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Superfluidity in topologically nontrivial flat bands
Sebastiano Peotta1 & Päivi Törmä1,2

Topological invariants built from the periodic Bloch functions characterize new phases of

matter, such as topological insulators and topological superconductors. The most important

topological invariant is the Chern number that explains the quantized conductance of the

quantum Hall effect. Here we provide a general result for the superfluid weight Ds of a

multiband superconductor that is applicable to topologically nontrivial bands with nonzero

Chern number C. We find that the integral over the Brillouin-zone of the quantum metric, an

invariant calculated from the Bloch functions, gives the superfluid weight in a flat band, with

the bound DsZ|C|. Thus, even a flat band can carry finite superfluid current, provided the

Chern number is nonzero. As an example, we provide Ds for the time-reversal invariant

attractive Harper–Hubbard model that can be experimentally tested in ultracold gases. In

general, our results establish that a topologically nontrivial flat band is a promising concept

for increasing the critical temperature of the superconducting transition.
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A
n important result of Bardeen–Cooper–Schrieffer (BCS)
theory is the relation Tc / expð� 1

Un0 EFð ÞÞ, between the
critical temperature of the superconducting transition and

the microscopic parameters of a superconductor, such as the
coupling constant U of the effective attractive interaction and the
density of states at the Fermi energy n0(EF). This result is valid in
the limit where the coupling constant U is much smaller than the
bandwidth, which is roughly given in a tight-binding approxima-
tion by the hopping energy J between neighbouring atomic
orbitals. The BCS formula suggests two ways to increase the
critical temperature, namely either to enhance the coupling
constant U or the density of states n0(EF). Whereas the electron–
electron attraction parametrized by U is the result of complicated
many-body physics, not yet well understood in the case of
unconventional superconductors, the density of states can be
more easily obtained and engineered in a single-particle frame-
work by means of band structure calculations.

The density of states at the Fermi energy n0(EF) is maximal
for vanishing bandwidth and so is the critical temperature.
In this limit, the energy dispersion as a function of lattice
quasimomentum :k is constant e kð Þ ¼ �e and the corresponding
energy band is called a ‘flat band’. The exponential suppression of
the critical temperature disappears in the flat-band limit U/Jc1
since BCS theory predicts1–5 TcpUn0(EF)pU/J. This might
provide the way to reach the grand goal of room-temperature
superconductivity.

A crucial question unaddressed in many works on flat-band
superconductors1–3,5–11 is whether the superfluid mass density rs,
or better, superfluid weight Ds (see below), is nonzero, leading to
the Meissner effect and dissipationless transport12,13 that define
superconductivity. Within the single-band effective Hamiltonian
approximation14–16, in which only the band dispersion enters, the
superfluid weight vanishes (DspJ) since Cooper pairs localize in
the individual lattice sites. Finite superfluid currents can be found
in some flat-band systems17, but a general theory, connecting the
superfluid weight to invariants of the band structure (possibly
topological invariants) has not yet been provided. The aim of this
work is to answer, at a general level, the crucial question whether
superfluidity can exist in a flat band and to explore its possible
connections with topological properties of the band.

Using a multiband BCS framework, we show that the
superfluid density depends not only on the energy dispersion
but also on the Bloch functions of a lattice Hamiltonian. This fact
is especially important in the flat-band limit. Moreover, we argue
that the superfluid density is subtly affected by the topological
invariants encoded in the Bloch functions even in conventional
superconductors (not topological)18. Topological invariants such
as the Chern number C are gauge-invariant integer-valued
quantities19,20, which determine the charge and spin
conductance and the presence of robust edge states21–23.
Indeed, the physical picture of localized Cooper pairs is
intimately related to the existence of exponentially localized
Wannier functions24 that can be constructed only if the Chern
number C is nonzero25 (see Fig. 1). Note that the Chern number
corresponds to an antisymmetric tensor, the Hall conductance,
whereas the superfluid weight is a symmetric one and, if nonzero
in a flat band, is an invariant quantity constructed only from the
Bloch functions. We find that the superfluid density in a flat band
is proportional to a symmetric tensor given by the Brillouin-zone
average of a quantity known as the quantum metric26,27. This
tensor is the real part of an invariant matrix M, which depends
only on the Bloch functions, while the imaginary (antisymmetric)
part is the Chern number. By means of the properties of the
invariant M, we prove a bound on the superfluid weight that
reads DsZ|C| in appropriate units (see Fig. 1). Moreover, we
predict that the superfluid weight is proportional to the coupling
constant DspU in a flat band. As a concrete application, we
derive the superfluid weight in closed form for the Harper–
Hubbard model28. Using artificial gauge fields, the Harper model
has been recently realized with ultracold gases29,30, which are a
good platform to verify our predictions. Our arguments are
general and similar results are expected for other flat bands or
bands that are only partially flat.

Results
Effective lattice Hamiltonian. Our goal is to provide, within a
mean-field approximation, a general formula for the superfluid
weight of a multiband system that can include topologically
nontrivial bands and/or flat bands. A finite supercurrent is
associated with a winding of the phase of the superconductor
complex order parameter D(r). In the specific case of a constant
current J(q), the order parameter has the form of a plane wave
D(r)¼ |D|e2iq � r with wavevector 2q. The superfluid mass density
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Figure 1 | Superfluid transport and Wannier functions. (a) Localized

Wannier functions are obtained from the Bloch functions of a set of bands,

called a composite band24,25. To have superfluidity in a flat band, the pairing

takes place only in a subset of the bands within the composite band, for

example, in a single flat band. While the Wannier functions built from the

Bloch functions of the band where pairing takes place are delocalized due to

the nonzero Chern number25 Ca0 (b) the Wannier functions of the

composite band are exponentially localized (c). We show that the superfluid

weight Ds in a flat band is given by the Brillouin-zone average of the quantum

metric26,27, which is the real part of an invariant Mij. (d) The imaginary part

of Mij gives the Chern number C. The positivite semidefiniteness of Mij

leads to the bound DsZ|C| on the superfluid weight.
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rs and superfluid weight Ds are defined as the change in the free
energy density DF=V ¼ 1

2 rsv
2
s ¼ 1

8Dsp2s (V is the volume in three
dimensions, or the area in two dimensions), due to the motion of
Cooper pairs with uniform velocity vs¼:|q|/m and momentum
ps¼ 2:|q|. In lattice systems, the mass m is not a well-defined
concept, and it is better to use the superfluid weight12,13 Ds.

A computationally convenient definition of the superfluid
weight is in terms of the grand potential O(T, m, D, q) (see ref. 31
and Supplementary Note 1)

Ds½ �i;j¼
1

V‘ 2
@2O
@qi@qj

����
m;D;q¼0

; ð1Þ

where i, j¼ x, y, z are spatial indices. In anisotropic and time-
reversal invariant systems, the superfluid weight is given by a
symmetric tensor [Ds]i, j (the notation [M]i, j for the elements of a
matrix M, with i,j not necessarily spatial indices, is used
throughout the article).

In calculating the superfluid weight, we proceed in the
following way. (1) The supercurrent wavevector q is introduced
in the Hamiltonian in a way that is rigorous for topologically
nontrivial bands: a multiband approach is used. (2) The kinetic
Hamiltonian is Fourier transformed, which defines the band
dispersions and the Bloch functions. (3) A mean-field approx-
imation is done by introducing a Bogoliubov-de Gennes (BdG)
Hamiltonian. (4) The BdG Hamiltonian is diagonalized to
provide a convenient expression for the grand potential.
(5) Supercurrent and superfluid weight are obtained as derivatives
of the grand potential with respect to q: the results are given in
terms of the band dispersions and the Bloch functions. (6) The
results are connected to topological properties of the system.

Some care is needed to introduce the wavevector q in the
Hamiltonian in a proper way. By a suitable gauge transformation,
it is possible to constrain the complex order parameter D(r) to be
real and have the same translational symmetry as the underlying
lattice, whereas the wavevector q appears in the kinetic term of
the lattice Hamiltonian

Ki;j ! Ki;je
iq� ri � rjð Þ; ð2Þ

where the matrix elements Ki,jpJ are hopping amplitudes
between lattice sites. If the wavevector q is identified with a
constant external vector potential A according to q¼ qA/:, then
equation (2) becomes the usual Peierls substitution.

The Peierls substitution is an approximation valid only if the
basis states of the lattice Hamiltonian are well localized15,16, and
ideally they should be exponentially localized Wannier
functions24. Since bands with a nonzero Chern number do not
allow exponentially localized Wannier functions25, we use a
multiband approach that can circumvent this problem. We
consider a subset of bands, which we call S, well-separated from
other bands by band gaps (a composite band)24 such that the
Chern number (or numbers) of the composite band is zero. By
linear superposition of Bloch functions of all the bands in S, it is
possible to construct exponentially localized Wannier functions.
For the notation and the definition of Wannier functions, see
Fig. 2 and Supplementary Note 2.

In the basis of Wannier functions, the effective lattice
Hamiltonian for the composite band reads (the derivation is
known14, but for convenience we repeat it in Supplementary
Note 2)

Ĥ�mN̂ ¼
X
ia;jb

X
s

ĉ
y
iasK

s
ia;jbe

iq� ria � rjbð Þĉjbs

�U
X
i;a

ĉ
y
ia"ĉia"ĉ

y
ia# ĉia# �mN̂:

ð3Þ

The ĉ wð Þ
ias; ĉ

wð Þ
jbs are annihilation (creation) operators for the

orbitals (Wannier functions) labelled by ia and jb (Fig. 2a) and
spin s, m the chemical potential, N̂ ¼

P
ias ĉ

w
iasĉias the particle

number operator, and we consider the specific case of an
attractive Hubbard interaction (U40). The Peierls substitution
has been used, properly generalized to the multiband case (see
Fig. 2a for the definition of ria). For q¼ 0, the Hamiltonian is
invariant under time-reversal symmetry (TRS) since ðK"

ia;jbÞ
� ¼

K#
ia;jb and invariant under spin rotation around the z axis, but in

general K" 6¼ K#.
Diagonalization of the Fourier transform of the hopping matrix

in equation (3) gives the band structure (see Derivation of the
Bogoliubov-de Gennes Hamiltonian in Methods)

~Ks kð Þ ¼ GkseksGyks: ð4Þ
Here eks¼ diag(enks) is a diagonal matrix composed of the
dispersions enks of each band (n labels a single band
belonging to the composite band), while the n-th column of
the unitary matrix Gks is the Bloch function Gks½ �a;n¼ gnks að Þ
of the n-th band. TRS implies that ekm¼ e� kk and
G�
k" ¼ G� k#.

BCS theory and superfluid weight in a multiband system.
The idea of superconductivity in multiband systems dates
back to 1959 (ref. 32). The first superconductor for which
multiband effects are indeed measurable is magnesium diboride
(MgB2), discovered as recently as33,34 2001. However, to the
best of our knowledge, a general and consistent theory for
the superfluid weight in a multiband system, in particular
for topologically nontrivial flat bands, has not yet been
worked out.

In the following, we develop the theory of the superfluid
weight in a multiband system within the framework of
BCS theory, namely, we use a mean-field decoupling of the
interaction term

�U
X
i;a

ĉyia" ĉia"ĉ
y
ia#ĉia# �

X
i;a

Diaĉ
y
ia" ĉ

y
ia# þH:c:

� �
; ð5Þ

where Dia ¼ �U ĉia#ĉia"
� �

. Furthermore, we choose a gauge
where the gap function preserves the discrete translational
symmetry of the lattice, which means Dia¼Da. Thus the pairing
terms are diagonal in momentum space

P
ia Da ĉ

w
ia"ĉ

w
ia# ¼P

ka Daĉ
w
ak"ĉ

w
a� k#. As already discussed, the wavevector q enters

in the mean-field Hamiltonian in the kinetic energy term through
the Peierls substitution (3).

In terms of new fermionic operators d̂nks (see Derivation of the
Bogoliubov-de Gennes Hamiltonian in Methods) the mean-field
Hamiltonian reads Ĥm:f : ¼

P
k d̂

w
kHk qð Þd̂k with the Nambu

spinor given by d̂k ¼ ðd̂nk"; d̂wn0 � k#Þ
T and the BdG Hamiltonian

is a 2� 2 block matrix defined by

HkðqÞ ¼
ek� q � m1 Gyk� qDGkþ q

Gykþ qDGk� q � ekþ q � m1
� �

0
@

1
A; ð6Þ

with D¼D� ¼ diag(Da). Due to TRS, the spin index s has been
dropped, and only the eigenvalues and eigenstates for the spin up
are used in the following, namely ek¼ ekm and Gk ¼ Gk". The
BdG Hamiltonian is diagonalized in terms of a diagonal matrix
of quasiparticle excitation energies Ek(q) and a unitary matrix
Wk qð Þ

Hk qð Þ ¼ Wk qð ÞEk qð ÞWy
k qð Þ: ð7Þ
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The symmetries of the BdG Hamiltonian for q¼ 0 imply
that these matrices have the following structure (Enk40,
see Supplementary Note 3)

Ek q ¼ 0ð Þ ¼ diag Enkð Þ 0
0 � diag Enkð Þ

	 

; ð8Þ

Wk q ¼ 0ð Þ ¼ Uk �Vk

Vk Uk

	 

: ð9Þ

While the kinetic energy terms of the BdG Hamiltonian (6) are
diagonal in the band index, the pairing terms depend in a
complicated way on the Bloch functions and on the order
parameters Da relative to all orbitals. It is interesting to explore
the consequences of this nontrivial structure on superfluid
transport. A ‘gauge’ transformation of the Bloch functions given
by Gk ! GkAk , with Ak a unitary matrix subject to the constraint
of commuting with the matrix of band dispersions ek;Ak½ � ¼ 0,
leaves the BdG Hamiltonian (6) unchanged in form while the
eigenfunctions (9) change accordingly. This freedom in the
definition of the Bloch function is the same one preventing a
unique definition of Wannier functions24. All observable
quantities, such as current and superfluid weight, are
necessarily gauge invariant.

At zero temperature, the grand potential is (see Definition of a
generic function of an Hermitian matrix in Methods and
Supplementary Note 3)

O qð Þ ¼ � 1
2

X
k

Tr Hk qð Þj j½ � þ . . . : ð10Þ

The dots in the above equation represent terms in the grand
potential that do not contribute to the superfluid weight. The
superfluid current density is obtained from the first derivative
of O(q)

JðqÞ ¼ � 1
2V‘

X
k

Tr sign Ek qð Þð ÞWy
k qð Þ@qHk qð ÞWk qð Þ

h i

with � @qHk qð Þ ¼ @kek� q @qDk qð Þ
� @qDk � qð Þ @kekþ q

	 

: ð11Þ

The definition Dk qð Þ ¼ �Gyk� qDGkþ q has been employed
above. Due to the linearity of the trace in equation (11), the
current splits into two contributions that are separately gauge
invariant. We call the first the ‘conventional’ current, which
depends on the group velocity qkek/: and is of order J/:, and
another contribution of order D/: that comes from the off-
diagonal blocks in equation (11). Our prediction of the latter

a b

c d

N orb = 3

Nc = 4

� = 1 � = 3

� = 2

r(1,1)3 = a1 + a2 + b2

a2 b1
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b2

b3

PBC

PBC

VΩ

(2�)3wn (r) = d3k eik·rgnk (r)
VΩ

(2�)3w� (r) = d3k eik·rU�,n (k)gnk (r)
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Figure 2 | Composite bands and Wannier functions. (a) We consider lattices in three and two dimensions (2D in the figure). Periodic boundary conditions

(PBC) are used. The lattice contains Nc unit cells and each unit cell contains Norb sites/orbitals. The vectors ai (i¼ 1, 2, 3) are the fundamental vectors of

the Bravais lattice14 while the vectors ba (a¼ 1,y,Norb) are the positions of the centres of the orbitals (Wannier functions) within a unit cell. A single orbital

is specified by a triplet (or pair) of integers i¼ (ix, iy, iz) and by the sublattice index a and is centred at the position vector ria¼ ixa1þ iya2þ iza3þ ba. (b) The

band structure is obtained by solving the Schrödinger equation ð� �h2r2
r

2m þV rð ÞÞcnk¼enkcnk with periodic potential V(r)¼V(rþ ai). It consists of the band

dispersions enk, with n the band index and :k the lattice quasimomentum, and the periodic Bloch functions gnk(r)¼ gnk(rþ ai) (Bloch functions for brevity)

obtained from the Bloch plane waves cnk rð Þ ¼ ei k�rgnk rð Þ. We consider a composite band, that is, a subset S of contiguous bands well separated in energy

from other bands. The Chern numbers Cn for individual bands calculated from the Bloch functions may be nonzero (such as the flat band n¼ 2 in the

figure), but their sum equals zero
P

n2S Cn ¼ 0. The Chern number refers to spin-resolved bands since the spin along a quantization axis (conventionally

the z axis) is conserved. (c) The Wannier functions, defined as the Fourier transform of the Bloch functions, allow us to derive a tight-binding Hamiltonian

that reproduces exactly a single band or a composite band of the original continuum Hamiltonian (see Supplementary Note 2). Since individual bands may

be topologically nontrivial with nonzero Chern numbers, their Wannier functions wn(r) are not exponentially localized25, and the Peierls substitution in the

effective Hamiltonian is therefore not justified15,16. (d) By constructing Wannier functions as linear superpositions of Bloch waves of all bands in the

composite band, exponentially localized Wannier functions wa(r) can be created. The mixing of the different bands is provided by the unitary matrix Ua,n(k).

This justifies the Peierls substitution for a composite band S.
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current component is highly interesting since it may be nonzero
in a flat band, unlike the conventional component. Note that in
the semiclassical expression for the velocity in a magnetic Bloch
band35,36, two terms appear as well: the group velocity obtained
by the band dispersion and the Berry curvature, which is due to
interband coupling as the off-diagonal blocks in equation (11).
However, the analogy is not complete and the precise relation
between Berry curvature and the interband contribution to the
superfluid density is clarified below.

The superfluid weight is obtained by taking the derivative of
the current density J(q) and setting q¼ 0. The superfluid weight
consists of three terms Ds¼Ds,1þDs,2þDs,3 (details of the
derivation are provided in Supplementary Note 3). We call the
first term the conventional superfluid weight

Ds;1
� �

i;j¼
2

V‘ 2

X
k

Tr VkVyk@ki@kjek
h i

: ð12Þ

This is the only term present in the single band case, and is zero
for a flat band. The other terms are present only in the multiband
case. The second term stems from the derivative qqi of the
off-diagonal blocks in equation (11)

Ds;2
� �

i;j¼
2

V‘ 2

X
k

Tr VkUyk@qi@qjDk q ¼ 0ð Þ
h i

: ð13Þ

Finally, we have a contribution from terms of the form
Ww

k qð Þ@qWk qð Þ:

Ds;3
� �

i;j¼
2

V‘ 2

X
k

X
n;n0

Bk;i
� �

n;n0 Bk;j
� �

n0;n

Enk þEn0k
; ð14Þ

Bk;i ¼Uyk@qiDk q ¼ 0ð ÞUk þVyk@qiDk q ¼ 0ð ÞVk

þVyk@kiekUk �Uyk@kiekVk:

Equations (12)–(14) are the main result of our work since the
superfluid weight can be readily calculated using only the ground-
state solution (8)-(9). The conventional superfluid weight Ds,1 is
invariant under gauge transformations, which means that Ds,2þ
Ds,3 is itself gauge invariant, thus the superfluid weight splits into
two distinct contributions in the same way as the current.

Superfluid weight in a flat band. The general results in equations
(12)–(14) can be specialized to the case of a flat band in two
dimensions, and a particularly interesting case is that of a
topologically nontrivial flat band. A band specified by �n within
the composite band S is considered for which the band gaps
separating it from the lower �n� 1ð Þ and upper �nþ 1ð Þ bands are
large with respect to the bandwidth. It is thus possible to have a
coupling constant U such that

minke �nþ 1ð Þk �maxke�nk
minke�nk �maxke �n� 1ð Þk

)
� U � maxke�nk �minke�nk:

ð15Þ
In this limit, the dispersion of the �n-th band can be approximated
by its average e�nk � e�n. To proceed, it is assumed that the order
parameters Da relative to each orbital in the unit cell are all equal,
in other words, that Dk q ¼ 0ð Þ ¼ D1 where D¼Da is now a real
scalar. We can prove this fact rigorously for the Harper–Hubbard
model.

Given this assumption, it is shown in Supplementary Note 4
that an approximate self-consistent solution can be found in the
limit (15) and has the following form. The matrices Uk½ �n;n0¼
undn;n0 and Vk½ �n;n0¼ vndn;n0 are diagonal, while the other relevant

quantities are

m ¼ e�n þUnf n� 1
2

	 

; ð16Þ

D ¼ Unfu�nv�n ¼ Unf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� nð Þ

p
; ð17Þ

un ¼
0; 0 	 no�nffiffiffiffiffiffiffiffiffiffi
1� n

p
; n ¼ �n

1; n4�n

8<
: vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2n

q
; ð18Þ

Enk ¼ E�n ¼ Unf
2 ; n ¼ �n

enk � mj j; n 6¼ �n;

�
ð19Þ

with n the filling factor of the �n-th band and n� 1
f ¼ Norb (the

number of orbitals; see Fig. 2a). This solution depends only on
equation (15) and is in fact generic for any flat band. The only
assumption is Da¼D.

The above solution can be inserted in the general formulas
(12)–(14). The conventional superfluid weight Ds,1 vanishes in the
flat band limit, and the remaining part has the form

Ds½ �i;j¼ Ds;2
� �

i;j þ Ds;3
� �

i;j¼
2Unf
p‘ 2 n 1� nð ÞMR

ij : ð20Þ

We thus find in the flat-band limit that the superfluid weight is
proportional to DpUnf. This is consistent with ref. 17 for the
specific case of the flat band of surface states in rhombohedral
graphite, however, our theory is much more general and can be
applied to a variety of systems. This result has to be contrasted
with the one for an ordinary superconductor in a parabolic band
Ds¼ np/meff pJ (with np the total particle density and meff the
effective mass) that can be obtained from equation (12), the only
term that survives in the single-band case. Therefore, an
important prediction is that in a flat-band superconductor, the
superfluid weight is linearly dependent on the coupling constant,
whereas it is independent from it in an ordinary superconductor.
Interestingly, also in superconducting graphene with the chemical
potential tuned at the Dirac point, one has37,38 DspU.

The matrix MR
ij ¼ Re Mij

� �
is the real part of a Hermitian

matrix defined as

Mij ¼
1
2p

Z
B:Z:

d2k Bij kð Þ ð21Þ

which is the integral over the whole Brillouin-zone of the
so-called quantum geometric tensor

Bij kð Þ ¼ 2Tr @kiG
y
k

	 

@kjGk
� �� �

þ 2Tr Gyk @kiGk
� �

Gyk @kjGk
� �� �

;

ð22Þ
where Gk is the projection of Gk on the �n-th band (see Positive
semidefiniteness of the quantum geometric tensor in Methods).
In mathematical terms, the quantum geometric tensor is the
Fubini-Study metric in the projective manifold of quantum
states26,27. The quantum geometric tensor has been recently
related to observable quantities in a single-particle context such as
the noise current spectrum39, and plays an important role in
characterizing bands that can host fractional Chern insulators,
namely, lattice generalization of the fractional quantum Hall
state40,41.

It can be shown that Bij kð Þ is zero if Gk is a square unitary
matrix. The case where Gk is a square matrix corresponds to
superfluid pairing including all the bands of the composite band.
Consistently, only if a strict subset of the bands in the composite
band participate in the pairing, then the superfluid weight can be
nonzero in the flat-band limit. In contrast in the same limit, the
whole composite band, which has zero Chern number, is a set of
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localized orbitals with vanishing hopping. The imaginary part of
Bij kð Þ is the well-known Berry curvature, and its integral over
the Brillouin-zone is the Chern number in two dimensions
Im Mij

� �
¼MI

ij ¼ EijC Eij¼� Eji is the Levi�Civita symbol
� �

. The
Chern number refers to spin-resolved bands since the z
component of the spin is a conserved quantity.

The real part of Bij kð Þ is a Riemannian metric26,27 defined over
the Brillouin-zone, the so-called quantum metric. In two
dimensions, the positive semidefiniteness of the 2� 2 matrix
Mij (see Positive semidefiniteness of the quantum geometric
tensor in Methods and Fig. 1) implies that det Mð Þ 
 0 or

det MR� �

 det MI� �

¼ C2: ð23Þ
For an isotropic system, the matrix MR is proportional to the
identity, and this gives the bound DsZ|C|, in appropriate units.
The trace TrM is the gauge invariant part of the localization
functional for Wannier functions F studied by Marzari and
Vanderbilt39,42, pointing to an intimate connection between
non-localization of Wannier functions and the superfluid
weight. Indeed, equation (23) also implies that the localization
functional is bounded from below by the Chern number. In 2D,
the bound is F 
 AO

2p jC j with AO the area of the unit cell
(see Supplementary Note 5).

Time-reversal invariant attractive Harper–Hubbard model. To
make our results more concrete and study the superfluid weight
in a quasi-flat band, we consider the specific example of the time-
reversal invariant attractive Harper–Hubbard model28. This
model is defined on a two dimensional square lattice with
lattice spacing a by the hopping operator

Ks
i;j ¼ � J o� siydiþ x̂;j þosiydi� x̂;j þ diþ ŷ;j þ di� ŷ;j

� �
; ð24Þ

with x̂ ¼ 1; 0ð ÞT , ŷ ¼ 0; 1ð ÞT and o ¼ e2pinf . The phase factors
o� siy are the lattice version of the Landau gauge that introduces
a uniform magnetic field with flux per plaquette given by nf. We
consider the case of a commensurate flux nf¼ 1/Q with Q
integer. The magnetic field has opposite signs for opposite spin
s¼m(k)¼±. This guarantees that the Hamiltonian is TRS
invariant. Since oQ¼ 1, the discrete translational invariance of
the square lattice is broken down to translations by Q lattice sites
on the y direction. We can use the previous notation for
composite lattices with the relabelling ix; iy

� �
! ix; aþQiy

� �
.

The Bloch functions and band dispersion are solutions of the
Harper equation43 (Supplementary Note 4).

We are mainly interested in the limit of low flux density per
plaquette nf ¼ 1=Q � 1. In this case, the bandwidth of each
band is exponentially suppressed with respect to the band gap43,
thus equation (15) is satisfied. As shown in Supplementary Note
4, a self-consistent solution with Da¼D¼ const. (D is now a real
scalar) can be found, and therefore the result for the superfluid
weight in equation (20) applies to the Harper–Hubbard model.
The only missing piece is the evaluation of M in equations (21)
and (22). In the low magnetic field limit, a suitable approximation
for the Bloch functions of the lowest bands consistent with the
flat-band approximation e�nk � e�n is43,

g�nkðaÞ �
X
s

e� ikyða�QsÞaj�n a�Qs� Qkxa
2p

	 

; ð25Þ

where jnðaÞ are the eigenfunctions of the harmonic oscillators if
a is a continuous variable. In Supplementary Note 4, it is shown
that, for the Harper model,

M ¼ 2�nþ 1 � i
i 2�nþ 1

	 

: ð26Þ

The superfluid weight in the �n-th band (Landau level in the

continuum) is proportional to / 2�nþ 1. Note how the bound
(23) is saturated for the lowest Landau level (all Landau levels in
the continuum have20,43 |C|¼ 1). By working directly in the
continuum, we have obtained precisely the result contained in
equations (20) and (26) (details are not provided here). More
generally, Equations (20)–(22) are valid for a generic flat band,
while equation (26) is specific for the Harper Hamiltonian.

Discussion
We have discovered that an invariant built from the quantum
geometric tensor, which is intimately related to the Chern
number, governs superfluidity in the flat-band limit. The
inequality (23) implies that a topologically nontrivial flat band
(Ca0) is guaranteed to have a finite superfluid density in the
presence of pairing in the system. Similar but more complicated
bounds are also expected in three dimensions, since Mij is
positive semidefinite in general, and its imaginary part encodes
three Chern numbers instead of one. This is the first time that the
superfluid weight has been directly related to a topological
invariant. Remarkably, BdG Hamiltonians with TRS and
invariance under spin rotation around a given axis belong to
the chiral unitary class AIII, whose ground state is topologically
trivial in 2D according to the classification of ref. 18, therefore, we
are referring to bulk superfluid transport and not to transport due
to edge modes.

In a flat band, mean-field theory is usually not adequate,
however, the BCS wavefunction, implicit in the BdG approach, is
the exact ground state in the continuum limit of the Harper–
Hubbard model considered here. This can be shown by mapping
to the wavefunction of a quantum Hall ferromagnet44–46 (see
Exactness of the BCS wavefunction in Methods). Under this
mapping, the result given by (20) and (26) for the superfluid
weight of the Harper–Hubbard model translates into the spin
stiffness or, equivalently, the counterflow-current superfluid
density of a quantum Hall ferromagnet44,46 with contact
repulsive interactions. Whether mean-field theory can describe
pairing in flat bands other than Landau levels is an open problem,
analogous to the problem of characterizing the bands that can
host a fractional Chern insulator40,41, but considerably less
studied. We have checked that dynamical mean-field theory
calculations (which treat local fluctuations exactly) for the
Harper–Hubbard model are indeed in excellent agreement with
mean-field theory in the case of quasi-flat bands47.

Another problem of mean-field theory in 2D is that the
transition to the normal state occurs at the Berezinsky–
Kosterlitz–Thouless (BKT) transition temperature TBKT, which
is related to the superfluid density by a universal relation and is
lower than the mean-field critical temperature. At half filling, the
estimated TBKT is close to the mean-field transition temperature
Tc (see Supplementary Note 6 and Supplementary Fig. 1)

Tc ¼
1
2
DT¼0 ¼

Unf
4

\TBKT: ð27Þ

Indeed, we find TBKTE0.25, 0.61, 0.75Tc for �n¼ 0, 1, 2,
respectively.

The superfluid weight is a linear response transport coefficient,
a ground-state property, and it can be calculated exactly if the
exact ground state is known46, as in the case of the Harper–
Hubbard model discussed above. As a consequence, it is not is
necessary to employ beyond mean-field methods for estimating
the superfluid weight48. In summary, while the validity of mean-
field theory for flat bands is in general an open question, the
superfluid weight derived here for the Harper–Hubbard model is
exact in the flat-band limit and a good approximation for quasi-
flat bands.
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In ultracold gases, the atom–atom interaction is tunable, thus
these systems are an ideal platform to confirm our prediction that
in a flat-band DspU. In fact, it is possible to introduce complex
hoppings in a lattice Hamiltonian (Peierls substitution) by Raman
dressing49 or lattice shaking50. Notably, the Harper model has
been recently implemented with ultracold gases29,30. Whereas at
the qualitative level superfluidity in ultracold gases is a well-
established fact, a quantitative measurement of the superfluid
weight has not been easy to perform so far. It has been proposed
that the superfluid weight can be measured by an analogue of the
classic Adronikashvili experiment51, whereas the superfluid
fraction of the unitary Fermi gas has been measured by means
of second sound52. Moreover, recent transport experiments with
ultracold Fermi gases53,54 make it realistic to measure quantities
like the superfluid weight. Currently, the main issue in ultracold
gas experiments is the excessive heating present in experiments
with artificial gauge fields30. Our estimates indicate (see Estimate
of the critical temperature for the Harper–Hubbard model in
Methods) that superfluidity may be achieved in the future in
topologically nontrivial flat bands that can be realized with
ultracold atoms. Flat bands have been suggested as a possible
mechanism to explain high-Tc superconductors11,10, and our
results can be used to prove this hypothesis. If our results are
generalized to the long-range Coulomb interaction, then one
more experimental context where they may be important are
quantum Hall ferromagnets (cf. the above-mentioned mapping of
the superfluid weight (equations (20) and (26)) to the spin
stiffness of a quantum Hall ferromagnet). In fact, a contact
interaction is not an acceptable approximation in this case.

Our results can be understood by distinguishing two possible
ways to obtain a band of exactly degenerate states. On one hand,
the particles can be confined in states with negligible overlap by
high potential barriers, or alternatively localization can occur in
overlapping orbits due to (pseudo-)magnetic fields or lattice
geometry. In the latter case, the possibility of transport is a
nontrivial question. The fact that we find a nonzero superfluid
weight in a flat band can be understood by finite overlap of the
Cooper pairs, indeed pairing fluctuations support transport
whenever Cooper pairs can be created and destroyed at distinct
locations. Somewhat related in a work55 that focused on
condensation rather than superfluidity, an effective Hamiltonian
for bosons in a flat band was derived by taking matrix elements of
the interaction between overlapping Wannier functions, which
produced an effective hopping for the particles. In the work of
Provost and Vallee26, pointing out for the first time the natural
geometric structure present in a manifold of quantum states, it is
suggested that macroscopic quantum systems that exhibit
collective behaviour might be those where the quantum metric
has direct physical significance, an intuition that has, in some
sense, materialized in our results that showed the connection
between quantum metric and superfluid weight. It is an intriguing
topic for future research to understand whether the pairing
fluctuations and macroscopic phase of a superfluid have any
connection to the fact that the quantum metric equals the
fluctuations in the quantity that generates the path of a quantum
state in the manifold26.

While the above discussion may help to guide the intuition, the
rigorous framework for future work is given by our results on the
important role of Wannier functions in superfluid transport. As
we have shown, the bound on the superfluid weight translates
into a bound on the the localization functional for Wannier
functions42. A nonzero Chern number implies that the Wannier
functions have algebraically decaying tails24, and this explains the
bound DsZ|C|. But the Wannier functions can also be delocalized
on a short range only, which is consistent with the fact that the
superfluid weight is related to an invariant distinct from the

Chern number. In general, we propose (quasi-)flat bands as a
viable way to increase the critical temperature in novel
superconducting materials, while at the same time preserving
the defining properties of superconductors. We expect the
invariant M that controls the superfluid weight in a flat band
to play a central role in this research effort.

Methods
Derivation of the Bogoliubov-de Gennes Hamiltonian. The BdG Hamiltonian
in equation (6) is important for our purposes, and here we clarify its derivation.
The hopping matrix has the same discrete translational symmetry as the Bravais
lattice, since Ks

ia;jb ¼ Ks
a;b i� jð Þ. By expanding the field operators into plane

waves ĉias ¼ 1ffiffiffiffi
Nc

p
P

k e
ik�ria ĉaks , the kinetic term of the Hamiltonian can be block-

diagonalized in momentum spaceX
ia;jb

ĉyiasKs
ia;jb ĉjbs ¼

X
k;a;b

ĉyaks ~Ks kð Þ
� �

a;b ĉbks ð28Þ

with ~Ks kð Þ
� �

a;b¼
X
i� j

e� ik� ria � rjbð ÞKs
ia;jb: ð29Þ

It is convenient to introduce a Nambu spinor ĉk ¼ ĉak"; ĉ
w
b� k#

� �
built out of the

operators ĉaks in the plane wave basis (see equation (28)) and write the mean-field
Hamiltonian as Ĥm:f : ¼

P
k
ĉwkH

0
k qð Þĉk with

H0
k qð Þ ¼ K" k� qð Þ� m1 D

D � K" kþ qð Þ� m1
� �	 


: ð30Þ

To cast the mean-field Hamiltonian in Nambu form, we have anticommuted the
spin-down creation and annihilation operators in the kinetic energy term
and used TRS in the form (Kk(k))� ¼Km(� k). All the c-number terms in the
mean-field Hamiltonian have been dropped since they do not affect the superfluid
weight (see Supplementary Notes 1 and 3). A further canonical transformation is
performed to go from the basis given by the orbitals within a unit cell, labelled by
a,b, to the basis that diagonalizes the kinetic Hamiltonian, that is, the Bloch
functions labelled by n. More precisely, the transformation reads ĉak" ¼P
n

G k� qð Þ"
� �

a;nd̂nk" and ĉwb� k# ¼
P
n

Gð� k� qÞ#
� ��

b;nd̂
w
n� k# ¼

P
n

Gðkþ qÞ"
� �

b;nd̂
w
n� k# .

In this way, equation (6) is obtained.

Definition of a generic function of an Hermitian matrix. In equations (10)
and (11), the absolute value | � | and the sign function sign( � ) of the BdG
Hamiltonian Hk(q) are used. In general, a function f( � ) of an Hermitian matrix
H¼UDUw, diagonalized by the unitary matrix U and by the real diagonal matrix
D, is defined as the function of the eigenvalues f(H)¼Uf(D)Uw.

Positive semidefiniteness of the quantum geometric tensor. In equation (22),
the projection �Gk of the unitary matrix Gk on the �n-th band is defined by

�Gk
� �

a;1¼ g�nk að Þ ¼ Gk½ �a;�n; �Gyk �Gk ¼ 1; �Gk
�Gyk ¼ P�nk : ð31Þ

P�nk is a projection operator, a positive semidefinite P�nk 
 0ð Þ and idempotent
P2
�nk ¼ P�nk

� �
operator. The matrix �Gk is just a column vector in equation (31), but it

can be a rectangular matrix for a group of degenerate flat bands, for example. Since
the dispersion is flat, �Gk characterizes the flat band completely. The positive
semidefiniteness of the projector Pnk and of its complement 1�Pnk implies that
the matrix Bij kð Þ in equation (22) is positive semidefinite since it can be written in
the form

Bij kð Þ ¼ 2Tr @ki
�Gyk

� �
1� P�nkð Þ @kj

�Gk
� �h i

: ð32Þ

The invariant matrix in equation (21) is also positive semidefinite M 
 0 since it is
a linear combination with positive coefficients of the positive semidefinite matrices
Bij kð Þ. Interestingly, the Berry curvature (ImBij kð Þ) and the Chern number
of a set of bands are obtained by adding the respective contributions of all bands
in the set, whereas the quantum metric ReBij kð Þ

� �
is not additive due to the

second term in equation (22), which is real and involves a double sum over the
band index.

Exactness of the BCS wavefunction. The BCS wavefunction can be shown to be
the exact ground state of the Harper–Hubbard model in the flat-band limit. To take
the flat-band limit of the Harper–Hubbard model, it is necessary to take the limit of
low magnetic flux. The problem is mapped into that of particles in the continuum
in the presence of a constant magnetic flux (Landau problem). We consider a
general form for the interparticle interaction potential V(r)¼ (2p)� 2Rd2qv(q)eiq � r
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and perform the projection of the interaction term into the �n-th Landau level41

Ĥ ¼ 1
2

R d2q
2pð Þ2 v qð ÞL2�n

qj j2‘2B
2

� �
e� qj j2‘2B=2 �r�nq" � �r�nq#

� �y
�r�nq" � �r�nq#

� �
: ð33Þ

Here ‘B is the magnetic length, Ln(x) is the n-th Laguerre polynomial and
�rnqs ¼ �rwn � qð Þs are projected density operators that obey the Girvin–MacDonald–
Platzman algebra

�rnps; �rn0qs0
h i

¼ 2isdnn0dss0 sin
p ^ q‘2B

2

	 

�rnðpþ qÞs; ð34Þ

where p ^ q ¼ pxqy � pyqx . In the Landau gauge, the explicit expression for the
projected density operators is

�rnqs ¼
X
k

ĉ
y
n k� qxð Þs ĉnkse

isqyk‘
2
B e�

i
2sqxqy‘

2
B : ð35Þ

The annihilation (creation) operators ĉ wð Þ
nks are labelled by the Landau level index n

and the momentum k along the x direction which is conserved in the Landau
gauge. Notice that if v(q)Z0, the interaction Hamiltonian (33) is repulsive between
particles with the parallel spins and attractive between particles with antiparallel
spins. It is straightforward to verify that the operator �r�nq" � �r�nq# in the
Hamiltonian annihilates the BCS wavefunction

BCSj i ¼
Y
k

uþ vĉ
y
�nk" ĉ

y
�n � kð Þ#

� �
+j i ð36Þ

for arbitrary values of u and v and any value of q, that is, the BCS wavefunction is a
zero eigenvector of the Hamiltonian. Normalization requires that |u|2þ |v|2¼ 1.
A possible parametrization is u ¼

ffiffiffi
n

p
and v ¼ eif

ffiffiffiffiffiffiffiffiffiffi
1� n

p
with n the filling and eif

an arbitrary phase. Since the Hamiltonian (33) is a positive semidefinite operator
for v(q)Z0, the BCS wavefunction must be the ground state since it is a zero
eigenvector.

An alternative way to interpret this result is well known in the context of
quantum Hall physics44,46. By performing a particle-hole transformation of the
form ĉ� k# ! ĉwk# , the BCS wavefunction is transformed into the wavefunction of a
completely polarized ferromagnet

Ferroj i ¼
Y
k

uĉ
y
k# þ vĉ

y
k"

� �
+j i: ð37Þ

This is a simple Slater determinant where all the states with spin wavefunction
v "j iþ u #j i are occupied. Under the same transformation, the interparticle
interaction becomes a repulsive interaction, which is completely isotropic in spin
space. It is easy to understand why the wavefunction (Equation (37)) is the ground
state. According to Hund’s rule, the interaction energy is minimized if the all the
spins are parallel (a consequence of the Pauli exclusion principle), and in a Landau
level, there is no kinetic energy cost that prevents a complete alignment. Indeed,
this extreme ferromagnetic state has been observed in experiments in the quantum
Hall regime44. It is important to note that the z component of the magnetization in
the ferromagnetic state is mapped by the particle-hole transformation into the total
number of particles on the superconducting side (and vice versa). Therefore,
whereas the wavefunction (37) is the ground state when a spinful Landau level is
half-filled, the BCS wavefunction is the correct ground state for any filling.

In the limit of a contact interaction, the repulsive interaction between particles
with parallel spins disappears and one is left with a purely attractive interaction,
that is, the continuum limit of the Harper–Hubbard model considered here.

Estimate of the critical temperature for the Harper–Hubbard model.
To estimate the critical temperature for an actual ultracold gas experiment, we
consider fermionic 6Li atoms in an optical lattice with a typical wavelength of the
laser standing wave l¼ 1,064 nm¼ 2p/k and the corresponding recoil energy given
by Er ¼ ‘kð Þ2=2m6Li ¼ 1:4 mK. The hopping energy scale J can then be estimated
from the approximate formula

J ¼ 4ffiffiffi
p

p Er
V0

Er

	 
3=4
exp � 2

ffiffiffiffiffiffi
V0

Er

r	 

: ð38Þ

Using the same ratio V0/ErE7 as in ref. 29 between the amplitude V0 of the optical
lattice potential and the recoil energy, one obtains JE70 nK. In Supplementary
Note 4 and Supplementary Fig. 2, we estimate that in the isolated flat-band
approximation for the time-reversal invariant attractive Harper–Hubbard model,
the mean-field critical temperature is of the order of kBTcE0.02J, which implies a
BKT transition temperature in the order of the nanoKelvin. Such a low tempera-
ture results just because we wished to be able to use the analytical results derived
here, which requires pairing within a single band and thus U needs to be smaller
than the gaps to neighbouring bands, equation (15). Conceptually the same results
can, however, be achieved when several (but not all) flat (or nearly flat) bands of
the composite bands participate in pairing, only that the theoretical analysis
becomes more involved. Then, the limit on U is relaxed, and Tc can be substantially
increased.
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