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the detection of somatic mutations from cancer genome 
sequences is key to understanding the genetic basis of 
disease progression, patient survival and response to therapy. 
Benchmarking is needed for tool assessment and improvement 
but is complicated by a lack of gold standards, by extensive 
resource requirements and by difficulties in sharing personal 
genomic information. to resolve these issues, we launched 
the iCGC-tCGA dreAm somatic mutation Calling Challenge, 
a crowdsourced benchmark of somatic mutation detection 
algorithms. here we report the BAmsurgeon tool for simulating 
cancer genomes and the results of 248 analyses of three  
in silico tumors created with it. different algorithms exhibit 
characteristic error profiles, and, intriguingly, false positives 
show a trinucleotide profile very similar to one found in human 
tumors. Although the three simulated tumors differ in sequence 
contamination (deviation from normal cell sequence) and in 
subclonality, an ensemble of pipelines outperforms the best 
individual pipeline in all cases. BAmsurgeon is available at 
https://github.com/adamewing/bamsurgeon/.

Declining costs of high-throughput sequencing are transform-
ing our understanding of cancer1–3 and facilitating delivery of 
targeted treatment regimens4–6. Although new methods for 
detecting cancer variants are rapidly emerging, their outputs 
are highly divergent. For example, four major genome centers 
predicted single-nucleotide variants (SNVs) for The Cancer 
Genome Atlas (TCGA) lung cancer samples, but only 31.0% 
(1,667/5,380) of SNVs were identified by all four7. Calling 
somatic variants is a harder problem than calling germline 

variants8 because of variability in the number of somatic  
mutations, extent of tumor subclonality and effects of copy-
number aberrations.

Benchmarking somatic variant detection algorithms has been 
challenging for several reasons. First, benchmarking is resource 
intensive; it can take weeks to install and hundreds of CPU-hours 
to execute an algorithm. Second, evolving technologies and soft-
ware make it difficult to keep a benchmark up to date. For example,  
the widely used Genome Analysis Toolkit was updated five 
times in 2013. Third, establishing gold standards is challenging. 
Validation data may be obtained on independent technology or 
from higher-depth sequencing, but routines used to estimate 
‘ground truth’ may exhibit sources of error similar to those of 
the algorithms being assessed (for example, alignment artifacts). 
Privacy controls associated with personal health information 
hinder data sharing. Further, most research has focused on cod-
ing aberrations, restricting validation to <2% of the genome. 
Fourth, sequencing error profiles can vary between and within 
sequencing centers9. Finally, most variant-calling algorithms are 
highly parameterized. Benchmarkers may not have equal and high  
proficiency in optimizing each tool.

To identify the most accurate methods for calling somatic muta-
tions in cancer genomes, we launched the International Cancer 
Genome Consortium (ICGC)-TCGA Dialogue for Reverse 
Engineering Assessments and Methods (DREAM) Somatic 
Mutation Calling Challenge (“the SMC-DNA Challenge”)10.  
The challenge structure allowed us to perform an unbiased  
evaluation of different approaches and distribute the process 
of running and tuning algorithms by crowdsourcing. To create  
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tight feedback loops between prediction and evaluation, we  
generated three subchallenges, each based on a different  
simulated tumor-normal pair with a completely known muta-
tion profile and termed IS1, IS2 and IS3 (Supplementary Note 1  
and Supplementary Fig. 1). To produce these large-scale  
benchmarks, we first developed BAMSurgeon, a tool for accurate 
tumor genome simulation11–14.

Our analyses of error profiles revealed characteristics associated 
with accuracy that could be exploited in algorithm development. 
Strikingly, many algorithms, including top performers, exhibit a 
characteristic false positive pattern, possibly owing to introduc-
tion of deamination artifacts during library preparation. We also 
found that an ensemble of several methods outperforms any single  
tool, suggesting a strategy for future method development.

results
Generating synthetic tumors with BAmsurgeon
Defining a gold standard for somatic mutation detection is 
fraught with challenges: no tumor genome has been completely 
characterized (i.e., with all real somatic mutations known); thus, 
estimates of precision and recall are subject to the biases of site-
by-site validation. False negatives are particularly difficult to study 
without a ground truth of known mutations. Typically, validation 
involves targeted capture followed by sequencing, sometimes on 
the same platform. To address the lack of fully characterized 
tumor genomes, simulation approaches are often used. Existing 
approaches to create synthetically mutated genomes simulate 
reads and their error profiles either de novo on the basis of a 
reference genome15 (https://github.com/lh3/wgsim/) or through 
admixture of polymorphic (for example, dbSNP) sites between 
existing BAM sequence alignment files16. In the first approach, 
simulated reads can only approximate sequencing error profiles, 
which vary between and within sequencing centers, and it is  
challenging to add mutations at multiple user-specified variant  
allele frequencies (VAFs) to simulate subclones. In the second,  
platform-specific error profiles are accurate, but the repertoire of 
spiked-in mutations is limited to examples detected previously,  
and thus already known to be discoverable. An overview of  
these approaches is in Supplementary Note 2.

BAMSurgeon represents a third approach: directly adding  
synthetic mutations to existing reads (Fig. 1a). BAMSurgeon can 
add mutations to any alignment stored in BAM format, including 
RNA-seq and exome data. It can generate mutations at any allelic 
fraction, allowing simulation of multiple subclones or sample 
contamination; can avoid making mutations incongruent with 
existing haplotypes; and supports copy-number variation–aware 
addition of mutations if copy-number information is available.  
In addition, BAMSurgeon supports an increasing number of 
alignment methods, allowing testing of aligner-caller combina-
tions on the same mutations.

Briefly, the software works by selecting sites using coverage 
information from the target BAM file. Mutations are spiked in 
by modifying reads covering the selected sites, realigning a req-
uisite number to achieve the desired alternate allele fraction, and 
merging the reads back into the original BAM by replacement. 
Realistic tumors are created (Fig. 1b) by partitioning a high-
depth BAM, optionally with ‘burn-in’ mutations to differentiate 
it from the original BAM, into two disjoint subset BAMs. One 
receives the spike-in mutations to become the simulated tumor; 

the other is left intact and is the matched normal. The result is 
a synthetic tumor-normal pair and a VCF file of true positives 
(TPs). BAMSurgeon is open source and highly parameterized, 
thereby allowing fine-tuning of characteristics such as tumor 
purity, subclone number and coverage thresholds.

To demonstrate BAMSurgeon’s utility, we performed a series of 
quality-control studies. First, we took the sequence of the HCC1143 
BL cell line and created two separate synthetic tumor-normal pairs, 
each using the same set of spiked-in mutations but with differ-
ent random read splitting. We executed four widely used, publicly 
available mutation callers on each pair: MuTect16, RADIA (RNA 
and DNA integrated analysis)17, Strelka18 and SomaticSniper19. We 
assessed performance on the basis of recall (fraction of spiked-in 
mutations detected), precision (fraction of predicted SNVs that 
are true) and F-score (harmonic mean of precision and recall). 
Ordering and error profiles were largely independent of read splits: 
RADIA and SomaticSniper retained first and second place, whereas 
MuTect and Strelka were third and fourth (Supplementary Fig. 2). 
Second, we generated alignments of HCC1143 using the Burrows-
Wheeler Aligner (BWA) and NovoAlign with and without inser-
tion or deletion (indel) realignment. Caller ordering was largely 
independent of aligner used (Fig. 1c). Finally, we tested whether 
BAMSurgeon results are influenced by genomic background by 
taking the same set of mutations and spiking them into both 
HCC1143 and HCC1954 BWA-aligned BAMs. Caller ordering 
was largely independent of cell line (Fig. 1d).

the iCGC-tCGA dreAm somatic mutation Calling Challenge
To maximize participation, we began with three synthetic 
genomes each generated by applying BAMSurgeon to an already-
sequenced tumor cell line, thereby avoiding data access issues 
associated with patient-derived genomes. The tumors var-
ied in complexity, with IS1 being the simplest and IS3 being 
the most complex. IS1 had a moderate mutation rate (3,537 
somatic SNVs), 100% tumor cellularity and no subclonality.  
In contrast, IS3 had a higher mutation rate (7,903 somatic 
SNVs) and three subpopulations present at differ-
ent VAFs. Tumor and normal samples had ~450 million  
2-by-101-bp paired-end reads produced by an Illumina 
HiSeq 2000 sequencer, resulting in ~30× average coverage 
(Fig. 1e and Supplementary Table 1). Sequences were dis-
tributed via the GeneTorrent client from Annai Systems.  
As a supplement to local computing resources, participants  
were provided cost-free access to the Google Cloud Platform, 
where Google Cloud Storage hosted the data and the Google 
Compute Engine enabled scalable computing. Contestants reg-
istered for the SMC-DNA Challenge and submitted predicted 
mutations in VCF format through the Synapse platform20  
(https://www.synapse.org/#!Synapse:syn312572/). Multiple 
entries were allowed per team, and all scores were displayed 
on public, real-time leaderboards (Supplementary Table 1). 
To assess overfitting, we excluded a fraction of each genome  
from leaderboard scores during the challenge.

Over 157 d, we received 248 submissions from 21 teams, as 
well as 21 submissions by the SMC-DNA Challenge adminis-
tration team to prepopulate leaderboards. A list of all submis-
sions, along with a description of the pipeline used in each, is 
in Supplementary Table 2 and the Supplementary Data 1.  
The set of all submissions shows clear precision-recall trade-offs  
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(Fig. 2a and Supplementary Fig. 3) 
and distinctions amongst top-perform-
ing teams. Performance metrics varied  
substantially across submissions: for the 
simplest tumor, IS1, recall ranged from 
0.559 to 0.994, precision from 0.101 to 
0.997 and F-score from 0.046 to 0.975.

We then used the “wisdom of the 
crowds”12,13 by aggregating predictions 
into an ensemble classifier. We calculated 
consensus SNV predictions by major-
ity vote (TP or false positive, FP) at each 
position across the top k submissions. For 
IS1, consensus predictions were compa-
rable to those of the best-performing teams (F-score = 0.955–
0.984; Fig. 2b). The consensus achieved high precision (range: 
0.968–0.999; Supplementary Fig. 4a) while maintaining recall 
(range: 0.939–0.971; Supplementary Fig. 4b). To assess robust-
ness we evaluated the majority vote predictions of randomly 
selected sets of submissions. The consensus classifier improved 
and stabilized as submissions were added (Supplementary 
Fig. 5). Consensus classifiers for IS2 and IS3 outperformed the 
best method and showed stable performance (Supplementary  
Figs. 3 and 4).

effects of parameterization
The within-team variability caused by version and parameter 
changes was often comparable to that across different teams: 
25.6% of variance in IS1 occurred within teams. Critically, this 
does not reflect overfitting: a team’s best submission yielded nearly 
identical performance on the leaderboard and held-out data 

(for IS1 the median difference was −1.87 × 10−3, ranging from 
−0.091 to 0.032; Supplementary Fig. 6). F-scores were tightly 
correlated between training and testing data sets (Spearman’s 
rank correlation coefficient (ρ) = 0.98 for all three tumors; 
Fig. 3a), as were precision and recall (Supplementary Fig. 7). 
The large variability in accuracy of submissions within a single 
team highlights the very strong impact of tuning parameters  
during the challenge. Initial submissions by a team (Fig. 3b) 
tended to achieve a favorable recall with an unsatisfactory pre-
cision. The median team improved its F-score from 0.64 to 
0.91 (range of improvement: 0.18–0.98) by exploiting leader-
board feedback. Similar results were observed for IS2 and IS3 
(Supplementary Figs. 6 and 7).

We considered the ranking of each team within each tumor 
based on initial (“naive”) and best (“optimized”) submissions. 
In general, rankings were moderately changed by parameteri-
zation: when a team’s naive submission ranked in the top 3, its 
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Figure 1 | BAMSurgeon simulates tumor  
genome sequences. (a) Overview of SNV spike-in.  
(1) A list of positions is selected in a BAM  
alignment. (2) The desired base change  
is made at a user-specified variant allele  
fraction (VAF) in reads overlapping the chosen 
positions. (3) Altered reads are remapped to the 
reference genome. (4) Realigned reads replace 
corresponding unmodified reads in the original 
BAM. (b) Overview of workflow for creating  
synthetic tumor-normal pairs. Starting with a  
high-depth mate-pair BAM alignment, SNVs and 
structural variants (SVs) are spiked in to yield 
a ‘burn-in’ BAM. Paired reads from this BAM are 
randomly partitioned into a normal BAM and  
a pre-tumor BAM that receives spike-ins via  
BAMSurgeon to yield the synthetic tumor and a 
‘truth’ VCF file containing spiked-in positions.  
Mutation predictions are evaluated against this 
ground truth. (c,d) To test the robustness of  
BAMSurgeon with respect to changes in aligner 
(c) and cell line (d), we compared the rank of  
RADIA, MuTect, SomaticSniper and Strelka on  
two new tumor-normal data sets: one with an  
alternative aligner, NovoAlign, and the other  
on an alternative cell line, HCC1954. RADIA and 
SomaticSniper retained the top two positions, 
whereas MuTect and Strelka remained third  
and fourth, independently of aligner and cell 
line. (e) Summary of the three in silico tumors 
described here.
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optimized submission remained among 
the top 3 66% of the time (Fig. 3c). 
Nevertheless, teams routinely improved their overall performance, 
with 39% able to improve their F-score by at least 0.05 through 
parameter tuning and 25% improving it by more than 0.20  
(Fig. 3d). These improvements did not lead to overfitting  
(Fig. 3a,b), a result emphasizing the importance of verification 
data for algorithm tuning.

effects of genomic localization
In subsequent analyses, we focused on the single highest  
F-score submission from each team, supplemented by submis-
sions generated by executing widely used algorithms with default 
parameters (for example, MuTect, Strelka, SomaticSniper and 
VarScan). We first examined the effect of genomic location on 

prediction accuracy. For IS1, F-scores 
differed significantly between intergenic, 
intronic, untranslated and coding regions  
(P = 6.61 × 10−7; Friedman rank-sum test; 
Fig. 4a). Predictions were more accurate for 
coding SNVs (median F-score = 0.95 ± 0.13;  
±s.d. unless otherwise noted) than for 
those in UTRs (median = 0.93 ± 0.14; 
P = 3.3 × 10−3; paired Wilcoxon rank-
sum test), introns (median = 0.91 ± 0.17;  
P = 2.3 × 10−5) or intergenic regions 
(median = 0.90 ± 0.19; P = 7.6 × 10−6). 
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Figure 2 | Overview of the SMC-DNA Challenge 
data set. (a) Precision-recall plot for all IS1 
entries. Colors represent individual teams,  
and the best submission (top F-score) from  
each team is circled. The inset highlights  
top-ranking submissions. (b) Performance  
of an ensemble somatic SNV predictor.  
The ensemble was generated by taking the 
majority vote of calls made by a subset of  
the top-performing IS1 submissions. At each  
rank k, the gray dot indicates performance of 
the ensemble algorithms ranking 1 to k, and the 
colored dot indicates the performance of  
the algorithm at that rank.

Figure 3 | Effects of algorithm tuning. (a) The 
performance of groups on the training data 
set and on the held-out portion of the genome 
(~10%) are tightly correlated (Spearman’s ρ = 0.98)  
and fall near the plotted y = x line for all three 
tumors. (b) F-score, precision and recall of all 
submissions made by each team on IS1 are  
plotted in the order they were submitted.  
Teams were ranked by the F-score of their best  
submissions. Color coding as in a. The horizontal 
red lines give the F-score, precision and recall of  
the best-scoring algorithm submitted by the  
Challenge administrators, SomaticSniper. A clear 
improvement in recall, precision and F-score can 
be seen as participants adjusted parameters over 
the course of the challenge. Bar width corresponds 
to the number of submissions made by each team. 
(c) For each tumor, each team’s initial (“naive”) 
and final (“optimized”) submissions are shown,  
with dot size and color indicating overall ranking 
within these two groups. An “X” indicates that  
a team did not submit to a specific tumor (or  
changed the team name). Algorithm rankings were 
moderately changed by parameterization. (d) For 
each tumor, we assessed how much each team was 
able to improve its performance. The color scale  
represents bins of F-score improvement.
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This may reflect algorithm tuning on exome sequences or  
differences in either sequence characteristics or completeness 
of databases used for germline filtering across these different 
genomic regions. These trends were replicated in IS2 and IS3 
(Supplementary Fig. 8a,b).

Next, we evaluated error rates on nonsynonymous muta-
tions, which are the most likely to be functionally relevant 
(Fig. 4b and Supplementary Fig. 8c,d). Teamwise ranks  
were generally preserved across different genomic regions 
(Supplementary Fig. 9), and performance metrics were well 

correlated (Supplementary Fig. 10) 
across genomic regions. Nevertheless, 
few teams achieved 100% accuracy on 
nonsynonymous mutations. On IS1, 4/18 
teams (ranked 1st, 2nd, 5th and 15th on 
the entire genome) achieved 100% accu-
racy on nonsynonymous mutations. The 
remaining submissions contained false 
negatives (FNs; 3/13), FPs (4/13) or both 
(6/13). Most nonsynonymous SNVs in 
IS1 were correctly detected by all sub-
missions (22/39), but 7/39 were missed 
(i.e., FNs) by at least two teams. These 
results hold when all individual submis-
sions were considered (Supplementary 
Fig. 11). In more complex tumors, more 
errors were seen. No team achieved 100% 
accuracy on nonsynonymous mutations 
in IS2: the top two teams made one and 
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Figure 5 | Characteristics of prediction errors. 
(a–j) Random Forests assess the importance  
of 12 genomic variables on SNV prediction  
accuracy (Online Methods). Random Forest  
analysis of FPs (a,c,e,g,i) and FNs (b,d,f,h,j)  
for IS1 (a,b) and IS2 (c,d) as well as for all  
three tumors using default settings with widely 
used algorithms MuTect (e,f), SomaticSniper  
(g,h) and Strelka (i,j). Dot size reflects mean  
change in accuracy caused by removing this  
variable from the model. Color reflects the  
directional effect of each variable (red for  
increasing metric values associated with 
increased error; blue for decreasing values  
associated with increased error; black for  
factors). Background shading indicates the 
accuracy of the model fit (see bar at bottom  
for scale). Each row represents a single set  
of predictions for a given in silico tumor,  
and each column shows a genomic variable.  
SNP, single-nucleotide polymorphism.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



628  |  VOL.12  NO.7  |  JULY 2015  |  nAture methods

AnAlysis

four errors, respectively. For IS3, two teams (ranked second and 
third overall) had 100% SNV accuracy, and error profiles dif-
fered notably between subclonal populations (Supplementary  
Fig. 12). Thus, even in the most accurately analyzed regions of 
the genome, there are significant inter-algorithm differences in  
prediction accuracy.

Next we asked whether error rates differed across chromosomes 
as well as between functional regions. For IS1, we observed a  
surprisingly large F-score range across chromosomes from 
0.76 (chromosome 21, chr21) to 0.93 (chr11) compared to with  
resampled null chromosomes of equal size (chr21, 0.90 ± 0.074; 
chr11, 0.90 ± 0.076). The poor prediction accuracy for chr21 was  
an outlier: the next worst-performing chromosome was chr1  
(F-score = 0.87). Chr21 showed lower F-scores than that expected 
by chance (false discovery rate (FDR) = 3.6 × 10−25; two-way 
ANOVA), whereas chr11 showed higher F-scores (FDR = 2.8 × 10−3, 
two-way ANOVA; Supplementary Table 3). The reduced predic-
tion accuracy on chr21 was observed in both FPs (Supplementary 
Fig. 13a) and FNs (Supplementary Fig. 13b). We compared a 
series of 12 variables thought to influence prediction accuracy 
(Supplementary Table 4). FPs on chr21 showed higher reference-
allele counts (mean of 33 versus 23 for the rest of the genome;  
P < 0.01, one-way ANOVA) and base qualities (sum of 1,268  
versus 786; P < 0.01, one-way ANOVA) than FPs on other chro-
mosomes (Supplementary Table 5). These chromosome-specific 
trends influenced all algorithms in similar ways: permutation  
analysis showed no chromosome or submission with more  
variability than that expected by chance (Supplementary Fig. 14a).  
Interestingly, there was no evidence of chromosome-specific 
error on IS2 and IS3, making its origins and generality unclear 
(Supplementary Figs. 14b,c, 15 and 16). We premasked chromo-
somes to exclude regions containing structural variations, and  
there was no evidence of kataegis (small genomic regions 
with a localized concentration of mutations) in any tumor21 
(Supplementary Fig. 17). These results highlight the variability 
of mutational error profiles across tumors.

Characteristics of prediction errors
We next exploited the large number of independent analyses to 
identify characteristics associated with FPs and FNs. We selected 
the best submission from each team and focused on 12 variables 
(Supplementary Table 4). In IS1, 9/12 variables were weakly 
associated with the proportion of submissions that made an 
error at each position (0 ≤ ρ ≤ 0.1; Supplementary Figs. 18–29). 
To evaluate whether these factors contribute simultaneously to 
somatic SNV prediction error, we created a Random Forest22 for 
each submission to assess variable importance (Supplementary 
Table 6). Key variables associated with FP rates (Fig. 5a) included 
allele counts and base and mapping qualities. Intriguingly, each of 
these was associated with increased error for some algorithms and 
reduced error for others. Key determinants of FN rates included 
mapping quality and normal coverage (Fig. 5b). The characteris-
tics of FNs and FPs differed for most algorithms for IS1 (median 
ρ = 0.40; range: −0.19 to 0.71; Supplementary Fig. 30), IS2  
(Fig. 5c,d) and IS3 (data not shown).

To further compare error profiles across tumors, we executed 
three widely used somatic SNV prediction algorithms with default 
settings: MuTect (Fig. 5e,f), SomaticSniper (Fig. 5g,h) and Strelka 
(Fig. 5i,j). Error profiles showed universal, algorithm-specific and 
tumor-specific components. For example, elevated nonreference 
allele counts were associated with FPs in all tumors for all three 
methods. FNs were much more sensitive to coverage in the nor-
mal sample for Strelka than for other algorithms (Fig. 5j). The 
largest notable tumor-specific difference was strong association 
of normal sample coverage with FPs in IS1 and IS2, but not IS3, 
for all algorithms (Fig. 5e,g,i).

Given the importance of context-specific errors in sequencing23–25,  
we evaluated trinucleotide bias. BAMSurgeon spike-ins (TPs) had no 
trinucleotide bias relative to the genome (Supplementary Fig. 31),  
but FPs showed two significant biases in all three tumors (P < 2.2 
× 10−16, χ2 test; Fig. 6). First, NCG-to-NTG errors accounted for 
the four most enriched trinucleotides. This profile, along with 
elevated NCN-to-NAN and NTN-to-NCN mutations, closely 
matches the age signature (Signature 1A) detected in human 
cancers26. Second, mutations of a C to create a homopolymeric 
trinucleotide (i.e., ACA-to-AAA, GCG-to-GGG, TCT-to-TTT) 
accounted for the 6th–8th most enriched profiles. Because both 
these signatures were detected in positions with no spike-ins, they 
are entirely artifactual. The Signature 1A profile was detected in 
the FPs of some, but not all, submissions (Supplementary Fig. 32) 
and was not associated with specific sequencing characteristics 
(Supplementary Fig. 33 and Supplementary Table 7).

disCussion
The crowdsourced nature of the SMC-DNA Challenge created a 
large data set for learning general error profiles of somatic mutation 
detection algorithms and gives specific guidance. We see diverse 
types of bias across the three tumors, along with a trinucleotide 
profile of FPs closely resembling the mutational Signature 1A found 
in primary tumors, likely reflecting spontaneous deamination  
of 5-methylcytosine at NCG trinucleotides26. Algorithms may 
be detecting low levels present in all cells, artifacts may arise in 
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sequencing (for example, library preparation artifacts) or current 
algorithms may have higher error rates at NCG trinucleotides. 
Rigorous mutation verification appears critical before muta-
tional signature generation. As seen with previous challenges12,13, 
ensembles were comparable to the best individual submission, even 
when including many poorly performing submissions. This sug-
gests that mutation calls should be made by aggregating multiple  
algorithms, although this strategy would need tuning to account 
for its significant computational demands.

The real-time leaderboard highlighted the critical role of param-
eterization: teams were able to rapidly improve, particularly in 
precision, once they had an initial performance estimate. Robust 
ensemble learners may eventually eliminate the problem of param-
eter optimization, but meanwhile, many studies may benefit from 
a multistep procedure. An initial analysis would be followed with 
a round of experimental validation and then a final parameter 
optimization. The lack of overfitting suggests a modest amount of 
validation data may suffice, although studies on larger numbers of 
tumors are needed to optimize this strategy. Indeed, participants 
were often able to improve performance over time, which suggests 
that, as with previous crowdsourced challenges, real-time feedback 
can yield improved methods without overfitting12,13.

Perhaps the most notable impact of this Challenge has been the 
creation of ‘living benchmarks’. Since the ground truth was revealed, 
204 new submissions have been made by 22 teams who are using the 
Challenge data for pipeline evaluation and development. We will 
keep leaderboards open indefinitely to allow rapid comparison of 
methods, and we hope journals will expect benchmarking on these 
data sets in reports of new somatic SNV detection algorithms.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. NCBI Sequence Read Archive: SRP042948.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Synthetic tumor generation. An overview of the process for 
generating synthetic tumor-normal pairs using BAMSurgeon 
is shown in Figure 1. BAMSurgeon supports SNV, Indel and 
SV spikein, each accomplished by a separate script (addsnv.py, 
addindel.py and addsv.py). As the results presented in this paper 
only cover single-nucleotide mutations, the SNV portion of the 
software will be discussed. Sites for single-nucleotide mutations 
are represented by a single base in the reference genome; three 
examples are shown in Figure 1a indicated by the blue, orange 
and green arrows; let S be one of these sites. A column of n bases 
b0...n ∈ {A,T,C,G} from n reads is aligned over reference position 
S. Let the reference base R ∈ {A,T,C,G}. The variant allele fraction 
(VAF) at S refers to the fraction of bases in b at S, where b ≠ R. In 
BAMSurgeon, the VAF is specified for each site independently 
and implemented so that for each site S, n × VAF reads are selected 
and the bases b in those reads aligned to position S are changed 
to some base m ∈ {A,T,C,G}, where m ≠ b ≠ R (Fig. 1a, step 2). 
Optionally, a minimum alternate allele fraction (let this be a) can 
be specified such that the specified mutation at S will not be made 
if any other position sharing a read with position S has VAF ≥ a. 
For the synthetic tumors analyzed in this paper, this value was set 
to a = 0.1. This effectively prevents mutation spike-in ‘on top’ of 
existing alternate alleles and avoids making mutations that would 
be inconsistent with existing haplotypes. For each site, modified 
reads are output to a temporary BAM file, and reads are realigned 
using one of the supported methods, which currently includes 
bwa backtrack27, bwa mem28, Bowtie2 (ref. 29), GSNAP30 and 
NovoAlign (http://www.novocraft.com/) (Fig. 1a, step 3). For 
each site, a number of parameters govern whether a mutation will 
be made successfully. These include minimum read depth, i.e., 
|b|, which defaults to 5; minimum read depth for the mutation, 
i.e., |m|, which defaults to 2; and a minimum differential cover-
age |bafter|/|bbefore|, which must be ≥0.9 by default. For these last 
three parameters, the synthetic tumor analyzed in this paper was 
generated using these default values. If any of these criteria are not 
met, the mutation at the failing site is skipped and will not appear 
in the ‘truth’ output. All remapped mutations are merged together 
and then merged with the original BAM at the end of the process 
(Fig. 1a, step 4). This scheme also allows for parallelization, which 
is implemented in each of the BAMSurgeon tools.

The procedure for generating synthetic tumor-normal pairs 
using BAMSurgeon is outlined in Figure 1b. This process 
requires a high-coverage BAM file; for IS1, HCC1143 BL was 
used, obtained from https://cghub.ucsc.edu/datasets/benchmark_
download.html. To differentiate this from the original BAM file 
(step 1 of Fig. 1b), we selected 10,000 single-nucleotide sites at 
random using the script included in etc/randomsites.py in the 
BAMSurgeon distribution, requiring that the selected bases be 
present in the GRCh37 reference (i.e., positions not represented 
by the ‘N’ gap character) and covered by at least ten reads in 
the original high-coverage BAM file. Of these, 9,658 were added 
to the original BAM using addsnv.py (Supplementary Data 2)  
as well as structural mutations not discussed here. This ‘burned-
in’ BAM was then sorted by read name using SAMtools sort -n, 
and the read pairs were distributed randomly into two BAMs, with 
each read pair having 50% chance to end up in one or the other 
of the output BAMs (step 2, Fig. 1b). A script to accomplish this 
is included in the BAMSurgeon distribution in etc/bamsplit.py.  

Because the original BAM contained 60× genome coverage worth 
of reads, each of the split BAMs contained ~30× worth of reads. 
One of the two BAMs was arbitrarily designated ‘synthetic nor-
mal’ and the other ‘pre-tumor’. We again selected 4,000 single-
nucleotide sites at random and used addsnv.py to add these to 
the ‘pre-tumor’ BAM (step 3, Fig. 1b). Of these, 3,537 were added 
to the BAM file (Supplementary Data 2). The relevant settings 
for addsnv.py were as follows: -s 0.1 -m 0.5 -d 0.9 --mindepth 
5 --minmutreads 2. Following addition of structural mutations, 
the resulting ‘synthetic tumor’ was post-processed to ensure  
adherence to the SAM format specification using the script  
etc/postprocess.py, included in the BAMSurgeon distribution.  
The resulting tumor-normal pair was validated via ValidateSamFile.
jar (part of the Picard tool set: http://broadinstitute.github.io/
picard/) and distributed to participants. Given the mutations 
spiked into the synthetic tumor, a ‘truth’ VCF was generated and 
used as the ground truth against which participant mutation calls 
returned in VCF format were judged using the evaluation script 
available at https://github.com/Sage-Bionetworks/ICGC-TCGA-
DREAM-Mutation-Calling-challenge-tools.

BAMSurgeon robustness. To test the robustness of BAMSurgeon, 
we compared the output of four commonly used algorithms—
MuTect16, RADIA17, SomaticSniper19 and Strelka18—on the 
original data set against the output when an alternate aligner 
(NovoAlign), cell line (HCC1954) or read split was used. The 
same spike-in set of mutations was used in each control case. The 
following algorithm procedures were used for each control case.

First, MuTect (v.1.14) was run with default parameters and the 
per-chromosome VCF output was concatenated using Picard  
MergeVcfs (v.1.107). Only calls flagged with “PASS” were retained.

Second, RADIA (github-July-11-2014) was run with default 
parameters, and the output VCF files were filtered using the radia 
filter script with default parameters. After the filtered VCF files 
were indexed using igvtools (v2.3.12)31, the VCFs were merged 
together using VCFtools (v0.1.11)32. Finally, high-confidence 
somatic SNVs were extracted to generate the final VCF file.

Third, somatic SNV candidates were detected using bam- 
somaticsniper (v.1.0.2) with the default parameters except -q 
option (mapping quality threshold). The -q was set to 1 instead  
of 0 as recommended by the developer. To filter the candidate 
SNVs, we generated a pileup indel file for both normal BAM and 
tumor BAM files using SAMtools (v0.1.6). The SomaticSniper 
package provides a series of Perl scripts to filter out possible  
FPs (http://gmt.genome.wustl.edu/packages/somatic-sniper/
documentation.html). First, standard and LOH filtering were 
performed using the pileup indel files, and then the bam- 
readcount filter (bam-readcount downloaded on 10 January 2014) was 
applied with a mapping quality filter -q 1 (otherwise default settings).  
In addition, we ran the FP filter. Finally, the high-confidence  
filter was used with the default parameters. The final VCF file that 
contains high-confidence somatic SNVs was used.

Last, the configuration script was used to set up the Strelka 
(v1.0.7) analysis pipeline. The default configuration file for 
BWA was used with the default parameters with the exception 
of SkipDepthFilters - depth filter was turned off. Following the 
configuration step, somatic SNVs were called using eight cores. 
This step automatically generates a VCF file containing confident 
somatic SNVs, and the VCF file was used.
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The resulting predictions were compared using recall (equation 
(1)), precision (equation (2)) and F-score (equation (3)). 

recall = of true positives of true positives
of false negative

# /(#
#+ ss)

 

precision of false positives of true positives
of false p

= −
+
1 (# /(#
# oositives))  

F-score precision recall precision recall)= × × +2 ( )/(

Univariate analysis. A subset of all submissions was used for 
downstream analysis; this subset consisted of the best submission  
from each team along with four default submissions submitted by  
SMC-DNA Challenge admins: MuTect, SomaticSniper, Strelka 
and VarScan33 using default parameters. A list of all positions  
called by at least one of these submissions was generated  
(including all true SNV positions). For each of these positions,  
12 genomic factors were calculated: depth of coverage in tumor 
and normal data set, median mapping quality, read position, 
number of reference alleles, number of nonreference alleles, sum of 
base qualities, homopolymer rate, G+C content, region type, dis-
tance to nearest germline single-nucleotide polymorphism (SNP) 
and trinucleotide sequence spanning position. Coverage was cal-
culated using BEDTools34 coverage (v2.18.2), which calculated  
the number of reads at each position in both the tumor and normal  
BAM files. Mapping quality was extracted from the tumor BAM 
file by converting the BAM file to a BED file using BEDTools 
bamtobed (v2.18.2) and calculating the median quality score at 
each position using BEDTools groupby (v2.18.2). The median 
read position of each genomic position was extracted using Bio-
SamTools Pileup (v1.39). Number of reference alleles, number 
of alternate alleles and sum of base qualities were determined 
using SAMtools35 mpileup (v0.1.18). Both homopolymer rate and 
G+C content were measured over a 201-bp window (±100 bp 
from position) determined using BEDTools getfasta (v2.18.2). 
Homopolymer rate was measured using the following equation, 
where n represents the number of bases in each homopolymer 
and N represents the number of homopolymers: 

homopolymer rate = i
N

in N= ⋅( )∑ 1
2

G+C content was measured using the equation 

G+Ccontent=(#G+C)/window length

Annovar region-based annotation (v.2012-10-23) was used to 
annotate the genomic elements at each position—classifying as 
intergenic, intronic, untranslated and exonic. SNPs were called 
using the Genome Analysis ToolKit (GATK)36 UnifiedGenotyper, 
VariantRecalibrator and ApplyRecalibration (v2.4.9). The distance to 
the closest SNP was calculated using BEDTools closest (v2.18.2).

Finally, a recent study showed that cancer types show unique 
somatic SNV signatures defined by the SNV base change and 
the trinucleotide context surrounding the variation26. To explore 
the effect of both on SNV prediction, we added base changes 
(as defined by submitted VCF files) and trinucleotide context 
(extracted using BEDTools getfasta) to our model.

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

To determine the relationship between each variable and  
prediction success, we plotted each genomic variable against the 
proportion of submissions that made an error at each position. 
The Spearman correlation coefficient and corresponding P value 
were calculated for continuous variables, and a one-way ANOVA 
was run on categorical variables (base change, trinucleotide  
context and coding region).

Multivariate analysis. A Random Forest was used to model the 
effect of all 12 genomic variables on SNV prediction. Prior to 
modeling, the correlation between variables was tested. Variables 
were loosely correlated, with the exception of tumor and normal 
coverage and reference and alternate allele counts. Because of 
this correlation, the cforest implementation of Random Forest 
from the R package Party (v1.0-13) was used to reduce correla-
tion bias22,37–39. Average decrease in accuracy, as output by the 
function varimp from the same package, was used to quantify the 
importance of each variable: the larger the decrease in accuracy, 
the more important the variable in explaining prediction accuracy.  
Each tree predicts whether a submission called an SNV at that 
position. Ten thousand trees were created, and at each branch 
three variables were randomly selected for node estimation. This 
model was run on each submission, analyzing true and false SNV 
positions separately (number of observations can be found in 
Supplementary Table 7). One submission, 2319000, failed to con-
verge when the model was run with 10,000 trees, so the model was 
run with 1,000 trees on this submission (only). The directional 
effect of each variable was determined by calculating the median 
difference between a sample from each response category using 
the Wilcoxon rank test. Variable importance was compared across 
submissions and visualized with a dot map—generated using lat-
tice (v0.20-29) and latticeExtra (v0.6-26)—where dot size and 
color reflect the mean decrease in accuracy and directional effect 
of the variable for that submission, respectively, and background 
shading shows the accuracy of the model fit (for example, Fig. 4a).  
Finally, submissions were clustered by variable importance using 
the Diana algorithm.

Trinucleotide analysis. The trinucleotide context (±1 bp) at 
each SNV called was found using BEDTools getfasta (v.2.18.2). 
Trinucleotide counts were calculated, ensuring that forward 
and reverse strands were binned together (for example, ATG 
was binned with CAT). These bins were further stratified by the 
base change of the central base as documented in the submitted 
FCF files. For three FP positions, out of approximately 200,000, 
the base change specified did not align with the reference, i.e.,  
the base change specified was from T to C, whereas the trinucle-
otide at that position was AGT. These positions were considered 
to be alignment errors, and the positions were removed from  
the analysis. The distribution of trinucleotides in each base change 
was plotted and normalized using the trinucleotide distribution 
of the genome. 
normalized error observed in subset)/(# observed in genome)= (#

Genomic trinucleotide counts were found by pattern matching 
each trinucleotide in the FASTA reference file. Again these tri-
nucleotides found in either the forward or reverse strand were 
binned together. TP and FP positions were plotted separately 

(6)(6)
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to compare distributions. Both trinucleotide distributions were 
tested against the genomic distribution using a χ2 test for given 
probabilities in the R statistical environment (v.3.0.3).

Coding versus noncoding. To determine whether position func-
tionality affected SNV prediction, we annotated all positions using 
Annovar region-based annotation (v.2012-10-23) to determine 
the genomic element of each SNV. Positions called by at least one 
submission (including all true SNVs) were binned into intergenic 
(n = 24,226), intronic (n = 10,893), untranslated (n = 252) and 
coding (n = 211) regions. The F-score of positions in these regions 
was calculated and visualized in a strip plot generated using lattice 
(v0.20-29) and latticeExtra (v0.6-26). The difference in F-score 
over the four regions was tested using Friedman rank-sum test 
to account for the effect of each submission. The difference in 
F-score of each pair of regions was compared using the paired 
Wilcoxon rank-sum test.

Accuracy in exonic regions. The F-score was calculated in a  
subset of SNVs located in exonic regions corresponding to known 
genes (as determined by Annovar gene-based annotation (v.2012-
10-23)). It was hypothesized that algorithms would have increased 
prediction success in these regions owing to the negative clinical 
impact that prediction errors would have. Out of the 126 called 
positions in functional genes, a further subset of 42 positions 
was extracted and classified on the basis of mutation function-
ality; only nonsynonymous SNVs were present in this subset  
(as determined by Annovar). Selection criteria ensured that these 
positions were called by four or more of the submissions. Lattice 
(v0.20-29) and latticeExtra (v0.6-26) were used to compare the 
difference in prediction success of submissions in this subset.

Chromosomal bias of predicted SNVs. The F-score of each sub-
mission on each chromosome was calculated individually. A box 
plot, generated using lattice (v0.20-29) and latticeExtra (v0.6-26), 
suggested differences in F-scores over chromosomes. To quan-
tify the chromosome variation seen, we implemented a two-way 
ANOVA incorporating chromosomes and submissions.

Resulting P values were adjusted for multiple-hypothesis  
testing using FDR40. To account for the variation seen in  
chromosome 21, we compared the distributions of ten genomic 
variables (Supplementary Table 5) in both FNs and FPs on  
chromosome 21 against the remaining genome using the Wilcoxon 
rank-sum test. P values were adjusted for multiple testing using 
the false discovery rate method.

To further analyze chromosomal bias, we compared the rank of 
each submission on individual chromosomes to the overall rank 
of the submission. The significance of the observed variation was 
tested by generating a null distribution similar to that previously 
described. The F-score of null ‘chromosomes’ (randomly sampled  
positions over 10,000 iterations) was calculated and used to rank 
submissions. The deviation of each submission on each chromo-
some from its overall rank was weighed by the difference in overall  
F-score accuracy between the chromosome rank and overall rank. 
We then determined the number of times, over the 10,000 itera-
tions, that the deviation seen in the null ranks was greater than the 
deviation in the chromosomal ranks. This count was divided by 
10,000 to produce the probability of observing the chromosomal 
variation by chance alone (or the P value) for each submission 
on each chromosome. The variation and corresponding P value  
were visualized using a dot map generated using lattice (v0.20-29) 
and latticeExtra (v0.6-26).
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