two-level system could be operated in a much more efficient
regime simply by choosing a longer pulse. We avoided this discus-
sion in the main text because P3 becomes non-negligible, which
makes an intuitive interpretation of the dynamics more challenging.

To fully characterize the crossover where P2>P1, we simulated
the photocount distributions as a function of pulse area (Fig. 1d).
Clear oscillations can be seen betweenP1 and P2 (solid green and red
lines, respectively), and P2 is out of phase from the Rabi oscillations.
Notably, the oscillations in E[n] make direct comparisons between
the two probabilities difficult. To better illustrate the fraction of
emission occurring by n-photon emission, we turn to a quantity
called the photon number purity of the source13. By ignoring the
vacuum component, Pn is renormalized to

πn=Pn/
∑
n>0

Pn (4)

The purities (dashed lines) very clearly oscillate between emission
dominated by single-photon processes π1 for odd-π-pulses and
two-photon processes π2 for even-π-pulses. Quite remarkably, π3
remains negligible for all pulse areas. Additionally, the purities
reveal the limit of {π1, π2, π3} = {0.3, 0.7, 0} for arbitrarily short
Gaussian pulses.

As suggested earlier, this two-photon emission comes as an
ordered pair, where the first emission event within the pulse
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Figure 2 | Simulations showing time-resolved single-photon and two-photon emission from an ideal quantum two-level system. a–c, Probability mass
functions for single-photon (green) and two-photon (red) detection showing the internal temporal structure of the photon pairs, for excitation by a
2π-pulse (a), 4π-pulse (b), and 6π-pulse (c). Colour plots show p2(t1,τ ), while the traces to the left show p1(t1) and p2(t1), and the traces to the top
show p2(τ ).

excitation window triggers the absorption and subsequent emission
of a second photon. Unlike the first photon, the second photon
has the entire excited-state lifetime to leave. This statement can
be quantified by investigating the time-resolved probability mass
functions for photodetection14 (see Methods for a derivation from
system dynamics), defined by

P1=

∫
R
dt1p1(t1) and P2=

∫∫
R2
dt1dτp2(t1,τ) (5)

The mass function p1(t1) represents the probability density for
emission of a single photon at time t1 with no subsequent emissions,
while p2(t1,τ) represents the joint probability density for emission of
a single photon at time t1 with a subsequent emission at time t1+τ .
Additionally, p2(t1, τ) can be integrated along t1 or τ to yield p2(τ )
or p2(t1), which give the probability density for waiting τ between
the two emission events or detecting a photon pair with the first
emission at time t1, respectively.

We explore these temporal dynamics for excitation by a 2π-, 4π-,
and 6π-pulse in Fig. 2a–c, respectively. First, consider excitation
by the 2π-pulse: p2(t1, τ) captures the dynamics already discussed
through having a high probability of the first emission at time t1
only within the pulse window of 0.1/Γ , but the second emission
occurs at a delay τ later within the spontaneous emission lifetime
τe. This effect is most clearly seen in p1(t1), p2(t1) and p2(τ ) (traces
to the left and top of the colour plots in Fig. 2), where the density

of photon pair emission being triggered at time t1—that is, p2(t1)—
is maximized after π of the pulse has been absorbed (t1= 0.15/Γ )
and reaches nearly unity. The second photon of the pair then has the
entire lifetime to leave, as seen in the long correlation time for p2(τ ).
Meanwhile, the enhancement in photon pair production leads to a
corresponding decrease in the density of single-photon emissions
p1(t1) around t1=0.15/Γ .

Next, consider excitation by the 4π-pulse: p2(t1, τ) shows the
effects of an additional Rabi oscillation that the system undergoes
during interaction with the pulse. If the first emission occurs after
π of the pulse has been absorbed, a remaining 3π can result in a
second emission in two different ways: either after absorption of π
additional energy or after absorption of 3π additional energy. On
the other hand, if the first emission occurs after 3π of the pulse has
been absorbed, only a remaining π can be absorbed, resulting in
a monotonic region of p2(t1, τ) just like for the 2π case. In either
scenario, the probability of two emissions is most likely (but three
emissions almost never happen) because a single emission converts
an even-π-pulse into an odd-π-pulse, which anti-bunches the next
emission. The high fidelity of this conversion process can clearly be
observed in p1(t1) and p2(t1). The pair production ismost likely after
either π or 3π of the pulse has been absorbed (times t1= 0.1 and
t1= 0.3, respectively), and it occurs with near-unity density. This
means that if the first photon is emitted at time t1=0.1 or t1=0.3,
then the conditional probability to emit a second photon is near
unity. As a result, p1(t1) and p2(t1) almost look like they were just
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Figure 3 | Super-natural linewidth photons from an ideal quantum two-level system. a,b, Rabi oscillations (a) and dynamical spectra of emission (b)
under excitation by a 2π-, 4π-, and 6π-pulse, denoted with increasing darkness of the shaded region for higher pulse area. Dashed lines show the natural
emission linewidth.

copied a second time from the 2π-pulse scenario, confirming our
intuitive interpretation of the 4π-pulse scenario. These ideas trivially
extrapolate to the 6π-pulse, where three complete Rabi oscillations
occur, and the projections p1(t1) and p2(t1) are copied once more
along t1.

Looking at the oscillations in p2(τ ) for increasing pulse areas,
one may notice a qualitative resemblance to the photon bunching15
behind a continuous-wave Mollow triplet11. In fact, the underly-
ing process where a photon emission collapses the system into
its ground state, restarting a Rabi rotation, is responsible for the
dynamics in both cases. However, our observed phenomenon has
a very important difference: after a photodetection the expected
waiting time for the second, third, and nth photon emissions is iden-
tical in the continuous case, while our observed process dramatically
suppresses P3.

Because this method of generating two-photon bundles requires
the emission of the first photon to occur within a tightly defined
time interval, as set by the pulse width, we explore the emission in
the context of time–frequency uncertainty (Fig. 3). First consider the
2π-pulse case: we replot Pe(t) as the light red shaded trace (panel
a), which results in the first shaded emission spectrum16 (panel
b). Compared to the natural linewidth of the system’s transition
(dashed black line), the emission is spectrally broadened by the
first emission of a super-natural linewidth photon of order 1/τFWHM,
which occurs during the laser pulse. We note that it would be
interesting to explore the physics of super-natural linewidth photons
that have been incoherently emitted as the result of a new many-
body scattering process (having isolated them with a spectral notch
filter to remove the second photon of a natural linewidth). As an
effect of the increased number of Rabi oscillations (see for 4π- and
6π-pulses), the super-natural linewidth photons show oscillations
in spectral power density that resemble an emerging dynamical
Mollow triplet17.

Finally, we discuss the counting statistics of the emitted light
in comparison to a coherent laser pulse to verify the nonclassical
nature of the emission. Because the photocount distribution is fully
described with just P0, P1 and P2, its information is completely
contained in the mean E[n] and the normalized second-order
factorial moment8

g (2)[0]≡
E[n (n−1)]

E[n]2
(6)

which physically describes the relative probability to detect a
correlated photon pair over randomly finding two uncorrelated
photons in a Poissonian laser pulse of equivalent mean. Thus, the
quantity g (2)[0] yields important information on how a beamof light
deviates from the Poissonian counting statistics of a laser beam.
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Figure 4 | Bunched photon pair emission from an ideal quantum two-level
system. Normalized second-order factorial moment of the photocount
distribution (blue), which measures the total degree of second-order
coherence g(2)[0]. Dashed blue line indicates the Poissonian counting
statistics of the laser pulse. Dotted black line again indicates Rabi
oscillations for reference.

For Poissonian statistics g (2)[0]=1, but for sub-Poissonian statistics
g (2)[0] < 1 (anti-bunching) and for super-Poissonian statistics
g (2)[0]> 1 (bunching)5. In particular, because the emission under
a 2π excitation is a weak two-photon pulse, we expect that the
photons will arrive in ‘bunched’ pairs, where the first detection
heralds the presence of a second photon in the pulse. This prediction
is confirmed in Fig. 4, where emission for even-π-pulses strongly
bunches, thus confirming the highly nonclassical nature of the
emission and providing an experimentally accessible signature of
the oscillations in P2.

After having theoretically discovered that a quantum two-level
system is able to preferentially emit two photons through a complex
many-body scattering phenomenon, we found experimental
signatures of this two-photon process using a single transition
from an artificial atom. Our artificial atom of choice is an InGaAs
quantum dot, due to its technological maturity and good optical
quality18. The dot is embedded within a diode structure tominimize
charge and spin noise (Methods), resulting in a nearly transform-
limited optical transition19; luminescence experiments as a function
of gate voltage (Fig. 5a) reveal the charge-stability region in which
we operate20 (Vg = 0.365V). We used the X− transition due to its
lack of fine structure, which results in a true two-level system (at
zero magnetic field) with an excited-state lifetime of τe= 602 ps
(Supplementary Fig. 1). Exciting the system with laser pulses
(τFWHM=80ps), we drove Rabi oscillations between its ground and
excited states (Fig. 5b). However, because the artificial atom resides
in a solid-state environment, it possesses several non-idealities that
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Figure 5 | Experiments showing two-photon emission from a single artificial atom’s transition. a, Photoluminescence versus applied gate bias and
wavelength showing the charge-stability region of the X− transition. Inset: Voltage dependence of resonance fluorescence intensity under pulsed
excitation, with the optimal resonance fluorescence signal occurring at Vg=0.365V. b, Experimental resonance fluorescence signal showing Rabi
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g(2)[0]=0.096±0.009 and g(2)[0]=2.08±0.13, respectively. e, Experimental second-order coherence measurements g(2)[0] versus pulse area
showing oscillations between anti-bunching (at odd π-pulses) and bunching (at even-π-pulses). Blue curve represents quantum simulations of the
time-integrated correlations g(2)[0] from the experimental system. Dashed black line represents statistics of the incident laser pulse. f, Experimental
second-order coherence measurements g(2)[0] versus pulse length (using 2π-pulses for excitation). Optimal bunching, and hence two-photon bundling,
occurs for the 80 ps pulse. Solid blue line represents emission from an ideal two-level quantum system, long dashed blue line represents inclusion of
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in bandwidth. Again, dashed black line represents statistics of the incident laser pulse. Note, the errors in g(2)[0] values for e and f are the standard

√
n

fluctuations in the photocount distribution5. The error in pulse area accounts for power drifts during the experiment, and the errors in pulse lengths are
least-squares fitting errors to the pulse spectra.

slightly decrease the fidelity of the oscillations: a power-dependent
dephasing rate arising from electron–phonon interaction21 and an
excited-state dephasing due to spin or charge noise19. Additionally,
the quantum systems are very sensitive to minimal pulse chirps
arising due to optical set-up non-idealities22. Using these three
effects as fitting parameters (Methods), we obtained near-perfect
agreement between our quantum-optical model (blue) and the
experimental Rabi oscillations.

Next, we measured the g (2)[0] values of the emitted wavepack-
ets, to study the photon bunching effects outlined in Fig. 4. Two
typical experiments are presented in Fig. 5c,d, showing g (2)[0]≈0
(anti-bunching) and g (2)[0]> 1 (bunching) for π- and 2π-pulses,
respectively. A complete data set is shown in Fig. 5e, with oscillations
between anti-bunching at odd-π pulses and bunching at even-π-
pulses. Using the same fitting parameters as in Fig. 5b, the corre-
lation data are almost perfectly matched with our full quantum-
optical model. Hence, we have found experimental evidence that
suggests the artificial atom is affected by the predicted many-body
two-photon scattering process that causes P2 oscillations out of
phase from the Rabi oscillations.

Finally, we investigated how non-idealities affect the bunching
values (Fig. 5f) by experimentally characterizing the emission at
four pulse lengths. From our quantum-optical model, we see that
bunching is strongest for the ideal case (blue line), and decreases
for every added non-ideality (long dashed blue for dephasing,
short dashed blue for additional 2.7% chirp in bandwidth, and
short dotted blue for further 2.7% chirp in bandwidth), yielding
excellent agreement with the data. Discussing these effects further,
an enhanced pulse chirp decreases the fidelity of photon bunching

due to the function of a large chirp to adiabatically prepare the
system in its excited state23, which decays with a single-photon
emission. The minimal chirp that we observed can be removed
with pulse compressors in future experiments to achieve an even
better match with the ideal photon bunching curve. Additionally,
at short pulse lengths the power-dependent dephasing results in
anti-bunching. Due to the higher amplitude of shorter pulses (with
fixed area), the dephasing rate diverges and the system acts as an
incoherently pumped single-photon source. Thus, when including
non-idealities we found the optimum bunching to occur at a pulse
length of approximately 80 ps, which indicates where the two-
photon process is strongest experimentally. Although we expect the
two-photon emission is dominant, the non-idealities of the solid-
state system could result in non-negligible P3 or higher Pn. This
scenario is unfortunately not distinguishable through measuring
g (2)[0] alone, but it is recently becoming possible to measure higher-
order photon correlations that could help definitively identify
regimes of operation where P2�P3 (refs 24,25). Finally, we expect
future investigations on exploring optimal pulse shapes to enable
much more efficient and higher-purity two-photon emission both
from ideal and experimental two-level systems.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
The sample investigated is grown by molecular beam epitaxy (MBE). It consists of a
layer of InGaAs quantum dots with low areal density (<1µm−2), embedded within
the intrinsic region of a Schottky photodiode formed from an n-doped layer below
the quantum dots and a semitransparent titanium gold front contact. The distance
between the doped layer and the quantum dots is 35nm, which enables control
over the charge status of the dot20. A weak planar microcavity with an optical
thickness of one wavelength (λ) is formed from a buried 18-pair GaAs/AlAs
distributive Bragg reflector (DBR) and the semitransparent top contact, which
enhances the in- and out-coupling of light.

All optical measurements were performed at 4.2K in a liquid helium dipstick
set-up. For excitation and detection, a microscope objective with a numerical
aperture of NA=0.68 was used. Cross-polarized measurements were performed
using a polarizing beam splitter. To further enhance the extinction ratio, additional
thin film linear polarizers were placed in the excitation/detection pathways and a
single-mode fibre was used to spatially filter the detection signal. Furthermore, a
quarter-wave plate was placed between the beamsplitter and the microscope
objective to correct for birefringence of the optics and the sample itself26. For the
Rabi oscillations, a very weak laser background (due to an imperfect suppression of
the excitation laser) was subtracted. This linearly increasing background was
directly measured through electrically tuning the quantum dot out of resonance,
and typically amounted to less than 10% of the signal by 5π pulse area; the
quantum statistic g (2)[0] is dependent on the square of the signal’s power, which
means that the background (at a maximum) contributed to less than 1% of
those measurements.

The 20- and 80-ps-long excitation pulses were derived from a fs-pulsed
titanium sapphire laser (Coherent Mira 900) through pulse shaping. For the
20-ps-long pulses, a 4f pulse shaper with a focal length of 1m and an 1,800 lmm−1
grating was used. For the 80-ps-long pulses a spectrometer-like filter with a focal
length of 1m and an 1,800 lmm−1 grating was used. Longer pulses were obtained
through modulating a continuous wave laser. For the modulation, a fibre-coupled
and EOM-controlled lithium niobate Mach–Zehnder (MZ) interferometer with a
bandwidth of 10GHz (Photline NIR-MX-LN-10) was used. Such modulators allow
control of the output intensity through a d.c. bias and a radiofrequency input. The
radiofrequency pulses were generated by a 3.35GHz pulse-pattern generator
(Agilent 81133A). To obtain a high extinction ratio, the temperature of the
modulator was stabilized and precisely controlled (1mK) using a Peltier element,
thermistor, and TEC controller. This enabled a static extinction ratio>35db.

Second-order autocorrelation measurements were performed using a
Hanbury-Brown and Twiss (HBT) set-up consisting of one beamsplitter and two
single-photon avalanche diodes. Note: their timing resolution (≈100 ps) is too low
to measure the correlations predicted in Fig. 2. The detected photons were

correlated with a TimeHarp200 time-counting module. The integration times were
between 30min and two hours.

Quantum-optical simulations were performed with the Quantum Optics
Toolbox in Python (QuTiP)12, where the standard quantum two-level system was
used as a starting point. The dynamical calculations, especially those of the
measured degrees of second-order coherence g (2)[0], were calculated using a
dynamical form of the quantum regression theorem5. The driving laser was
modelled as a Gaussian pulse, where the product of the transition dipole and
electric field is given by µ ·E(t)/~=A/

√
τ 2
p πe
−t2/τ2p , τp=τFWHM/

√
2 ln2, and A is

the pulse area. The chirp22 was modelled by multiplying the driving field by an
additional exponential e−iαt2 , where α is the chirp parameter. As a function of the
percentage change in bandwidth due to the chirp1BW, then
α=

√
21BW+1

2
BW/τ

2
p . The phonon-induced dephasing21 was modelled as a

power-dependent collapse operator in the quantum-optical master equation—that
is, with cphonon=

√
B(µ ·E(t)/~)2σ †σ , where σ is the atomic lowering operator and

the phonon parameter was fitted to be B=2×10−3 GHz−1. A phenomenological
dephasing rate that accounted for the spin and charge noise was modelled with the
collapse operator cnoise=

√
γdσ

†σ , where we fitted γd=1.3 ns−1. This dephasing
rate is slightly lower than the spontaneous emission rate (γd=0.78Γ ), which is
consistent with state-of-the-art values for X− transitions in InGaAs
quantum dots19.

Because the ideal quantum two-level system emits negligible P3 for short pulses,
then the probability mass function for joint photodetection at two different times is
simply given by p2(t1,τ)=G(2)(t1,τ)/2. Here, G(2)(t1,τ) is the standard Glauber
second-order coherence function, which can be calculated for a pulsed two-level
system using a time-dependent form of the quantum regression theorem5. Next, we
discuss how to obtain p1(t1), which is slightly more nuanced. Consider a trajectory
for the ideal two-level system under excitation by an even-π-pulse: Pe(A) always
returns to zero if no emission events occur during the system–pulse interaction.
Therefore, the probability density of a first detection at time t1 is given by Γ Pe(t1),
and this density is the sum of emissions that yield only a single photon p1(t1) and of
emissions that yield two photons p2(t1). Hence, p1(t1)=Γ Pe(t1)−p2(t1).

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon
reasonable request.
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