
ARTICLE

Received 30 Jul 2015 | Accepted 23 Sep 2015 | Published 5 Nov 2015

Genetic interactions contribute less than additive
effects to quantitative trait variation in yeast
Joshua S. Bloom1,2, Iulia Kotenko3, Meru J. Sadhu1, Sebastian Treusch4, Frank W. Albert1 & Leonid Kruglyak1,2,5

Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute

additively to trait variation. Genetic interactions are often proposed as a contributing factor to

trait variation, but the relative contribution of interactions to trait variation is a subject of

debate. Here we use a very large cross between two yeast strains to accurately estimate the

fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative

traits. We find that this fraction is 9% on average, substantially less than the contribution of

additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual

effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that

pairwise interaction variance is largely explained by pairs of loci at least one of which has a

significant additive effect. These results refine our understanding of the genetic architecture

of quantitative traits and help guide future mapping studies.

DOI: 10.1038/ncomms9712 OPEN

1 Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA. 2 Howard Hughes Medical Institute, University of
California, Los Angeles, Los Angeles, California 90095, USA. 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
4 Twist Bioscience, San Francisco, California 94158, USA. 5Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA.
Correspondence and requests for materials should be addressed to L.K. (email: lkruglyak@mednet.ucla.edu).

NATURE COMMUNICATIONS | 6:8712 | DOI: 10.1038/ncomms9712 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:lkruglyak@mednet.ucla.edu
http://www.nature.com/naturecommunications


G
enetic interactions arise when the joint effect of alleles at
two or more loci on a phenotype departs from simply
adding up the effects of the alleles at each locus. Many

examples of such interactions are known, but the relative
contribution of interactions to trait variation is a subject of
debate1–5. We previously generated a panel of 1,008 recombinant
offspring (‘segregants’) from a cross between two strains of yeast:
a widely used laboratory strain (BY) and an isolate from a
vineyard (RM)6. Using this panel, we estimated the contribution
of additive genetic factors to phenotypic variation (narrow-sense
or additive heritability) for 46 traits and resolved nearly all of
this contribution (on average 87%) to specific genome-wide
significant quantitative trait loci (QTL). The repeatability of
trait values across replicate measurements for each segregant
provided an upper bound for the total contribution of genetic
factors to phenotypic variation (broad-sense or full heritability).
We used the difference between trait repeatability and the
additive heritability as an estimate of the contribution of
genetic interactions to trait variation. Because trait repeatability
can include sources of variation other than gene–gene
interactions, this approach can overestimate the contribution of
such interactions. Further, with 1,008 segregants, we were able to
detect only a small number of significant QTL–QTL interactions
that, in aggregate, explained little of the estimated interaction
variance.

Here we address these limitations by studying an expanded
panel of 4,390 segregants obtained from the same cross. We
genotyped these segregants at 28,820 unique variant sites and
phenotyped them for 20 end-point growth traits with at least two
replicates. The larger sample size permits us to directly and
accurately quantify pairwise interaction variance, instead of
relying on the difference between trait repeatability and the
additive heritability. It also greatly increases the power to detect
both additive QTL and QTL–QTL interactions (Supplementary
Fig. 1). For example, we have 90% power to detect an additive
QTL that explains 0.5% of phenotypic variance, and 90% power
to detect a QTL–QTL interaction that explains of 0.8% of
phenotypic variance (Methods section). Further, the expanded
panel substantially improves fine mapping of loci.

We detected nearly 800 significant additive QTL. We were able to
refine the location of the QTL explaining at least 1% of trait variance
to B10 kb, and we resolved 31 QTL to single genes. We also
detected over 200 significant QTL–QTL interactions; in most cases,
one or both of the loci also had significant additive effects. For most
traits studied, we detected one or a few additive QTL of large effect,
plus many QTL and QTL–QTL interactions of small effect. We find
that the contribution of QTL–QTL interactions to phenotypic
variance is typically less than a quarter of the contribution of
additive effects. These results provide a picture of the genetic
contributions to quantitative traits at an unprecedented resolution.

Results
Partitioning trait variance. We used a linear mixed model with
additive, pairwise interaction, and residual strain repeatability
terms to quantify these components of trait variation7.
The additive and interaction genetic contributions are estimated
based on the realized relatedness8,9 of all pairs of segregants, as
measured from the dense genotype data. This approach allows us
to separate the contribution of gene–gene interactions from other
genetic and non-genetic sources of variation that can contribute
to trait repeatability7. We used simulations (Methods section)
to demonstrate that the model can accurately estimate the
contributions of additive QTL and QTL–QTL interactions to trait
variation over an extensive range of genetic architectures
(Supplementary Fig. 2 and Supplementary Data 1).

Across the 20 traits, additive genetic variance ranged from
8.6 to 70.4% of phenotypic variance, with a median of 43.3%.
Interaction genetic variance ranged from 2.2 to 21.2% of
phenotypic variance, with a median of 9.2%. These measures
provide genome-wide estimates for the aggregate effects of all
additive and all pairwise interaction effects, respectively. The
contribution of pairwise interactions to trait variance is typically
less than a quarter of the contribution of additive effects, and does
not exceed half the contribution of additive effects for any trait
studied here. The remaining strain repeatability variance ranged
from 0.05 to 21.4%, with a median of 8.8% (Fig. 1). Three-way
interactions may account for some of the remaining effect of
strain, but are unlikely to explain most of this remaining variance
for most traits (Supplementary Data 2). This leaves higher-order
interactions, other effects of strain, or experimental effects
confounded with strain as the potential sources of the remaining
strain repeatability variance.

Mapping additive QTL. Next, we sought to identify the individual
genomic regions underlying these genome-wide estimates. We
used a forward-search QTL mapping approach that controls for
other QTL10 (Methods section) to detect 797 genome-wide
significant additive QTL, with a median of 42.5 per trait (range
17–56). We calculated the variance captured by these detected QTL
with a random effect model that uses a genetic relationship matrix
(GRM) constructed only from genotypes at the peak markers for
each significant additive QTL. These loci captured a median
of 92% of the additive genetic variance (Fig. 2a). The number of
detected QTL per trait increased approximately fourfold relative to
that in our previous study of a subset of 1,008 segregants from this
panel6, but the variance captured by significant QTL only increased
by 5%, because most detected loci generally have very small effect
sizes (median effect size of 0.38%; Fig. 4). These observations
suggest that many additional undetected loci for these traits likely
exist in this cross, but that their individual and collective effects are
very small. The increased panel size also increases mapping
resolution. The 180 loci that explain 1% or more of phenotypic
variance have a median 95% confidence interval of 10.3 kb,
compared with 31.2 kb with 1,008 segregants; these confidence
intervals span B5 genes in the yeast genome. In 31 cases, QTL
could be refined to a single gene (Supplementary Data 3).

Partitioning interaction variance. Detection of additive QTL that
account for nearly all of the additive genetic variance allowed us to
further partition the variance contributed by QTL–QTL interac-
tions (Methods section). Briefly, we compared estimates of inter-
action variance captured by pairs of markers selected by three
different criteria: all pairs of markers across the genome, the subset
of pairs in which one marker is the peak of an additive QTL, and
the subset where both markers are additive QTL peaks. As noted
above, across the traits examined, the amount of phenotypic
variance captured by interactions between all marker pairs had a
median of 9.2%. The amount of phenotypic variance captured by
interactions between significant additive QTL and the rest of the
genome had approximately the same median (9.4%), whereas it
dropped to 4.5% for interactions only between significant additive
QTL (Fig. 3 and Supplementary Fig. 3). These results suggest that
in most pairwise interactions, at least one of the loci has a
significant additive effect, as can be confirmed by directly mapping
QTL–QTL interactions (see below).

Mapping QTL–QTL interactions. We detected specific genome-
wide significant QTL–QTL interactions for each trait using a
statistically powerful approach that takes into account all the
additive genetic variance (Methods section). One can test for
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interactions either between all pairs of markers (full scan), or only
between pairs where one marker corresponds to a significant
additive QTL (marginal scan). In principle, the former can detect
a wider range of interactions, but the latter can have higher power
due to a reduced search space. Here the two approaches yielded
similar results, detecting 205 and 266 QTL–QTL interactions,
respectively, at a false discovery rate (FDR) of 10%, with 172
interactions detected by both approaches. In the full scan, 153 of
the QTL–QTL interactions correspond to cases where both
interacting loci are also significant additive QTL, 36 correspond
to cases where one of the loci is a significant additive QTL, and
only 16 correspond to cases where neither locus is a significant

additive QTL (Supplementary Fig. 4 and Supplementary Data 4).
The interactions detected in the full and marginal scans captured
a median of 3.2 and 3.4% of phenotypic variance, respectively
(Fig. 3). These numbers correspond to about 40% of the total
pairwise interaction variance estimates (Fig. 2b), and greatly
exceed expectations from background linkage effects11

(Supplementary Fig. 5). Like the detected additive QTL, the
detected QTL–QTL interactions generally have very small effect
sizes, with a median variance explained of 0.31%. The remainder
of the interaction variance is likely due to many more pairs with
even smaller effect sizes. Unlike the case for additive QTL, no
large-effect QTL–QTL interactions were observed for these 20
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whole-genome estimate of additive genetic variance. Error bars show ±s.e. The diagonal line represents (variance captured by detected QTL¼ additive

genetic variance) and is shown as a visual guide. (b) Total variance captured by detected QTL–QTL interactions from the marginal scan for each trait is

plotted against the whole-genome estimate of interaction variance. Error bars show ±s.e. The diagonal line represents (variance captured by detected

QTL–QTL interactions¼ interaction genetic variance) and is shown as a visual guide.

H
yd

ro
xy

ur
ea

M
ag

ne
si

um
C

hl
or

id
e

T
re

ha
lo

se

E
th

an
ol

M
en

ad
io

ne

X
yl

os
e

Y
N

B

La
ct

os
e

C
ob

al
tC

hl
or

id
e

In
do

la
ce

tic
A

ci
d

R
af

fin
os

e

D
ia

m
id

e

Y
P

D

La
ct

at
e

F
or

m
am

id
e

E
6−

B
er

ba
m

in
e

M
an

ga
ne

se
S

ul
fa

te

C
op

pe
rS

ul
fa

te

N
eo

m
yc

in

Z
eo

ci
n

Residual strain repeatability
Interaction (A x A)
Additive (A)

F
ra

ct
io

n 
of

 p
he

no
ty

pi
c 

va
ria

nc
e

0.0

0.2

0.4

0.6

0.8

1.0

Additive (A)

Interaction
(A x A)

Residual strain
repeatability

Figure 1 | Contributions to trait variation. Stacked bar plots of a variance component analysis for each trait are shown. The variance component model

included terms for additive genetic variance (blue), two-way interaction variance (green), residual strain repeatability (pink) and residual error (not shown).

Error bars show±s.e. Inset, the average of the variance components across traits. Additive genetic effects, two-way interactions, and residual repeatability

account for 43, 9 and 10% of phenotypic variance, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9712 ARTICLE

NATURE COMMUNICATIONS | 6:8712 | DOI: 10.1038/ncomms9712 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


traits. Whereas the largest additive QTL explained 26% of
phenotypic variance, and 46 QTL had effect sizes 45%, the
largest QTL–QTL interaction explained only 3.3% of phenotypic
variance (Fig. 4). Typical genetic architectures for traits in this
study consist of a few large additive QTL and many small QTL
and QTL–QTL interactions.

Discussion
We have used a very large yeast cross with 4,390 segregants to
study quantitative trait variation in greater detail. Across 20 traits,
we find that additive genetic effects and pairwise genetic
interactions explain 43.7 and 9.2% of phenotypic variance,
respectively, in agreement with previous estimates based on a
smaller data set12. We detected a median of 42.5 significant
additive QTL per trait. On average, these QTL captured 92% of
the estimated additive heritability. Loci that explain at least 1% of
phenotypic variance of loci typically spanned no more than 10 kb.
We further estimate that roughly half of the pairwise interaction
variance is contributed by interactions among significant additive
QTL, and that nearly all of the interaction variance is contributed
by interactions between significant additive QTL and the genome.
Two-locus interactions in which neither locus has an additive
effect are rare and do not contribute much to phenotypic
variance. We detected about 13 QTL–QTL interactions per trait;
these capture 3.2% of phenotypic variance or 40% of total
pairwise interaction variance.

We previously discussed the factors that may lead to greater
‘missing’13 heritability in human genome-wide association studies

than in a yeast cross6. These include greater genetic variation
captured by population studies, differences in the allele frequency
spectrum, larger mutational target size of the human genome,
higher physiological complexity, and within-locus dominance
effects. Here we have focused on better delineating the
contributions of pairwise interactions to phenotypic variance.
The larger cross enabled us to obtain an accurate genome-wide
estimate of these contributions, and revealed that they are
substantially smaller than those of additive effects for every trait
examined. Further, few interactions arise from locus pairs without
detectable additive effects. This is consistent with what has been
observed in reverse-genetic screens with gene knockouts14.
Although accurate estimates of the contributions of higher-
order interactions require even larger sample sizes, the
preliminary estimates obtained here (Supplementary Data 2)
suggest that such interactions contribute less than pairwise ones.
Theoretical results have been used to argue that the contributions
of interactions to phenotypic variance in outbred populations are
expected to be smaller than in a cross1,2. We note that a small
contribution of genetic interactions to trait variance does not
imply that interactions do not exist, that they are not important
for understanding the complete genetic basis of specific traits, or
that genes do not act epistatically at the molecular level5,14.
Individual examples of QTL–QTL interactions, including some of
large effect, have been detected for a broad range of traits in many
species5,15–17. In studies that have estimated the contribution of
pairwise interactions to trait variance, it is often within the range
observed here18–21. Our results further support the predominance
of additive factors in explaining quantitative trait variance.
They also suggest that interactions are most effectively detected
by starting with the set of loci with additive effects. Combined
with the recent observation of a small contribution of dominance
to human trait variation22, this suggests that heritability not
captured by genome-wide additive models arises primarily from
additive effects of variants untagged by current genotyping
technologies23.

Methods
Construction of segregant panel and sequencing libraries. The BYxRM
segregants were constructed as described previously6. Before, we chose one segregant
each from a panel of 1,184 dissected tetrads, ultimately analysing a panel of 1,008
segregants. Here we added segregants from this panel of tetrads that were not
previously genotyped to assemble a new panel of 4,390 segregants. A Biomek FX
liquid handling robot (Beckman Coulter) was used to re-array segregants that
had not been previously genotyped to 1ml of yeast peptone dextrose in 2-ml
deep-well 96-well plates (Thermo Scientific). Plates were sealed with Breathe-Easy
gas-permeable membranes (Sigma-Aldrich), and the yeasts were grown for 2 days at
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30 �C without shaking. DNA was extracted using 96-well DNeasy Blood & Tissue
kits (Qiagen). DNA concentrations were determined using the Quant-iT dsDNA
High-Sensitivity DNA quantification kit (Invitrogen) and the Bio-Tek Synergy 2
plate reader. DNA was diluted to 0.2 ngml� 1. Per sample, 5ml of 0.2 ngml� 1 DNA
was added to 4ml of 5X Nextera HWM buffer (Illumina), 6ml of water and 5ml
of 1/35 diluted Nextera enzyme. The transposition reaction was performed for 5min
at 55 �C. Illumina sequencing adaptors and custom indices were added by PCR,
directly after the tagmentation reaction without additional sample purification.
Fragmented DNA (10ml) was combined with 0.5ml each of 10mM index primers
(one of N701-N712 plus one of 96 custom indices), 5ml of 10X Ex Taq buffer,
0.375ml Ex Taq polymerase (Takara), 4ml of 2.5mM dNTPs and 29.625ml of water,
and amplified with 20 cycles of PCR. 1152-plex libraries were run on two single-end
lanes of a rapid-run flow cell of a HiSeq 2500 (Illumina).

Power calculations. We calculated statistical power (1-b) for sample sizes of 100,
1,000 and 4,000 segregants in R using the ‘power.t.test’ function24. Power was
calculated over a range of effect sizes, where effect size was calculated as the per
cent phenotypic variance explained by a single QTL or QTL–QTL interaction. To
correct for multiple testing genome-wide significance thresholds (a) of
Po6.9� 10� 4 and Po2.5� 10� 5 were used for additive and interacting QTL,
respectively. These thresholds were chosen based on a familywise error rate
(FWER) o5% for the additive scan and FDRo10% for the interaction scan. We
note that we used a less stringent 10% FDR threshold for detecting individual
QTL–QTL interactions to provide greater sensitivity to detect interaction effects
and we expect that detected interactions are likely more upwardly biased than
additive QTL effect sizes.

Determining segregant genotypes. Fastq files for the 3,552 segregants sequenced
for the present study were demultiplexed using fastq-multx25 and aligned to the
SacCer3 version of the reference genome using bwa (ref. 26). The 3,552 new
segregants were sequenced with an average coverage of B2X. The 1,056 previously
sequenced segregants were realigned to SacCer3. BAM (ref. 27) files for all 4,608
segregants were merged into one BAM file and variants were called as described
previously. An additional filter was used to remove regions with strong mapping
bias towards the reference genome28. Of 39,741 high confidence single nucleotide
polymorphisms at which BY and RM differ, 28,220 unique single nucleotide
polymorphisms were retained for downstream analysis. As described previously, a
hidden Markov model was used to infer the segregant genotypes6. Segregants were
removed if they had fewer than 25 or greater than 105 recombination breakpoints,
fewer than 35,000 markers with genotype calls, or if the segregant genotype was
correlated with another segregant with a Pearson correlation 40.9. In all, 4,390
segregants passed these filters and were used for mapping.

Segregant phenotyping. All 4,390 segregants were phenotyped together,
including the 1,056 previously characterized and sequenced segregants. Pheno-
typing was performed as described previously6. Briefly, segregants were pinned to
agar plates from liquid stocks and then imaged for end-point growth at 48 h.
Colony radii were calculated using functions in the EBImage R package29. End-
point growth measurements were filtered and normalized as previously described.
Traits with larger difference between broad- and narrow-sense heritabilities in our
previous paper were prioritized here to focus on those traits more likely to have an
appreciable contribution from genetic interactions. Therefore, the fraction of
variance explained by genetic interactions could be biased upwards relative to all
traits.

Segregant genotypes and phenotypes are available as Supplementary Data 5.

Calculating variance components. Custom R code was used to estimate variance
components and map additive QTL as well as QTL–QTL interactions. A repeated
measures mixed model7 was used to estimate variance components. The model can
be written as:

y ¼ bXþZaþZiþZpþ e

where y is a vector of length m that contains phenotypes for n segregants including
replicate measurements such that m¼ n* (number of replicates). b is a vector of
estimated fixed effect coefficients. X is a matrix of fixed effects (here b is the overall
mean, and X is a 1m vector of ones unless otherwise specified). Z is an m� n
incidence matrix that maps m total measures to n total segregants. a is the additive
genetic effects, i is the pairwise genetic interaction effects and p is the effects due to
residual strain repeatability. The residual error is denoted by e. The distributions of
these effects are assumed to be normal with mean zero and variance–covariance as
follows:

a � N 0; s2AA
� �

; i � N 0;s2AAA � A
� �

; p � N 0; s2RIn
� �

; and e � N 0;s2EV Im
� �

The variance structure of the phenotypes is V ¼ s2AZAZ
0 þ s2AAZA � AZ0 þ

s2RZInZ
0 þ s2EV Im . Here, A is the additive relatedness matrix, the fraction of genome

shared between pairs of segregants. A was calculated using the ‘A.mat’ function in
the rrBLUP R package30.s2A is the additive genetic variance captured by markers.
A3A is the Hadamard (entrywise) product of A, which can be interpreted as the
fraction of pairs of markers shared between pairs of segregants. s2AA is the

interaction genetic variance captured by all pairwise combinations of markers. In
and Im are n� n and m�m identity matrices, s2R is the residual effect of strain not
captured by the additive and interaction genetic variance terms, and s2EV is the
error variance. Variance components were estimated using AI-REML (ref. 31) and
custom R code. Standard errors of variance component estimates were calculated as
the square root of the diagonal of the Fisher information matrix from the iteration
at convergence of the AI-REML algorithm.

An additional term for three-way interactions, using the Hadamard cube of A, is
included in a model in Supplementary Data 2.

Mapping additive QTL. Additive QTL were mapped using a forward stepwise
procedure. For each chromosome and trait the above model was fit, replacing the
term for polygenic additive effects with aloco where aloco � N 0; s2A locoAloco

� �
.

s2A loco is the additive genetic variance from all chromosomes excluding the
chromosome of interest, and Aloco is calculated as above, excluding markers
from the target chromosome. The segregant best linear unbiased predictor (BLUP)
residuals (yr¼ y� yb) for each chromosome were calculated by subtracting
the BLUPs for the effects of the rest of the genome and pairwise interactions
from the phenotypes, where yb ¼ Z s2A locoAloco þ s2AAA � A

� �
Z0V � 1 y�Xbð Þ and

V ¼ s2AmZAmZ0 þs2AAZA � AZ0 þs2RZInZ
0 þs2EV Im . Replicate values per strain

were averaged. These averaged BLUP residuals for each chromosome were then
used as the starting point for scans for additive QTL on the chromosome of
interest. Using BLUP residuals increases power to detect QTL by controlling for
genetic contributions from the remainder of the genome10. We tested for linkage at
each marker on the given chromosome by calculating (� n(ln(1� r2)/2ln(10))),
where r is the Pearson correlation coefficient between the segregant genotypes at
the marker and segregant BLUP residuals for n segregants. FWER thresholds were
determined from empirical null distributions determined by recomputing the
linkage statistic chromosome wide from 1,000 permutations of BLUP residual
phenotypes to strain assignments and recording the maximum value32. The most
significant marker was extracted from each QTL significant at a 5% FWER
threshold. These peak markers were added to the model as fixed effects and
residuals were recomputed. Additional linkage scans were performed on these
residuals (using 5% FWER thresholds that were recomputed after each round of
QTL addition) until no additional significant QTL were detected on that
chromosome. Confidence intervals were calculated as 1.5 LOD drop using the
lodint function in R/QTL (ref. 33).

Mapping QTL–QTL interactions. We increased power and computational efficiency
by searching for interactions using the segregant BLUP residuals from the additive
polygenic model as phenotypes. Specifically, we calculated yr for each trait as yr¼
y� yb where yb ¼ Z s2AA

� �
Z0V � 1 y�Xbð Þ and V ¼ s2AZAZ

0 þs2RZInZ
0 þ s2EVIm .

Replicate values per strain were averaged. For the full two-dimensional scan, LOD
scores for interactions were computed for all pairs of markers as (� n(ln(1� r2)/
2ln(10))), where n is the number of segregants with phenotypes, and r is the Pearson
correlation coefficient between the product of segregant genotypes at pairs of markers
separated by at least 50 markers and the BLUP residuals. FDR at different LOD
thresholds was calculated by dividing the average number of peaks obtained from five
permutations of segregant identities by the number of peaks observed in the real data.
We also tested for interactions between each locus with significant additive effects
(identified as described in the preceding section) and the rest of the genome in the
same manner as for the full two-dimensional scan. We refer to this as the marginal
scan. FDR was calculated as above.

Results from the BLUP residual approach were compared with a simpler
two-locus interaction model from ‘scantwo‘ in R/QTL (ref. 33) that compares the
likelihood ratio of a model that includes an interaction term to a model without
this term. From the BLUP residual approach we detected 205 QTL–QTL in the full
scan and 266 in the marginal scan. Using the same FDR procedure, 73 QTL–QTL
were detected using R/QTL with the full two-dimensional scan and 112 were
detected in the marginal scan. All of the R/QTL QTL–QTL interactions were also
detected as statistically significant in our BLUP residual models.

Fraction of variance captured by marker subsets. To estimate the fraction
of additive variance captured by significant additive QTL, we fit the model
y¼ bXþZaþZpþ e, where a was calculated from the relatedness of segregants
only at the genome-wide significant QTL peak markers for the given trait (AQTL)

such that a�N 0; s2A QTLAQTL

� �
; p � N 0; s2RIn

� �
and e � N 0;s2EV Im

� �
, and

compared it with the same model but with a calculated using the relatedness at all
markers in the genome (A) as described above, such that a � N 0;s2AA

� �
.

We partitioned the interaction variance in a similar manner. Starting with
y¼ bXþZaþZiþZpþ e, where a � N 0;s2AA

� �
and i � N 0; s2AAA � A

� �
, we

replaced A3A with various subsets of marker combinations. We fit a model with

i � N 0; s2AQTL�AQTL
AQTL � AQTL

� �
to capture the fraction of variance due to all

pairwise interactions between significant additive QTL. We fit a model with

i � N 0; s2AQTL�AAQTL � A
� �

to capture the fraction of variance due to all pairwise

interactions between significant additive QTL and the genome. We fit models
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with, i � N 0;s2QQ;QQ
� �

, where s2QQ is the fraction of phenotypic variance

captured by significant QTL–QTL interactions and QQ is the relatedness matrix
calculated from an n� q matrix where n is the number of segregants and each
column corresponds to the product of the genotypes at the peak markers for
genome-wide significant interacting QTL–QTL. The median fraction of interaction
variance explained by significant QTL–QTL interactions was calculated as the
median of s2QQ=s

2
AA for the given trait.

To estimate the fraction of variance explained by non-specific background
linkage effects, N markers or pairs of markers were chosen per trait, where N was
the observed number of QTL or QTL–QTL for that trait. GRMs were calculated as
above, but for the random marker subsets instead of QTL peak markers. To make
this analysis more tractable, phenotype replicates were averaged for each strain and
the repeatability term was excluded from the model. Variance components were
estimated for each of the models listed above for 50 random draws of N markers
for each trait. The median fraction of variance explained from these simulations is
plotted in Supplementary Fig. 5.

The individual QTL and QTL–QTL interaction effect sizes shown in Fig. 4 were
computed using the analysis of variance function in R with a trait specific multiple
regression linear model with all the trait specific significant QTL peak markers and
the product of QTL–QTL pair peak markers as fixed effects.

Simulation of genetic architectures. We simulated phenotypes from a range of
genetic architectures to test whether the mixed model will appropriately partition
variance into additive and interaction components given our experimental design
and our observed genotype data. Specifically, we simulated all combinations of
either 0, 1, 5, 10, 50 or 500 QTL and/or QTL–QTL interactions. We set the broad-
sense heritability (defined for these simulations as additive plus pairwise interaction
variance) to 0.75 and varied the additive heritability to range from 0 to 0.75 in
increments of 0.15 for all unique combinations of QTL and QTL–QTL interactions.
QTL were given equal effects, but the sign of their effect was chosen at random.
The positions of additive QTL were chosen randomly for each simulation. The
positions of QTL–QTL interactions were chosen from the set of all combinations of
additive QTL, but if the target number of QTL–QTL interactions was greater than
the set of all combinations of additive QTL, then additional QTL–QTL interaction
positions were chosen where neither position had a marginal additive effect. The
summed effects of the additive loci were scaled to have the target additive variance
and the summed effects of the interacting loci were scaled to have the target
interaction variance and these were added to create vector g. Error variance was
added from a normal distribution with mean 0 and s.d.¼ (1�H2)/H2� var(g)).
Additive and interacting variance components were estimated with GRMs con-
structed from all the markers, as described above (Supplementary Data 1). We
observed very large estimation errors in case of architectures dominated by one
very large-effect interaction, but note that we did not observe such architectures for
the traits studied here.
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2. Mäki-Tanila, A. & Hill, W. G. Influence of gene interaction on complex trait

variation with multilocus models. Genetics 198, 355–367 (2014).
3. Nelson, R. M., Pettersson, M. E. & Carlborg, Ö. A century after Fisher: time for
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